module MontyHall where newGame :: MonadRandom m => m Game newGame = shuffleM [Car, Goat, Goat] import System.Random.Shuffle newGames :: MonadRandom m => m [Game] import Control.Monad.Random.Class newGames = replicateM 100 newGame import Control.Monad pickDoor :: Game -> Game (|>) = flip ($) pickDoor = id data Door = Goat | Car deriving (Eq, Show) revealGoat :: Game -> Game type Game = [Door] revealGoat [choice, Goat, x] = [choice, x] type Strategy = Game -> Door revealGoat [choice, x, Goat] = [choice, x] play :: Strategy -> Game -> Door stay, switch :: Strategy play strategy game = stay [firstChoice, alternative] = firstChoice game switch [firstChoice, alternative] = alternative |> pickDoor |> revealGoat main :: IO() |> strategy main = do (stayCnt, switchCnt) <- do playAll :: Strategy -> [Game] -> Int gs <- newGames playAll strategy games = return (playAll stay gs, playAll switch gs) map (play strategy) games print ("Stay: " ++ show stayCnt) |> filter (==Car) print ("Switch: " ++ show switchCnt) |> length
Full source code: https://gist.github.com/mathiasverraes/ 3a31c912c6efb496566d55ee077dad6f Diagram: Curiouser http://www.curiouser.co.uk/monty/montyhall2.htm Images: AsapScience http://youtube.com/watch?v=9vRUxbzJZ9Y Inspiration: F# Monty Hall problem by Yan Cui http://theburningmonk.com/2015/09/f-monty-hall-problem/