$30 off During Our Annual Pro Sale. View Details »

머신러닝을 위한 기초 수학 살펴보기

mingrammer
August 11, 2017

머신러닝을 위한 기초 수학 살펴보기

머신러닝을 위한 매우 기초적인 수학과 이를 응용한 선형 회귀 학습 예제

mingrammer

August 11, 2017
Tweet

More Decks by mingrammer

Other Decks in Technology

Transcript

  1. ݠन۞׬ਸਤೠӝୡࣻ೟࢓ಝࠁӝ
    (FUUJOHTUBSUFEUPMFBSOUIFMJOFBSBMHFCSBXJUIQZUIPO

    ӂ޹੤

    View Slide

  2. ݠन۞׬ਸ ਤೠ ӝୡ ࣻ೟ ࢓ಝࠁӝ
    MinJae Kwon (@mingrammer)
    2017.08.12
    (Getting started to learn the linear algebra with python)

    View Slide

  3. Name
    ӂ޹੤ (MinJae Kwon)
    Nickname
    @mingrammer
    Email
    [email protected]
    Who
    Game Server Engineer @ SundayToz
    Blog
    https://mingrammer.com
    Facebook
    https://facebook.com/mingrammer
    Github
    https://github.com/mingrammer
    Eng Blog
    https://medium.com/@mingrammer

    View Slide

  4. 2. ࢶഋ؀ࣻ೟੉ۆ?
    4. ୶о ӝୡ ࣻ೟ ࢓ಝࠁӝ
    Contents
    5. ࢶഋ ഥӈ ҳഅ೧ࠁӝ
    1. ࣻ೟੄ ೙ਃࢿ
    3. NumPy۽ ࢶഋ؀ࣻ೟ ׮ܞࠁӝ
    6. Next (more LA and Mathematics)

    View Slide

  5. ࣻ೟੄ ೙ਃࢿ
    ੉ߣࣁ࣌਷઱۽ӝୡ ࢶഋ؀
    ࣻ೟ਸ׮ܖ޲۽
    ׮਺ࣻधٜ੉੊ࣼೞ૑ঋ਷ٜ࠙ਸ؀࢚ਵ۽೤פ׮
    W ←W −α
    ∂L
    ∂W
    E = − 1
    N
    t
    nk
    log(y
    nk
    )
    k

    n

    d(u
    !
    u
    !
    T
    ) = 2u
    !

    View Slide

  6. ࣻ೟੄ ೙ਃࢿ
    ਢ ѐߊ
    জ ѐߊ
    API ѐߊ
    ࣻ೟



    T(x)

    ∂θ f (x,θ)dx

    −log(t)y(t)

    x∇f (x)
    1
    σ 2π
    e
    −(x−µ)2
    2σ 2
    −∞


    View Slide

  7. ࣻ೟੄ ೙ਃࢿ
    ਢ ѐߊ
    জ ѐߊ
    API ѐߊ
    ࣻ೟



    *UEFQFOETPOjCVU
    T(x)

    ∂θ f (x,θ)dx

    −log(t)y(t)

    x∇f (x)
    1
    σ 2π
    e
    −(x−µ)2
    2σ 2
    −∞


    View Slide

  8. ࣻ೟੄ ೙ਃࢿ
    ߑޙ੗ࣻ҅ஏ
    ୶ୌঌҊ્ܻ
    ঐഐࢸ҅
    ঑୷ঌҊ્ܻ
    %ݽ؛݂
    ѱ੐ূ૓
    ୭ࣗ࠺ਊঌҊ્ܻ
    ೐۽ࣁझझாે݂
    Ӓې೗୊ܻ
    ഛܫݽ؛
    ҊബਯҊࢿמ҅࢑ࢸ҅
    ݠन۞׬
    ؘ੉ఠ߬੉झ
    नഐ୊ܻ

    View Slide

  9. ࣻ೟੄ ೙ਃࢿ
    ݠन۞׬
    ߑޙ੗ࣻ҅ஏ
    ୶ୌঌҊ્ܻ
    ঐഐࢸ҅
    ঑୷ঌҊ્ܻ
    %ݽ؛݂
    ѱ੐ূ૓
    ୭ࣗ࠺ਊঌҊ્ܻ
    ೐۽ࣁझझாે݂
    Ӓې೗୊ܻ
    ഛܫݽ؛
    ҊബਯҊࢿמ҅࢑ࢸ҅
    ؘ੉ఠ߬੉झ
    नഐ୊ܻ

