Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
The Monty Hall Problem with Haskell
Search
Mathias Verraes
May 04, 2016
Technology
0
2.8k
The Monty Hall Problem with Haskell
5min lightning talk for the SoCraTes Belgium meetup.
Mathias Verraes
May 04, 2016
Tweet
Share
More Decks by Mathias Verraes
See All by Mathias Verraes
On Being Explicit
mathiasverraes
0
3k
How to Find the Bar
mathiasverraes
1
2.1k
Designed Stickiness
mathiasverraes
1
2.2k
The World's Shortest and Most Chaotic Introduction to Event Storming
mathiasverraes
2
2.7k
Property Based Testing
mathiasverraes
1
2.7k
Towards Modelling Processes
mathiasverraes
3
5.8k
Modelling Heuristics
mathiasverraes
1
3k
Object Reorientation
mathiasverraes
6
2.9k
Small Controlled Experiments
mathiasverraes
1
4.2k
Other Decks in Technology
See All in Technology
Introduction to Sansan, inc / Sansan Global Development Center, Inc.
sansan33
PRO
0
2.9k
21st ACRi Webinar - AMD Presentation Slide (Nao Sumikawa)
nao_sumikawa
0
200
Microsoft Agent 365 を 30 分でなんとなく理解する
skmkzyk
1
290
バグハンター視点によるサプライチェーンの脆弱性
scgajge12
2
440
プロダクトマネジメントの分業が生む「デリバリーの渋滞」を解消するTPMの越境
recruitengineers
PRO
3
430
ページの可視領域を算出する方法について整理する
yamatai1212
0
160
Data Hubグループ 紹介資料
sansan33
PRO
0
2.3k
pmconf2025 - 他社事例を"自社仕様化"する技術_iRAFT法
daichi_yamashita
0
490
シンプルを極める。アンチパターンなDB設計の本質
facilo_inc
1
1k
Playwrightのソースコードに見る、自動テストを自動で書く技術
yusukeiwaki
2
810
その設計、 本当に価値を生んでますか?
shimomura
2
180
ML PM Talk #1 - ML PMの分類に関する考察
lycorptech_jp
PRO
1
500
Featured
See All Featured
Mobile First: as difficult as doing things right
swwweet
225
10k
Producing Creativity
orderedlist
PRO
348
40k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.8k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.3k
jQuery: Nuts, Bolts and Bling
dougneiner
65
8.1k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
1k
KATA
mclloyd
PRO
32
15k
The Cult of Friendly URLs
andyhume
79
6.7k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
35
2.3k
Optimising Largest Contentful Paint
csswizardry
37
3.5k
Designing for Performance
lara
610
69k
Visualization
eitanlees
150
16k
Transcript
The Monty Hall Problem @mathiasverraes
None
None
None
None
None
Don't use thinking when you can use programming — Alan
Turing1 1 Supposedly
data Door = Goat | Car deriving (Eq, Show) type
Game = [Door]
newGame :: MonadRandom m => m Game newGame = shuffleM
[Car, Goat, Goat] newGames :: MonadRandom m => m [Game] newGames = replicateM 100 newGame
(|>) = flip ($) play :: Strategy -> Game ->
Door play strategy game = game |> pickDoor |> revealGoat |> strategy
pickDoor :: Game -> Game pickDoor = id -- Assume
we always pick -- the first door, it -- doesn't matter anyway.
revealGoat :: Game -> Game revealGoat [choice, Goat, x] =
[choice, x] revealGoat [choice, x, Goat] = [choice, x]
type Strategy = Game -> Door stay :: Strategy stay
[firstChoice, alternative] = firstChoice switch :: Strategy switch [firstChoice, alternative] = alternative
do game <- newGame return $ play stay game) --
Goat do game <- newGame return $ play switch game -- Car
playAll :: Strategy -> [Game] -> Int playAll strategy games
= map (play strategy) games |> filter (==Car) |> length
do gs <- newGames return $ playAll stay gs --
32 do gs <- newGames return $ playAll switch gs -- 68
None
module MontyHall where newGame :: MonadRandom m => m Game
newGame = shuffleM [Car, Goat, Goat] import System.Random.Shuffle newGames :: MonadRandom m => m [Game] import Control.Monad.Random.Class newGames = replicateM 100 newGame import Control.Monad pickDoor :: Game -> Game (|>) = flip ($) pickDoor = id data Door = Goat | Car deriving (Eq, Show) revealGoat :: Game -> Game type Game = [Door] revealGoat [choice, Goat, x] = [choice, x] type Strategy = Game -> Door revealGoat [choice, x, Goat] = [choice, x] play :: Strategy -> Game -> Door stay, switch :: Strategy play strategy game = stay [firstChoice, alternative] = firstChoice game switch [firstChoice, alternative] = alternative |> pickDoor |> revealGoat main :: IO() |> strategy main = do (stayCnt, switchCnt) <- do playAll :: Strategy -> [Game] -> Int gs <- newGames playAll strategy games = return (playAll stay gs, playAll switch gs) map (play strategy) games print ("Stay: " ++ show stayCnt) |> filter (==Car) print ("Switch: " ++ show switchCnt) |> length
Full source code: https://gist.github.com/mathiasverraes/ 3a31c912c6efb496566d55ee077dad6f Diagram: Curiouser http://www.curiouser.co.uk/monty/montyhall2.htm Images: AsapScience
http://youtube.com/watch?v=9vRUxbzJZ9Y Inspiration: F# Monty Hall problem by Yan Cui http://theburningmonk.com/2015/09/f-monty-hall-problem/
Thanks :-) @mathiasverraes