$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
The Monty Hall Problem with Haskell
Search
Mathias Verraes
May 04, 2016
Technology
0
2.8k
The Monty Hall Problem with Haskell
5min lightning talk for the SoCraTes Belgium meetup.
Mathias Verraes
May 04, 2016
Tweet
Share
More Decks by Mathias Verraes
See All by Mathias Verraes
On Being Explicit
mathiasverraes
0
3k
How to Find the Bar
mathiasverraes
1
2.1k
Designed Stickiness
mathiasverraes
1
2.2k
The World's Shortest and Most Chaotic Introduction to Event Storming
mathiasverraes
2
2.7k
Property Based Testing
mathiasverraes
1
2.7k
Towards Modelling Processes
mathiasverraes
3
5.8k
Modelling Heuristics
mathiasverraes
1
3k
Object Reorientation
mathiasverraes
6
2.9k
Small Controlled Experiments
mathiasverraes
1
4.2k
Other Decks in Technology
See All in Technology
Oracle Cloud Infrastructure IaaS 新機能アップデート 2025/09 - 2025/11
oracle4engineer
PRO
0
160
AIプラットフォームにおけるMLflowの利用について
lycorptech_jp
PRO
1
170
Python 3.14 Overview
lycorptech_jp
PRO
1
120
RAG/Agent開発のアップデートまとめ
taka0709
0
190
MLflowダイエット大作戦
lycorptech_jp
PRO
1
140
多様なデジタルアイデンティティを攻撃からどうやって守るのか / 20251212
ayokura
0
490
Haskell を武器にして挑む競技プログラミング ─ 操作的思考から意味モデル思考へ
naoya
6
1.6k
AI 駆動開発勉強会 フロントエンド支部 #1 w/あずもば
1ftseabass
PRO
0
400
AlmaLinux + KVM + Cockpit で始めるお手軽仮想化基盤 ~ 開発環境などでの利用を想定して ~
koedoyoshida
0
110
Sansanが実践する Platform EngineeringとSREの協創
sansantech
PRO
2
930
20251218_AIを活用した開発生産性向上の全社的な取り組みの進め方について / How to proceed with company-wide initiatives to improve development productivity using AI
yayoi_dd
0
130
Databricks向けJupyter Kernelでデータサイエンティストの開発環境をAI-Readyにする / Data+AI World Tour Tokyo After Party
genda
1
550
Featured
See All Featured
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
128
54k
RailsConf 2023
tenderlove
30
1.3k
jQuery: Nuts, Bolts and Bling
dougneiner
65
8.3k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
710
For a Future-Friendly Web
brad_frost
180
10k
Being A Developer After 40
akosma
91
590k
Side Projects
sachag
455
43k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
17k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
12
980
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1.1k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
122
21k
Transcript
The Monty Hall Problem @mathiasverraes
None
None
None
None
None
Don't use thinking when you can use programming — Alan
Turing1 1 Supposedly
data Door = Goat | Car deriving (Eq, Show) type
Game = [Door]
newGame :: MonadRandom m => m Game newGame = shuffleM
[Car, Goat, Goat] newGames :: MonadRandom m => m [Game] newGames = replicateM 100 newGame
(|>) = flip ($) play :: Strategy -> Game ->
Door play strategy game = game |> pickDoor |> revealGoat |> strategy
pickDoor :: Game -> Game pickDoor = id -- Assume
we always pick -- the first door, it -- doesn't matter anyway.
revealGoat :: Game -> Game revealGoat [choice, Goat, x] =
[choice, x] revealGoat [choice, x, Goat] = [choice, x]
type Strategy = Game -> Door stay :: Strategy stay
[firstChoice, alternative] = firstChoice switch :: Strategy switch [firstChoice, alternative] = alternative
do game <- newGame return $ play stay game) --
Goat do game <- newGame return $ play switch game -- Car
playAll :: Strategy -> [Game] -> Int playAll strategy games
= map (play strategy) games |> filter (==Car) |> length
do gs <- newGames return $ playAll stay gs --
32 do gs <- newGames return $ playAll switch gs -- 68
None
module MontyHall where newGame :: MonadRandom m => m Game
newGame = shuffleM [Car, Goat, Goat] import System.Random.Shuffle newGames :: MonadRandom m => m [Game] import Control.Monad.Random.Class newGames = replicateM 100 newGame import Control.Monad pickDoor :: Game -> Game (|>) = flip ($) pickDoor = id data Door = Goat | Car deriving (Eq, Show) revealGoat :: Game -> Game type Game = [Door] revealGoat [choice, Goat, x] = [choice, x] type Strategy = Game -> Door revealGoat [choice, x, Goat] = [choice, x] play :: Strategy -> Game -> Door stay, switch :: Strategy play strategy game = stay [firstChoice, alternative] = firstChoice game switch [firstChoice, alternative] = alternative |> pickDoor |> revealGoat main :: IO() |> strategy main = do (stayCnt, switchCnt) <- do playAll :: Strategy -> [Game] -> Int gs <- newGames playAll strategy games = return (playAll stay gs, playAll switch gs) map (play strategy) games print ("Stay: " ++ show stayCnt) |> filter (==Car) print ("Switch: " ++ show switchCnt) |> length
Full source code: https://gist.github.com/mathiasverraes/ 3a31c912c6efb496566d55ee077dad6f Diagram: Curiouser http://www.curiouser.co.uk/monty/montyhall2.htm Images: AsapScience
http://youtube.com/watch?v=9vRUxbzJZ9Y Inspiration: F# Monty Hall problem by Yan Cui http://theburningmonk.com/2015/09/f-monty-hall-problem/
Thanks :-) @mathiasverraes