    View Slide

  10. ࣻ೟੄ ೙ਃࢿ
    .BDIJOF-FBSOJOH
    "MHPSJUINT
    5SBJO%BUB .PEFMT
    7BMJEBUJPO%BUB
    0VUQVUT
    /FX%BUB

    View Slide

  11. ࣻ೟੄ ೙ਃࢿ
    6 7 8 ... 5
    7 5 6 ... 3
    8 4 1 ... 4
    ... ... ... ... 2
    0 1 5 4 3
















    W = W −α
    ∂L
    ∂W
    0 0 1 ... 0
    1 0 0 ... 0
    0 1 0 ... 0
    ... ... ... ... 0
    0 0 0 0 1
















    0 1 0 ... 0
    1 0 0 ... 0
    0 1 0 ... 0
    ... ... ... ... 0
    0 0 1 0 0
















    4 1 5 ... 8




    1
    2
    (y
    k
    − t
    k
    )2

    y
    k
    = eak
    eai
    ∑ 0.5 0.4 ... ... 0.8
    0.1 −0.3 ... ... 0.2
    ... ... ... ... 0.1
    ... ... ... ... 0.43
    0.03 0.23 0.1 0.3 0.13
















    0 1 0 ... 0




    Y = X ⋅W + B

    View Slide

  12. ࣻ೟੄ ೙ਃࢿ
    6 7 8 ... 5
    7 5 6 ... 3
    8 4 1 ... 4
    ... ... ... ... 2
    0 1 5 4 3
















    W = W −α
    ∂L
    ∂W
    0 0 1 ... 0
    1 0 0 ... 0
    0 1 0 ... 0
    ... ... ... ... 0
    0 0 0 0 1
















    0 1 0 ... 0
    1 0 0 ... 0
    0 1 0 ... 0
    ... ... ... ... 0
    0 0 1 0 0
















    4 1 5 ... 8




    1
    2
    (y
    k
    − t
    k
    )2

    y
    k
    = eak
    eai
    ∑ 0.5 0.4 ... ... 0.8
    0.1 −0.3 ... ... 0.2
    ... ... ... ... 0.1
    ... ... ... ... 0.43
    0.03 0.23 0.1 0.3 0.13
















    Y = X ⋅W + B
    ࢶഋ؀ࣻ೟ ࢶഋ؀ࣻ೟ ࢶഋ؀ࣻ೟
    ഛܫҗా҅ ഛܫҗా҅
    ޷੸࠙೟
    0 1 0 ... 0




    View Slide

  13. ࣻ೟੄ ೙ਃࢿ
    6 7 8 ... 5
    7 5 6 ... 3
    8 4 1 ... 4
    ... ... ... ... 2
    0 1 5 4 3
















    W = W −α
    ∂L
    ∂W
    0 0 1 ... 0
    1 0 0 ... 0
    0 1 0 ... 0
    ... ... ... ... 0
    0 0 0 0 1
















    0 1 0 ... 0
    1 0 0 ... 0
    0 1 0 ... 0
    ... ... ... ... 0
    0 0 1 0 0
















    4 1 5 ... 8




    1
    2
    (y
    k
    − t
    k
    )2

    y
    k
    = eak
    eai
    ∑ 0.5 0.4 ... ... 0.8
    0.1 −0.3 ... ... 0.2
    ... ... ... ... 0.1
    ... ... ... ... 0.43
    0.03 0.23 0.1 0.3 0.13
















    Y = X ⋅W + B
    ഛܫҗా҅ ޷੸࠙೟
    ࢶഋ؀ࣻ೟
    ؘ੉ఠ಴അ
    ҅࢑੄ബਯࢿ
    ୭੸ച
    ౠࢿ୶୹
    ഛܫ࠙ನ
    ୶ۿ߂৘ஏ
    оࢸѨૐ
    ೧ࢳ೟੸੽Ӕ
    ӝ਎ӝ҅࢑
    ಞ޷࠙
    ੿ӏച
    0 1 0 ... 0




