Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Strassenのアルゴリズムによる行列積の計算 /strassen-algorithm
Search
Miyakawa Taku
December 27, 2017
Programming
8
3.5k
Strassenのアルゴリズムによる 行列積の計算 /strassen-algorithm
このスライドの著者は宮川拓です。
CC BY 3.0 Licenseの元に利用を許諾します。
Miyakawa Taku
December 27, 2017
Tweet
Share
More Decks by Miyakawa Taku
See All by Miyakawa Taku
入門: 末尾呼び出し最適化 /tail-call-elimination-intro
miyakawataku
2
2.5k
JVM言語の動き方・動かし方 /make-jvm-lang
miyakawataku
6
2.2k
Java SE 8から11で何が起きた?一気におさらいしてみよう! /java-se-8-to-11
miyakawataku
15
5.4k
ミニバッチサイズと学習率の関係 /small-batch-learning
miyakawataku
0
2.2k
機械学習プロジェクトの進め方 /howtoproceedwithmlproject
miyakawataku
0
370
グラフアルゴリズムその2: 単一始点最短路問題 /graphShortestPaths
miyakawataku
0
190
Viterbiのアルゴリズム /viterbi-algorithm
miyakawataku
0
310
Other Decks in Programming
See All in Programming
チーム開発の “地ならし"
konifar
8
6.8k
競馬で学ぶ機械学習の基本と実践 / Machine Learning with Horse Racing
shoheimitani
14
14k
Rediscover the Console - SymfonyCon Amsterdam 2025
chalasr
2
110
Querying Design System デザインシステムの意思決定を支える構造検索
ikumatadokoro
1
1.2k
connect-python: convenient protobuf RPC for Python
anuraaga
0
340
堅牢なフロントエンドテスト基盤を構築するために行った取り組み
shogo4131
4
1.7k
しっかり学ぶ java.lang.*
nagise
1
470
251126 TestState APIってなんだっけ?Step Functionsテストどう変わる?
east_takumi
0
290
TypeScriptで設計する 堅牢さとUXを両立した非同期ワークフローの実現
moeka__c
6
2.8k
Google Antigravity and Vibe Coding: Agentic Development Guide
mickey_kubo
2
120
How Software Deployment tools have changed in the past 20 years
geshan
0
27k
AIエージェントを活かすPM術 AI駆動開発の現場から
gyuta
0
180
Featured
See All Featured
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
Java REST API Framework Comparison - PWX 2021
mraible
34
9k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.8k
A designer walks into a library…
pauljervisheath
210
24k
Stop Working from a Prison Cell
hatefulcrawdad
273
21k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
132
19k
Balancing Empowerment & Direction
lara
5
770
How STYLIGHT went responsive
nonsquared
100
5.9k
Reflections from 52 weeks, 52 projects
jeffersonlam
355
21k
Facilitating Awesome Meetings
lara
57
6.6k
A better future with KSS
kneath
240
18k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Transcript
Strassenのアルゴリズムによる 行列積の計算 2017-12-27 ビール&LT大会 ハッシュタグ: #jjug 宮川 拓
@miyakawa_taku JJUG幹事です SI屋で賃労働してます オレオレJVM言語Kinkを作っています https://bitbucket.org/kink/kink
尾上部屋の里山さんのファンです 自己紹介 #jjug 2/19
あらまし 本物のプログラマになりたい! ということで、 『アルゴリズムイントロダクション』 を読み進めています n次正方行列の積が、Θ(3)よりも小さい計 算量で計算できるらしい(§4.2)
びっくり! #jjug 3/19
背景 機械学習の計算は行列計算のかたまり 行列計算が速いと嬉しい #jjug 4/19
まずはふつうに計算 #jjug 5/19
三重ループ = ( ), = ( )をn次の正方行列とする =
∙ の要素は = σ=1 ∙ すなおに三重ループで実装: for i in 1~n: for j in 1~n: c[i, j] = 0 for k in 1~n: c[i, j] += a[i, k] * b[k, j] 3 回繰り返す → 計算量は() #jjug 6/19
準備: 分割統治 #jjug 7/19
分割統治 A, B, Cを縦横半分に分割すると、 = ∙ は次のように書き直せる 11 12 21
22 = 11 12 21 22 ∙ 11 12 21 22 = 11 ∙ 11 + 12 ∙ 21 11 ∙ 12 + 12 ∙ 22 21 ∙ 11 + 22 ∙ 21 21 ∙ 12 + 22 ∙ 22 #jjug 8/19
分割統治 def prod(a, b): if a.order == b.order == 1:
return matrix_1x1(a[0, 0] * b[0, 0]) a11, a12, a21, a22 = partition(a) b11, b12, b21, b22 = partition(b) c11 = prod(a11, b11) + prod(a12, b21) c12 = prod(a11, b12) + prod(a12, b22) c21 = prod(a21, b11) + prod(a22, b21) c22 = prod(a21, b12) + prod(a22, b22) return concat(c11, c12, c21, c22) 計算量はスカラ値の掛け算の回数に比例 n次行列の乗算は 2 次行列の乗算を8回再帰呼び出し #jjug 9/19
分割統治 n: 行列の次数 スカラ値の 掛け算の回数 1 1 2 8 4
64 8 512 16 4,096 2倍 8 = 23 倍 2倍 8 = 23 倍 2倍 8 = 23 倍 計算量はやっぱり() #jjug 10/19
Strassenのアルゴリズム #jjug 11/19
Strassenのアルゴリズム A, Bを分割した上で1 ~7 を次のように置く 1 = 11 (12
− 22 ) 2 = (11 + 12 )22 3 = (21 + 22 )11 4 = 22 21 − 11 5 = (11 + 22 )(11 + 22 ) 6 = 12 − 22 21 + 22 7 = 11 − 21 11 + 12 2 次行列を 計7回乗算 #jjug 12/19
Strassenのアルゴリズム ここで、次が成り立つ 11 = 11 11 + 12 21
= 5 + 4 − 2 + 6 12 = 11 12 + 12 22 = 1 + 2 21 = 21 11 + 22 21 = 3 + 4 22 = 21 12 + 22 22 = 5 + 1 − 3 − 7 Cは1 ~7 の和で表せる 2 次行列の乗算を7回再帰呼び出しすれば良い! #jjug 13/19
Strassenのアルゴリズム Strassen 計算量 n 三重ループ 計算量 1 1 1 7
2 8 49 4 64 343 8 512 2,401 16 4,096 8倍 8倍 8倍 7倍 7倍 7倍 Θ 27 = .… Θ 28 = Θ 3 < #jjug 14/19
実装&計測 #jjug 15/19
実装 https://bitbucket.org/miyakawataku/matrix- multiplication/src/default/matrix.go #jjug 16/19
計測 0.000010 0.000100 0.001000 0.010000 0.100000 1.000000 10.000000 100.000000 1,000.000000
10,000.000000 16 64 256 1,024 4,096 実行時間(秒) n (行列の次数) 三重ループ Strassen #jjug 17/19
総括 #jjug 18/19
総括 素敵なアルゴリズムは、nが小さい時には遅い。 そして大抵の場合、nは小さい。 素敵なアルゴリズムの計算量の式には、大きな 定数項が掛かっている。 nが大きくなることが分かっていない限り、素敵 にしてはならない。 ― Rob Pike
“Notes on Programming in C” #jjug 19/19