Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ミニバッチサイズと学習率の関係 /small-batch-learning
Search
Miyakawa Taku
July 17, 2018
Programming
0
2.2k
ミニバッチサイズと学習率の関係 /small-batch-learning
Miyakawa Taku
July 17, 2018
Tweet
Share
More Decks by Miyakawa Taku
See All by Miyakawa Taku
入門: 末尾呼び出し最適化 /tail-call-elimination-intro
miyakawataku
2
2.4k
JVM言語の動き方・動かし方 /make-jvm-lang
miyakawataku
6
2.1k
Java SE 8から11で何が起きた?一気におさらいしてみよう! /java-se-8-to-11
miyakawataku
15
5.3k
機械学習プロジェクトの進め方 /howtoproceedwithmlproject
miyakawataku
0
360
グラフアルゴリズムその2: 単一始点最短路問題 /graphShortestPaths
miyakawataku
0
170
Strassenのアルゴリズムによる行列積の計算 /strassen-algorithm
miyakawataku
8
3.4k
Viterbiのアルゴリズム /viterbi-algorithm
miyakawataku
0
290
Other Decks in Programming
See All in Programming
Terraform やるなら公式スタイルガイドを読もう 〜重要項目 10選〜
hiyanger
11
2.7k
JetBrainsのAI機能の紹介 #jjug
yusuke
0
160
The Niche of CDK Grant オブジェクトって何者?/the-niche-of-cdk-what-isgrant-object
hassaku63
1
730
リバースエンジニアリング新時代へ! GhidraとClaude DesktopをMCPで繋ぐ/findy202507
tkmru
7
1.7k
DMMを支える決済基盤の技術的負債にどう立ち向かうか / Addressing Technical Debt in Payment Infrastructure
yoshiyoshifujii
5
710
CIを整備してメンテナンスを生成AIに任せる
hazumirr
0
430
PHPUnitの限界をPlaywrightで補完するテストアプローチ
yuzneri
0
360
知って得する@cloudflare_vite-pluginのあれこれ
chimame
1
130
대규모 트래픽을 처리하는 프론트 개발자의 전략
maryang
0
110
副作用と戦う PHP リファクタリング ─ ドメインイベントでビジネスロジックを解きほぐす
kajitack
3
510
CEDEC 2025 『ゲームにおけるリアルタイム通信への QUIC導入事例の紹介』
segadevtech
1
600
Go製CLIツールをnpmで配布するには
syumai
2
1k
Featured
See All Featured
Fireside Chat
paigeccino
37
3.6k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
139
34k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
Building Flexible Design Systems
yeseniaperezcruz
328
39k
Visualization
eitanlees
146
16k
Optimising Largest Contentful Paint
csswizardry
37
3.4k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.4k
Faster Mobile Websites
deanohume
308
31k
Six Lessons from altMBA
skipperchong
28
3.9k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
770
Being A Developer After 40
akosma
90
590k
Building a Modern Day E-commerce SEO Strategy
aleyda
42
7.4k
Transcript
ミニバッチサイズと学習率の関係 2018-07-17 宮川 拓
動機 ⚫ 確率的勾配降下法(SGD)では、訓練セッ ト全体ではなく、m個のサンプル=ミニ バッチを用いて重みを更新する ⚫ mは、メモリが許す限り大きければ大きい 方がいいのだろう、と勝手に決めつけてい たけど、実はそうでもないらしい 2/15
元ネタ ⚫ Dominic Masters and Carlo Luschi, “Revisiting Small Batch
Training for Deep Neural Networks” ◼ 著者はGraphcoreというML用チップ製造 スタートアップの人たち ◼ ミニバッチサイズと、学習率、モデルの 性能の関係を調べた論文 3/15
先に結論 ⚫ ミニバッチのサイズは小さめの方が良い ◼ テストデータに対する性能が良くなる ◼ 学習が発散しない学習率の幅が広くなる ⚫ ミニバッチのサイズを小さくすると、GPU 等を使った時に計算の並列度が低くなるが、
これは計算を複数のコア、マシンに分散す ることで相殺できるかも 4/15
Background 5/15
この章の概要 ⚫ 小さいミニバッチのほうが優れていそうだ、 ということの理論的根拠を示す 6/15
一般的なSGDのアルゴリズム ⚫ +1 = + η − 1 σ =1
∇ (2, 3) ◼ ただし、η : 学習率 ◼ ∇ : 各featureの傾斜 ◼ : サンプルiに対する損失 ⚫ ここでサンプルごとに ◼ 重みの更新値の期待値は、/に比例 ◼ Cov(重みの更新値)の期待値は、m≪M の時、2/に比例 7/15
和で重みを更新するアルゴリズム ⚫ ここで、(2, 3)に = を代入 ◼ +1 =
+ σ =1 ∇ (5) ◼ つまり、損失の平均ではなく、損失の和を 使って重みを更新するように変形した ◼ を「ベース学習率」と呼んでいる ⚫ ここでサンプルごとに ◼ 重みの更新値の期待値は に比例 ◼ Cov(重みの更新値)の期待値はm≪Mの時、 2 ∙ に比例 8/15
バッチサイズ変更の意味 ⚫ (5)において、n回の重み更新は次式のよう に表される ◼ + = − σ
=0 −1 σ =1 ∇ + + (7) ⚫ ここで、バッチサイズをn倍することは、 次式による重み更新を行うことを意味する ◼ +1 = − σ =0 ∇ (8) ⚫ (8)は、勾配の更新頻度を少なくした、(7) の近似計算とみなせる 9/15
バッチサイズ変更の意味 ⚫ 重みの更新に損失の平均を使う式(2, 3)の 観点では、mが大きい方がよく見える。訓 練データ全体を使う場合(m=M)のより 正確な近似になるから ⚫ しかし、サンプルごとの重み更新値の期待 値を一定化する観点からは、逆に見える。
⚫ また、Cov(重みの更新値)は 2 ∙ に比例す るので、mが小さければより大きなベース 学習率が許容できる 10/15
バッチサイズ変更の意味? ⚫ 「バッチサイズが小さいと、複数エポック 回した時に、ミニバッチのバリエーション が増えるからいいんじゃないか」みたいな 議論をどこかで読んだけど、本論文では触 れられてなかった 11/15
Batch Normalizationに関する議論 ⚫ 省略! 12/15
実験 13/15
実験 ベ ー ス 学 習 率 が 大 き
い 場 合 、 バ ッ チ サ イ ズ を 小 さ く 保 つ 必 要 が あ る バ ッ チ サ イ ズ が 小 さ け れ ば 、 大 き な ベ ー ス 学 習 率 が 許 容 で き る データセット、ネットワーク、BN有無、 Augmentation有無などによらず、傾向は同じ 14/15
実験結果 最良の結果はm=2~32の範囲に集中 実験ごとに、どの(ベース学習率xバッチサイズ)で 良い結果が得られたか。縦棒の太いところが良い結果 15/15