    View Slide

  14. ࢶഋ؀ࣻ೟੉ۆ?
    ߭ఠҕр
    x
    11
    x
    12
    x
    13
    x
    14
    x
    15
    x
    21
    x
    22
    x
    23
    x
    24
    x
    25
    x
    31
    x
    32
    x
    33
    x
    34
    x
    35
    x
    41
    x
    42
    x
    43
    x
    44
    x
    45
    x
    51
    x
    52
    x
    53
    x
    54
    x
    55


















    T
    y
    1
    y
    2
    y
    3
    y
    4
    y
    5


















    −3 −2 6




    2 2 8




    ߭ఠো࢑
    ೯۳ো࢑
    ରਗ
    ࢶഋߑ੿ध
    ݠन۞׬
    ঐഐച
    ੿ࠁѨ࢝
    ੉޷૑೐۽ࣁय
    ؀ӏݽ୊ܻ

    View Slide

  15. ਋ܻח ࢶഋ؀ࣻܳ ׮ܖӝ ਤ೧ Numpyܳ ࢎਊ೤פ׮
    ৈӝח౵੉௑੉૑݅
    ࣽࣻ1ZUIPO਷ખוܿ
    /VNQZח௏যо$'PSUSBOӝ߈੉ۄࡅܴ
    ࡅܳࡺ݅ইפۄߓৌਸബਯ੸ਵ۽୊ܻ೧ݫݽܻب؏ࢎਊೣ
    пઙಞܻೠҊࣻળੋఠಕ੉झ৬بҳٜਸઁҕ
    NumPy۽ ࢶഋ؀ࣻ೟ ׮ܞࠁӝ

    View Slide

  16. NumPy۽ ࢶഋ؀ࣻ೟ ׮ܞࠁӝ
    ߭ఠ (vector)
    ↟ ߭ఠ
    ҕрীࢲ੄ਗࣗܳ಴അ
    ↟߭ఠחпਗࣗ੄ؘ੉ఠఋੑ੉زੌ
    ↟ࠁాBSSBZ۽಴അ OVNQZBSSBZ

    View Slide

  17. NumPy۽ ࢶഋ؀ࣻ೟ ׮ܞࠁӝ
    ߭ఠ (vector)
    x = x
    1
    x
    2
    ... x
    n



    ⎦ x =
    x
    1
    x
    2
    ...
    x
    n














    ೯߭ఠ SPXWFDUPS
    ৌ߭ఠ DPMVNOWFDUPS

    View Slide

  18. NumPy۽ ࢶഋ؀ࣻ೟ ׮ܞࠁӝ
    ߭ఠ (vector)

    View Slide

  19. NumPy۽ ࢶഋ؀ࣻ೟ ׮ܞࠁӝ
    ߭ఠ ো࢑
    ↟ؔࣅ BEEJUJPO

    ↟ࡓࣅ TVCUSBDUJPO

    ↟झணۄғ 4DBMBS1SPEVDU

    ↟ࢿ࠙ғ &MFNFOUXJTF.VMUJQMJDBUJPO

    ↟ղ੸ *OOFS1SPEVDU

    ߭ఠח׮਺੄ো࢑ٜਸࣻ೯ೡࣻ੓਺

    View Slide

  20. NumPy۽ ࢶഋ؀ࣻ೟ ׮ܞࠁӝ
    ߭ఠ ো࢑ 1
    ↟ؔࣅ BEEJUJPO

    ↟ࡓࣅ TVCUSBDUJPO

    v + u = (v
    1
    + u
    1
    ,...,v
    n
    + u
    n
    )
    v − u = (v
    1
    − u
    1
    ,...,v
    n
    − u
    n
    )

    View Slide

  21. NumPy۽ ࢶഋ؀ࣻ೟ ׮ܞࠁӝ
    ߭ఠ ো࢑ 1

    View Slide

  22. NumPy۽ ࢶഋ؀ࣻ೟ ׮ܞࠁӝ
    ߭ఠ ো࢑ 2
    ↟झணۄғ 4DBMBS1SPEVDU

    ↟ࢿ࠙ғ &MFNFOUXJTF.VMUJQMJDBUJPO

    ↟ղ੸ *OOFS1SPEVDU

    v⊗u = (v
    1
    u
    1
    ,...,v
    n
    u
    n
    )
    av = (av
    1
    ,...,av
    n
    )
    v⋅u = v
    i
    u
    i
    i=1
    n

