Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Strassenのアルゴリズムによる行列積の計算 /strassen-algorithm
Search
Miyakawa Taku
December 27, 2017
Programming
8
3.3k
Strassenのアルゴリズムによる 行列積の計算 /strassen-algorithm
このスライドの著者は宮川拓です。
CC BY 3.0 Licenseの元に利用を許諾します。
Miyakawa Taku
December 27, 2017
Tweet
Share
More Decks by Miyakawa Taku
See All by Miyakawa Taku
入門: 末尾呼び出し最適化 /tail-call-elimination-intro
miyakawataku
2
2.4k
JVM言語の動き方・動かし方 /make-jvm-lang
miyakawataku
6
2.1k
Java SE 8から11で何が起きた?一気におさらいしてみよう! /java-se-8-to-11
miyakawataku
15
5.3k
ミニバッチサイズと学習率の関係 /small-batch-learning
miyakawataku
0
2.1k
機械学習プロジェクトの進め方 /howtoproceedwithmlproject
miyakawataku
0
350
グラフアルゴリズムその2: 単一始点最短路問題 /graphShortestPaths
miyakawataku
0
170
Viterbiのアルゴリズム /viterbi-algorithm
miyakawataku
0
280
Other Decks in Programming
See All in Programming
ニーリーにおけるプロダクトエンジニア
nealle
0
790
データの民主化を支える、透明性のあるデータ利活用への挑戦 2025-06-25 Database Engineering Meetup#7
y_ken
0
350
Quand Symfony, ApiPlatform, OpenAI et LangChain s'allient pour exploiter vos PDF : de la théorie à la production…
ahmedbhs123
0
150
10 Costly Database Performance Mistakes (And How To Fix Them)
andyatkinson
0
230
Claude Code + Container Use と Cursor で作る ローカル並列開発環境のススメ / ccc local dev
kaelaela
5
2.4k
Google Agent Development Kit でLINE Botを作ってみた
ymd65536
2
230
技術同人誌をMCP Serverにしてみた
74th
1
630
「テストは愚直&&網羅的に書くほどよい」という誤解 / Test Smarter, Not Harder
munetoshi
0
150
システム成長を止めない!本番無停止テーブル移行の全貌
sakawe_ee
1
160
XP, Testing and ninja testing
m_seki
3
240
なぜ適用するか、移行して理解するClean Architecture 〜構造を超えて設計を継承する〜 / Why Apply, Migrate and Understand Clean Architecture - Inherit Design Beyond Structure
seike460
PRO
3
750
GraphRAGの仕組みまるわかり
tosuri13
8
530
Featured
See All Featured
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
281
13k
Fireside Chat
paigeccino
37
3.5k
Adopting Sorbet at Scale
ufuk
77
9.4k
Docker and Python
trallard
44
3.5k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
18
960
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
657
60k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Gamification - CAS2011
davidbonilla
81
5.3k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
31
1.3k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
5
270
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Transcript
Strassenのアルゴリズムによる 行列積の計算 2017-12-27 ビール&LT大会 ハッシュタグ: #jjug 宮川 拓
@miyakawa_taku JJUG幹事です SI屋で賃労働してます オレオレJVM言語Kinkを作っています https://bitbucket.org/kink/kink
尾上部屋の里山さんのファンです 自己紹介 #jjug 2/19
あらまし 本物のプログラマになりたい! ということで、 『アルゴリズムイントロダクション』 を読み進めています n次正方行列の積が、Θ(3)よりも小さい計 算量で計算できるらしい(§4.2)
びっくり! #jjug 3/19
背景 機械学習の計算は行列計算のかたまり 行列計算が速いと嬉しい #jjug 4/19
まずはふつうに計算 #jjug 5/19
三重ループ = ( ), = ( )をn次の正方行列とする =
∙ の要素は = σ=1 ∙ すなおに三重ループで実装: for i in 1~n: for j in 1~n: c[i, j] = 0 for k in 1~n: c[i, j] += a[i, k] * b[k, j] 3 回繰り返す → 計算量は() #jjug 6/19
準備: 分割統治 #jjug 7/19
分割統治 A, B, Cを縦横半分に分割すると、 = ∙ は次のように書き直せる 11 12 21
22 = 11 12 21 22 ∙ 11 12 21 22 = 11 ∙ 11 + 12 ∙ 21 11 ∙ 12 + 12 ∙ 22 21 ∙ 11 + 22 ∙ 21 21 ∙ 12 + 22 ∙ 22 #jjug 8/19
分割統治 def prod(a, b): if a.order == b.order == 1:
return matrix_1x1(a[0, 0] * b[0, 0]) a11, a12, a21, a22 = partition(a) b11, b12, b21, b22 = partition(b) c11 = prod(a11, b11) + prod(a12, b21) c12 = prod(a11, b12) + prod(a12, b22) c21 = prod(a21, b11) + prod(a22, b21) c22 = prod(a21, b12) + prod(a22, b22) return concat(c11, c12, c21, c22) 計算量はスカラ値の掛け算の回数に比例 n次行列の乗算は 2 次行列の乗算を8回再帰呼び出し #jjug 9/19
分割統治 n: 行列の次数 スカラ値の 掛け算の回数 1 1 2 8 4
64 8 512 16 4,096 2倍 8 = 23 倍 2倍 8 = 23 倍 2倍 8 = 23 倍 計算量はやっぱり() #jjug 10/19
Strassenのアルゴリズム #jjug 11/19
Strassenのアルゴリズム A, Bを分割した上で1 ~7 を次のように置く 1 = 11 (12
− 22 ) 2 = (11 + 12 )22 3 = (21 + 22 )11 4 = 22 21 − 11 5 = (11 + 22 )(11 + 22 ) 6 = 12 − 22 21 + 22 7 = 11 − 21 11 + 12 2 次行列を 計7回乗算 #jjug 12/19
Strassenのアルゴリズム ここで、次が成り立つ 11 = 11 11 + 12 21
= 5 + 4 − 2 + 6 12 = 11 12 + 12 22 = 1 + 2 21 = 21 11 + 22 21 = 3 + 4 22 = 21 12 + 22 22 = 5 + 1 − 3 − 7 Cは1 ~7 の和で表せる 2 次行列の乗算を7回再帰呼び出しすれば良い! #jjug 13/19
Strassenのアルゴリズム Strassen 計算量 n 三重ループ 計算量 1 1 1 7
2 8 49 4 64 343 8 512 2,401 16 4,096 8倍 8倍 8倍 7倍 7倍 7倍 Θ 27 = .… Θ 28 = Θ 3 < #jjug 14/19
実装&計測 #jjug 15/19
実装 https://bitbucket.org/miyakawataku/matrix- multiplication/src/default/matrix.go #jjug 16/19
計測 0.000010 0.000100 0.001000 0.010000 0.100000 1.000000 10.000000 100.000000 1,000.000000
10,000.000000 16 64 256 1,024 4,096 実行時間(秒) n (行列の次数) 三重ループ Strassen #jjug 17/19
総括 #jjug 18/19
総括 素敵なアルゴリズムは、nが小さい時には遅い。 そして大抵の場合、nは小さい。 素敵なアルゴリズムの計算量の式には、大きな 定数項が掛かっている。 nが大きくなることが分かっていない限り、素敵 にしてはならない。 ― Rob Pike
“Notes on Programming in C” #jjug 19/19