Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[動画あり] 線形回帰を題材に汎用的な理解を身につける:座学編
Search
数理の弾丸
April 09, 2024
0
82
[動画あり] 線形回帰を題材に汎用的な理解を身につける:座学編
YouTube:
https://youtu.be/54pe6MDaGI0
数理の弾丸
April 09, 2024
Tweet
Share
More Decks by 数理の弾丸
See All by 数理の弾丸
【動画あり】Transformer論文解説
mathbullet
0
230
RAG:チャットボットの能力を底上げする技術
mathbullet
0
240
ゼロから始める大規模言語モデル入門
mathbullet
0
180
[動画あり] AI入門特急コース
mathbullet
0
180
Featured
See All Featured
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
31
3k
Documentation Writing (for coders)
carmenintech
76
5.1k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
285
14k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.8k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
A designer walks into a library…
pauljervisheath
210
24k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.6k
Keith and Marios Guide to Fast Websites
keithpitt
413
23k
It's Worth the Effort
3n
187
29k
Being A Developer After 40
akosma
91
590k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
Transcript
ຊεϥΠυΛ༻ͨ͠ղઆಈը ֓ཁཝͷϦϯΫ͔Β
εϐʔΧʔ ٢ా ژେใܥ%"*ίϯαϧݴޠֶɾࣗવݴޠॲཧ εϛε چఇେଔ3ˍ%ݚڀһԽֶܥ
ࠓճͷΰʔϧ ઢܗճؼϞσϧͷϝΧχζϜͱͦͷॴɾॴΛΔ ઢܗճؼϞσϧͷ1ZUIPO࣮ΠϝʔδΛ࣋ͭ ্هΛ௨ͯ͠ɺ৽ͨͳϞσϧΛʮ׆༻Ͱ͖Δঢ়ଶ·Ͱཧղ͢Δʯ ͱ͍͏͜ͱͷഽײ֮Λ௫Ή
৽ͨͳϞσϧΛʮ׆༻Ͱ͖Δঢ়ଶ·Ͱཧղ͢Δʯͱ͍͏͜ͱͷഽײ֮Λ௫Ήͷؾ࣋ͪ ઢܗϞσϧ ܾఆ χϡʔϥϧωοτ Lฏۉ๏ ϚϧίϑϞσϧ FUD ৽ͨͳٕज़Λशಘ͢Δඞཁੑৗʹ͋Δ
ࠓճͷΰʔϧ ઢܗճؼϞσϧͷϝΧχζϜͱͦͷॴɾॴΛΔ ઢܗճؼϞσϧͷ1ZUIPO࣮ΠϝʔδΛ࣋ͭ ্هΛ௨ͯ͠ɺ৽ͨͳϞσϧΛʮ׆༻Ͱ͖Δঢ়ଶ·Ͱཧղ͢Δʯ ͱ͍͏͜ͱͷഽײ֮Λ௫Ή