    View Slide

  23. NumPy۽ ࢶഋ؀ࣻ೟ ׮ܞࠁӝ
    ߭ఠ ো࢑ 2

    View Slide

  24. NumPy۽ ࢶഋ؀ࣻ೟ ׮ܞࠁӝ
    ೯۳ (Matrix)
    ↟NYO੄ഋకܳо૗
    ↟п೯ৌਸ߭ఠ۽಴അоמ
    ↟ࠁాରਗBSSBZ۽಴അ

    View Slide

  25. NumPy۽ ࢶഋ؀ࣻ೟ ׮ܞࠁӝ
    ೯۳ ো࢑
    ↟ؔࣅ BEEJUJPO

    ↟ࡓࣅ TVCUSBDUJPO

    ↟झணۄғ 4DBMBS1SPEVDU

    ↟ࢿ࠙ғ &MFNFOUXJTF.VMUJQMJDBUJPO

    ↟೯۳ғ .BUSJY.VMUJQMJDBUJPO

    ೯۳਷׮਺੄ো࢑ٜਸࣻ೯ೡࣻ੓਺

    View Slide

  26. NumPy۽ ࢶഋ؀ࣻ೟ ׮ܞࠁӝ
    ೯۳ ো࢑ 1
    ↟ؔࣅ BEEJUJPO

    ↟ࡓࣅ TVCUSBDUJPO

    X +Y =
    x
    11
    + y
    11
    ... x
    1n
    + y
    1n
    ... ... ...
    x
    m1
    + y
    m1
    ... x
    mn
    + y
    mn










    X −Y =
    x
    11
    − y
    11
    ... x
    1n
    − y
    1n
    ... ... ...
    x
    m1
    − y
    m1
    ... x
    mn
    − y
    mn










    View Slide

  27. ೯۳ ো࢑ 1
    NumPy۽ ࢶഋ؀ࣻ೟ ׮ܞࠁӝ

    View Slide

  28. ೯۳ ো࢑ 2
    ↟झணۄғ 4DBMBS1SPEVDU

    ↟ࢿ࠙ғ &MFNFOUXJTF.VMUJQMJDBUJPO

    aX =
    ax
    11
    ... ax
    1n
    ... ... ...
    ax
    m1
    ... ax
    mn










    X ⊗Y =
    x
    11
    y
    11
    ... x
    1n
    y
    1n
    ... ... ...
    x
    m1
    y
    m1
    ... x
    mn
    y
    mn










    NumPy۽ ࢶഋ؀ࣻ೟ ׮ܞࠁӝ

    View Slide

  29. ೯۳ ো࢑ 2
    NumPy۽ ࢶഋ؀ࣻ೟ ׮ܞࠁӝ

    View Slide

  30. ೯۳ ো࢑ 3
    x
    11
    x
    12
    x
    13
    x
    14
    x
    21
    x
    22
    x
    23
    x
    24
    x
    31
    x
    32
    x
    33
    x
    34












    ೯۳ғ .BUSJY.VMUJQMJDBUJPO

    =
    y
    11
    y
    12
    y
    13
    y
    21
    y
    22
    y
    23
    y
    31
    y
    32
    y
    33
    y
    41
    y
    42
    y
    43














    x
    11
    y
    11
    + x
    12
    y
    21
    + x
    13
    y
    31
    + x
    14
    y
    41
    ... ...
    ... ... ...
    ... ... ...










    Y Y Y
    =
    Y
    NumPy۽ ࢶഋ؀ࣻ೟ ׮ܞࠁӝ

    View Slide

  31. ೯۳ ো࢑ 3
    NumPy۽ ࢶഋ؀ࣻ೟ ׮ܞࠁӝ

    View Slide

  32. ੹஖ (Transpose)
    NumPy۽ ࢶഋ؀ࣻ೟ ׮ܞࠁӝ
    XT =
    x
    11
    x
    12
    x
    13
    x
    14
    x
    21
    x
    22
    x
    23
    x
    24
    x
    31
    x
    32
    x
    33
    x
    34












