Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Complex-Diffie-Hellman

 Complex-Diffie-Hellman

Diffie-Hellman key exchange using complex numbers and hypercomplex numbers

Avatar for Simon DotOrg

Simon DotOrg

July 25, 2013
Tweet

More Decks by Simon DotOrg

Other Decks in Research

Transcript

  1. Complex-Diffie-Hellman Generalized: Diffie Hellman operates on Groups: given( p ,

    g) Z p ⊂Z a∗b=a∗b mod p a+b=a+b mod p a−b=a−b mod p given( p) g∈Z p Alice a=random() A=ga Bob b=random() B=gb K=Ab Alice K=Ba
  2. Comple-Diffie-Hellman • The Diffie-Hellman key exchange can be done with

    various Groups • For example elliptic curves • Others?
  3. Complex-Diffie-Hellman Complex Number Basics C (T )={(r ,i)∣r ,i∈T }

    a∗b=(ar ,ai)∗(br ,bi)=((ar∗br)−(ai∗bi),(ar∗bi)+(ai∗br)) a+b=(ar ,ai)+(br ,bi)=(ar+br ,ai+bi) a−b=(ar ,ai)−(br ,bi)=(ar−br ,ai−bi) Now we can construct the following Template Group: C={(r ,i)∣r ,i∈R} a∗b=(ar ,ai)∗(br ,bi)=((ar∗br)−(ai∗bi),(ar∗bi)+(ai∗br)) a+b=(ar ,ai)+(br ,bi)=(ar+br ,ai+bi) a−b=(ar ,ai)−(br ,bi)=(ar−br ,ai−bi) Complex numbers are defined as:
  4. Complex-Diffie-Hellman given( p) Z p ⊂Z a∗b=a∗b mod p a+b=a+b

    mod p a−b=a−b mod p Constructing a new Group Assumed, we use the prime group as Basis: P=C(Z p ) g , A, B , K∈P a=random() A=ga b=random() B=gb K=Ba=Ab So We can use our previous work for doing Diffie-Hellman key exchange: In My Practical Experimets (coding the alg. In python) It worked!
  5. Complex-Diffie-Hellman Extending the Algorithm Since the Complex Group can be

    constructed by applying the Template to another Group, we can Cascade it. given( p) Z p ⊂Z a∗b=a∗b mod p a+b=a+b mod p a−b=a−b mod p Given: C0(Z p )=Z p C1(Z p )=C(Z p ) C2(Z p )=C (C (Z p )) C3(Z p )=C (C(C (Z p ))) C4(Z p )=C (C (C(C(Z p )))) C5(Z p )=C (C(C (C (C (Z p ))))) This shows Numbers, Complex numbers and Hypercomplex over various levels.
  6. Complex-Diffie-Hellman • Advantages of Complex and Hypercomplex Numbers – They

    dont need BigIntegers to offer security • Faster • More portable – They are Quantum-Computer-Hard (Propably) – They are Easier to Implement than Elliptic Curve Diffie-Hellman