͜ͷಈըͰ৮Εͳ͍͜ͱ ֶशΞϧΰϦζϜͷৄࡉ ࠷খೋ๏ʹΑΔύϥϝʔλ࠷దԽ ઢܗճؼͷੜख๏ ਖ਼ଇԽɺϩδεςΟοΫճؼFUD
ճؼͱʁ
ճؼͱʁ ճؼ େখʹҙຯͷ͋ΔΛ༧ଌ͢Δઃఆ
ճؼͱʁ ճؼ େখʹҙຯͷ͋ΔΛ༧ଌ͢Δઃఆ Ωϟϯϖʔϯछผ ސ٬ಛੑ ༧ଌ ޮՌࢦඪ ΩϟϯϖʔϯͷޮՌ༧ଌ ྫ
ճؼͱʁ ճؼ େখʹҙຯͷ͋ΔΛ༧ଌ͢Δઃఆ Ωϟϯϖʔϯछผ ސ٬ಛੑ ༧ଌ ޮՌࢦඪ ΩϟϯϖʔϯޮՌͷࣄલγϛϡϨʔγϣϯ ൢଅޮՌͷߴ͍ސ٬ಛੑͷൃݟ
ΩϟϯϖʔϯͷޮՌ༧ଌ ྫ
ճؼͱʁ ճؼ େখʹҙຯͷ͋ΔΛ༧ଌ͢Δઃఆ Ωϟϯϖʔϯछผ ސ٬ಛੑ ༧ଌ ޮՌࢦඪ ΩϟϯϖʔϯޮՌͷࣄલγϛϡϨʔγϣϯ ൢଅޮՌͷߴ͍ސ٬ಛੑͷൃݟ
ΩϟϯϖʔϯͷޮՌ༧ଌ ྫ આ໌มʢ༧ଌͷใݯͱ͢Δʣ తมʢ༧ଌͷରͱ͢Δʣ
ઢܗճؼϞσϧͱʁ
ઢܗճؼϞσϧͱʁ ઢܗճؼ తมΛઆ໌มͷҰ࣍ࣜͰ༧ଌ͢ΔϞσϧ y = w1 x1 + w2
x2 + b
ઢܗճؼϞσϧͱʁ ઢܗճؼ తมΛઆ໌มͷҰ࣍ࣜͰ༧ଌ͢ΔϞσϧ y = w1 x1 + w2
x2 + b આ໌ม తม ༧ଌͷରͱ͢Δ ༧ଌͷใݯͱ͢Δ
ઢܗճؼϞσϧͱʁ ઢܗճؼ తมΛઆ໌มͷҰ࣍ࣜͰ༧ଌ͢ΔϞσϧ y = w1 x1 + w2
x2 + b આ໌ม తม ύϥϝʔλ ಛʹ ʮઆ໌มͷ֤ΛͲΕ͘Β͍༧ଌʹӨڹͤ͞Δ͔ʯΛද͢ w ༧ଌͷରͱ͢Δ ༧ଌͷใݯͱ͢Δ
ΠϝʔδʮઢͷͯΊʯ ސ٬ಛੑʢFH݄ͨΓߪങֹʣ ޮՌࢦඪ
ΠϝʔδʮઢͷͯΊʯ ސ٬ಛੑʢFH݄ͨΓߪങֹʣ ޮՌࢦඪ
ΠϝʔδʮઢͷͯΊʯ ސ٬ಛੑʢFH݄ͨΓߪങֹʣ ޮՌࢦඪ
ΠϝʔδʮઢͷͯΊʯ ސ٬ಛੑʢFH݄ͨΓߪങֹʣ ޮՌࢦඪ ઢͷܗΛܾΊΔͷ͖ͱย w ͕͖ΛܾΊɺ ͕ยΛܾΊΔ w ͯ·Γͷྑ͞
Ͱܾ·Δ w ֶश Λσʔλʹ߹Θͤͯௐ͢Δ͜ͱ w b w, b w, b
ࠓճͷΰʔϧ ઢܗճؼϞσϧͷϝΧχζϜͱͦͷॴɾॴΛΔ ઢܗճؼϞσϧͷ1ZUIPO࣮ΠϝʔδΛ࣋ͭ ্هΛ௨ͯ͠ɺ৽ͨͳϞσϧΛʮ׆༻Ͱ͖Δঢ়ଶ·Ͱཧղ͢Δʯ ͱ͍͏͜ͱͷഽײ֮Λ௫Ή
ઢܗճؼϞσϧͷॴͱॴ
y = w1 x1 + w2 x2 + b ઢܗճؼϞσϧͷॴͱॴ
ॴ Ϟσϧͷ͕ࣜγϯϓϧͰɺֶशޙͷঢ়ଶΛղऍ͍͢͠ ➡︎ ୯ʹ༧ଌثͱͯ͠͏͚ͩͰͳ͘ɺཁҼੳʹ׆༻͍͢͠ 2.5 0.8
y = w1 x1 + w2 x2 + b ઢܗճؼϞσϧͷॴͱॴ
ॴ Ϟσϧͷ͕ࣜγϯϓϧͰɺֶशޙͷঢ়ଶΛղऍ͍͢͠ ➡︎ ୯ʹ༧ଌثͱͯ͠͏͚ͩͰͳ͘ɺཁҼੳʹ׆༻͍͢͠ 2.5 0.8
ॴ ઢܗճؼϞσϧͷॴͱॴ આ໌มͱతมͷؒʹઢܗͷ͕ؔͳ͍߹ɺ ͏·͘ϞσϦϯά͢Δͷ͍͠
ઢܗճؼϞσϧͷॴͱॴ ॴ આ໌มͱతมͷؒʹઢܗͷ͕ؔͳ͍߹ɺ ͏·͘ϞσϦϯά͢Δͷ͍͠ ॴ Ϟσϧͷ͕ࣜγϯϓϧͰɺֶशޙͷঢ়ଶΛղऍ͍͢͠ ➡︎ ୯ʹ༧ଌثͱͯ͠͏͚ͩͰͳ͘ɺཁҼੳʹ׆༻͍͢͠
ࠓճͷΰʔϧ ઢܗճؼϞσϧͷϝΧχζϜͱͦͷॴɾॴΛΔ ઢܗճؼϞσϧͷ1ZUIPO࣮ΠϝʔδΛ࣋ͭ ্هΛ௨ͯ͠ɺ৽ͨͳϞσϧΛʮ׆༻Ͱ͖Δঢ়ଶ·Ͱཧղ͢Δʯ ͱ͍͏͜ͱͷഽײ֮Λ௫Ή