    T
    =
    x
    11
    x
    12
    x
    13
    x
    21
    x
    22
    x
    23
    x
    31
    x
    32
    x
    33
    x
    41
    x
    42
    x
    43














    xT = x
    1
    x
    2
    ... x
    n




    T
    =
    x
    1
    x
    2
    ...
    x
    n














    View Slide

  33. ੹஖ (Transpose)
    NumPy۽ ࢶഋ؀ࣻ೟ ׮ܞࠁӝ

    View Slide

  34. ױਤ ೯۳ (Identity Matrix)
    NumPy۽ ࢶഋ؀ࣻ೟ ׮ܞࠁӝ
    I
    n
    =
    1 0 0 ... 0
    0 1 0 ... 0
    0 0 1 ... 0
    ... ... ... ... 0
    0 0 0 0 1
















    View Slide

  35. NumPy۽ ࢶഋ؀ࣻ೟ ׮ܞࠁӝ
    ױਤ ೯۳ (Identity Matrix)

    View Slide

  36. ৉೯۳ (Inverse Matrix)
    XX−1 = I
    n
    = X−1X
    NumPy۽ ࢶഋ؀ࣻ೟ ׮ܞࠁӝ
    ৉೯۳਷ ೦࢚ ઓ੤ೞ૑ח ঋ਺

    View Slide

  37. ৉೯۳ (Inverse Matrix)
    NumPy۽ ࢶഋ؀ࣻ೟ ׮ܞࠁӝ

    View Slide

  38. ୶о ӝୡ ࣻ೟ ࢓ಝࠁӝ
    ੿ӏച 1
    y
    i
    = x
    i
    x
    i
    ∑ ੹୓ sumਵ۽ ա׃ਵ۽ॄ [0, 1] ҳрਵ۽ ੿ӏച

    View Slide

  39. ୶о ӝୡ ࣻ೟ ࢓ಝࠁӝ
    ੿ӏച 1

    View Slide

  40. ӝఋ ӝୡ ࣻ೟ ࢓ಝࠁӝ
    ੿ӏച 2
    Xi
    = X
    i
    − E(X)
    σ
    E(X) = 1
    N
    X
    i
    i=1
    N

    σ = 1
    N
    (X
    i
    − E(X))2
    i=1
    N

    ಴ળ ੿ӏ ࠙ನܳ ഝਊ೧ ಣӐ = 0, ࠙࢑ = 1۽ ੿ӏച

    View Slide

  41. ӝఋ ӝୡ ࣻ೟ ࢓ಝࠁӝ
    ੿ӏച 2

    View Slide

  42. ӝఋ ӝୡ ࣻ೟ ࢓ಝࠁӝ
    ޷࠙ ߂ Ӓۄ٣঱౟
    1
    2
    3
    0 0 1 ... 0
    1 0 0 ... 0
    0 1 0 ... 0
    ... ... ... ... 0
    0 0 0 0 1
















    0 1 0 ... 0
    1 0 0 ... 0
    0 1 0 ... 0
    ... ... ... ... 0
    0 0 1 0 0
















    ৘ஏ ݽ؛ীࢲ੄ Ѿҗчҗ पઁ Ѿҗчҗ੄

    рӓ੄ ૑಴ੋ ର੉ “ࣚप"ਸ ઴੉ӝ ਤೣ
    ࣚप ೣࣻ Ӓې೐

    View Slide

  43. ӝఋ ӝୡ ࣻ೟ ࢓ಝࠁӝ
    ಞ޷࠙
    f (x) = g(x
    1
    )+...+ g(x
    n
    )
    ∂ f (x)
    ∂x
    1
    =
    ∂g(x
    1
    )
    ∂x
    1 ׮߸ࣻ ҕр ഑਷ ೣࣻীࢲ ౠ੿ ߸ࣻܳ ؀࢚ਵ۽ ޷࠙

    ݠन ۞׬ীࢶ ࠁా ೯۳ਸ ؀࢚ਵ۽ೠ ೯۳ ಞ޷࠙ ࢎਊ
    ∂L
    ∂X
    =
    ∂L
    ∂x
    11
    ...
    ∂L
    ∂x
    1n
    ... ... ...
    ∂L
    ∂x
    m1
    ...
    ∂L
    ∂x
    mn
















