Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Bedrock Knowledge baseを使って今年の上半期のニュースを聞いてみた(リベ...
Search
KMiura
August 27, 2024
0
290
Bedrock Knowledge baseを使って今年の上半期のニュースを聞いてみた (リベンジ編)
2024/8/27 「製造業でも生成AI活用したい!名古屋LLM MeetUp#2」
https://kinto-technologies.connpass.com/event/325725/
KMiura
August 27, 2024
Tweet
Share
More Decks by KMiura
See All by KMiura
運用しているアプリケーションのDBのリプレイスをやってみた
miura55
1
1.1k
Amazon Rekognitionを使ったインターホンハック
miura55
0
91
Pythonでルンバをハックしてみた
miura55
0
180
あなたの知らないクラフトビールの世界
miura55
0
370
Storage Browser for Amazon S3を触ってみた + α
miura55
0
230
Cloudflare R2をトリガーにCloudflare Workersを動かしてみた
miura55
0
230
あのボタンでつながるSORACOM
miura55
0
140
Postman Flowsで作るAPI連携LINE Bot
miura55
0
390
Lambdaと共に歩んだAWS
miura55
3
870
Featured
See All Featured
Leading Effective Engineering Teams in the AI Era
addyosmani
8
1.3k
Designing for humans not robots
tammielis
254
26k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
36
6.2k
Navigating Team Friction
lara
191
16k
Into the Great Unknown - MozCon
thekraken
40
2.2k
Site-Speed That Sticks
csswizardry
13
1k
It's Worth the Effort
3n
187
29k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
32
2.7k
A Modern Web Designer's Workflow
chriscoyier
698
190k
Building Better People: How to give real-time feedback that sticks.
wjessup
370
20k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
37
2.6k
Docker and Python
trallard
47
3.7k
Transcript
Bedrock Knowledge baseを使って今年 の上半期のニュースを聞いてみた (リベンジ編) KMiura(@k_miura_io)
自己紹介 • 三浦 耕生(こうき) • Acallのバックエンドエンジニア • JAWS UG名古屋&神戸 運営
• Cloudflare Meetup名古屋 運営 • 鯱.py 運営 @k_miura_io koki.miura05
このイベントでやったLT覚えてますか?
LTについて今北産業 • Step FunctionsでNews APIを使ってその日のヘッ ドラインニュースをSlackのAPIで投稿するワークフ ロー作った • Slackで投稿するだけではなくAPIのレスポンスログ をS3に溜め込むETL的な機能も用意
• S3に溜め込んだデータをそのままBedrockに使うと いう話
S3のデータをKnowledgebaseにできる 仕組みがあるらしい • Amazon BedrockのKnowledgebaseを使うとS3をソースにフルマネージドなRAGを実現 できそう • 調べてみると外部のベクトルデータベースを使う方法があるが、わざわざ用意しなくても OpenSearch Serverlessを使うことができる(むしろ今のところそれが推奨っぽい)
実際にデモチャットで確認 • 答えは帰って来るがなんか微妙… • 日付周りが結構弱い
どうすれば精度上がりそう? • 読み込ませたソースになっているファイルがAPIのレスポンスをそのまま保存して いるだけなのでCSVとかで整形したほうがいいかも • ソースごとにメタデータ情報を記載したjsonファイルをバケットに足すことで応答精 度が上がるそう 今回はこれを試してリベンジする話
データ生成のフロー • すでに存在するAPIのレスポンスログを溜め込むバケットにデータが保存されたこ とをトリガーでKnowledge Base用のデータを整形 • SQSに流し込んでLambdaでCSVとmetadataのjsonの生成を自動化 • ベクトルデータベースにはPineconeを使用(OpenSearchは高すぎるw)
生成したデータフォーマット
metadata { "metadataAttributes":{ ”year":”2024" } }
それっぽい返答が 出るようになった
上半期のニュースも 抽出できた
DEMO
まとめ • BedrockのKnowledge Baseに対応したデータフォーマットに変換するこ とでAWS上で手軽にRAGを実現できる • metadataを活用することでより適切なデータを取得できた • 多少コードが書けるとデータ整形の自動化がだいぶ楽になる
宣伝 https://bit.ly/4dBnLIf
END