    View Slide

  44. ࢶഋ ഥӈ ҳഅ೧ࠁӝ
    ਤ੄ѐ֛ٜਸഝਊ೧рױೠ
    ࢶഋഥӈݽ؛ਸٜ݅যࠁѷणפ׮

    View Slide

  45. ࢶഋ ഥӈ ҳഅ೧ࠁӝ
    ୭੸੄ ࢶഋ ࢚ҙ ҙ҅ܳ ಴അೞח ૒ࢶਸ ଺ਵ۰Ҋ ೣ → ୭੸੄ ߬ఋܳ ೟ण
    y = β
    0
    x
    0
    + β
    1
    x
    1
    y
    i
    = x
    i
    T β

    View Slide

  46. ࢶഋ ഥӈ ҳഅ೧ࠁӝ
    y = β
    0
    x
    0
    + β
    1
    x
    1
    ױੌؘ੉ఠ

    View Slide

  47. ࢶഋ ഥӈ ҳഅ೧ࠁӝ
    y = β
    0
    x
    0
    + β
    1
    x
    1
    y
    i
    = x
    i0
    β
    0
    + x
    i1
    β
    1
    ױੌؘ੉Tఠ ׮઺ؘ੉ఠ઺Jߣ૩ؘ੉ఠ

    View Slide

  48. ࢶഋ ഥӈ ҳഅ೧ࠁӝ
    y = β
    0
    x
    0
    + β
    1
    x
    1
    y
    i
    = x
    i
    T β
    y
    i
    = x
    i0
    β
    0
    + x
    i1
    β
    1
    ױੌؘ੉ఠ ׮઺ؘ੉ఠ઺Jߣ૩ؘ੉ఠ Jߣ૩ؘ੉ఠ߭ఠ಴അ

    View Slide

  49. ࢶഋ ഥӈ ҳഅ೧ࠁӝ
    Y = Xβ Y =
    y
    1
    y
    2
    ...
    y
    n














    X =
    x
    1
    T
    x
    2
    T
    ...
    x
    n
    T














    β =
    β
    0
    β
    1








    ੌ߈ചػ׮઺ؘ੉ఠ੄೯۳಴അ

    View Slide

  50. ࢶഋ ഥӈ ҳഅ೧ࠁӝ
    1.0
    1.1
    1.2
    ...
    10.0
















    View Slide

  51. ࢶഋ ഥӈ ҳഅ೧ࠁӝ
    1.0
    1.1
    1.2
    ...
    10.0
















    0.1
    0.11
    0.12
    ...
    1.0
















    View Slide

  52. ࢶഋ ഥӈ ҳഅ೧ࠁӝ
    y = ax + b = b + ax
    y
    1
    = b + ax
    1
    y
    2
    = b + ax
    2

    View Slide

  53. ࢶഋ ഥӈ ҳഅ೧ࠁӝ
    1 0.1
    1 0.11
    1 0.12
    1 ...
    1 1.0
















    View Slide

  54. ࢶഋ ഥӈ ҳഅ೧ࠁӝ
    r
    1
    r
    2
    r
    3
    ...
    r
    100


















    1 0.1
    1 0.11
    1 0.12
    1 ...
    1 1.0
















    View Slide

  55. ࢶഋ ഥӈ ҳഅ೧ࠁӝ
    r
    1
    r
    2
    r
    3
    ...
    r
    100


















    1 x
    i1
    1 x
    i2
    1 x
    i3
    ... ...
    1 x
    i20


















    1 0.1
    1 0.11
    1 0.12
    1 ...
    1 1.0
















    View Slide

  56. ࢶഋ ഥӈ ҳഅ೧ࠁӝ
    Ӓۄ٣঱౟ ࢸ҅
    1 0.1
    1 0.11
    1 0.12
    ... ...
    1 1.0
















    w
    0
    w
    1








    View Slide

  57. ࢶഋ ഥӈ ҳഅ೧ࠁӝ
    Ӓۄ٣঱౟ ࢸ҅
    1 0.1
    1 0.11
    1 0.12
    ... ...
    1 1.0
















    w
    0
    w
    1








    y
    1
    y
    2
    y
    3
    ...
    y
    20



















    w
    0
    + 0.1w
    1
    w
    0
    + 0.11w
    1
    w
    0
    + 0.12w
    1
    ...
    w
    0
    +1.0w
    1


































    T

    View Slide

  58. ࢶഋ ഥӈ ҳഅ೧ࠁӝ
    Ӓۄ٣঱౟ ࢸ҅
    1 0.1
    1 0.11
    1 0.12
    ... ...
    1 1.0
















    w
    0
    w
    1








    y
    1
    y
    2
    y
    3
    ...
    y
    20



















    w
    0
    + 0.1w
    1
    w
    0
    + 0.11w
    1
    w
    0
    + 0.12w
    1
    ...
    w
    0
    +1.0w
    1


































    T
    1
    20
    error
    i
    2
    i=1
    20
    ∑ = 1
    20
    (y
    i
    − e
    i
    )2
    i=1
    20

    View Slide

  59. ࢶഋ ഥӈ ҳഅ೧ࠁӝ
    Ӓۄ٣঱౟ ࢸ҅
    1 0.1
    1 0.11
    1 0.12
    ... ...
    1 1.0
















    w
    0
    w
    1








    y
    1
    y
    2
    y
    3
    ...
    y
    20



















    w
    0
    + 0.1w
    1
    w
    0
    + 0.11w
    1
    w
    0
    + 0.12w
    1
    ...
    w
    0
    +1.0w
    1


































    T
    1
    20
    error
    i
    2
    i=1
    20
    ∑ = 1
    20
    (y
    i
    − e
    i
    )2
    i=1
    20

    ∂(mse)
    ∂W
    = [error][x]

    View Slide

  60. ࢶഋ ഥӈ ҳഅ೧ࠁӝ
    Ӓۄ٣঱౟ ࢸ҅
    ∂(mse)
    ∂W
    ೯۳ಞ޷࠙→ ೯۳੄ п ਗࣗী ؀೧ ಞ޷࠙

    View Slide

  61. ࢶഋ ഥӈ ҳഅ೧ࠁӝ
    Ӓۄ٣঱౟ ࢸ҅
    ∂(mse)
    ∂w
    0
    =
    ∂( (y
    i
    − (w
    0
    + x
    i
    w
    1
    ))2 )

    ∂w
    0
    = (y
    i
    − (w
    0
    + x
    i
    w
    1
    ))⋅1

    ∂(mse)
    ∂w
    1
    =
    ∂( (y
    i
    − (w
    0
    + x
    i
    w
    1
    ))2 )

    ∂w
    1
    = (y
    i
    − (w
    0
    + x
    i
    w
    1
    ))⋅ x
    i

    View Slide

  62. ࢶഋ ഥӈ ҳഅ೧ࠁӝ
    Ӓۄ٣঱౟ ࢸ҅
    ∂(mse)
    ∂W
    = [ y
    i
    − (w
    0
    + x
    i
    w
    1
    )
    ∑ ]
    1 0.1
    1 0.11
    1 0.12
    ... ...
    1 1.0
















    = [error][x]

    View Slide

  63. ࢶഋ ഥӈ ҳഅ೧ࠁӝ
    पઁ ೟ण ױ҅
    W ←W −α
    ∂(mse)
    ∂W

    View Slide

  64. ࢶഋ ഥӈ ҳഅ೧ࠁӝ
    ೟ण Ӓې೐
    <ഥ>&SSPS <ഥ>&SSPS
    <ഥ>&SSPS <ഥ>&SSPS

    View Slide

  65. ࢶഋ ഥӈ ҳഅ೧ࠁӝ
    ୭ઙ ೟ण Ѿҗ
    &SSPS
    β =
    −2.152736
    11.075026






    y
    k
    = x
    k
    T β

    View Slide

  66. Next (more LA and Mathematics)
    ↟઱ࢿ࠙࠙ࢳ 1$"

    ↟ױੌч࠙೧ 47%

    ↟-6࠙೧
    ↟ҊਬчҊਬ߭ఠ
    ↟಴ળച
    ↟j
    ↟߬੉૑উా҅
    ↟ഛܫӏ஗
    ↟ࢠ೒݂ߑध
    ↟୭؀਋بஏ੿
    ↟j
    ↟೯۳޷੸࠙೟
    ↟Ӓۄ٣঱౟
    ↟j

    View Slide

  67. хࢎ೤פ׮
    MinJae Kwon (@mingrammer)
    Getting started to learn the linear algebra with python
    2017.08.12

    View Slide