Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データ分析やAIの "運用" について考える
Search
mmorito
June 25, 2022
Programming
0
440
データ分析やAIの "運用" について考える
オープンセミナー広島2022で発表した資料
mmorito
June 25, 2022
Tweet
Share
More Decks by mmorito
See All by mmorito
Road to SRE NEXT@広島
mmorito
0
260
Google Cloud によるDICOM管理
mmorito
0
32
JBUG広島#11
mmorito
0
360
JP_Stripes in Setouchi #01
mmorito
0
140
Cloud Native Kansai #01
mmorito
0
1.2k
Cloud Native Sapporo #01
mmorito
0
390
GAE/Jで盛大に失敗する方法
mmorito
0
540
自社サービスにStripeを導入する話
mmorito
1
800
Introduction of Firebase
mmorito
0
930
Other Decks in Programming
See All in Programming
Go 1.24でジェネリックになった型エイリアスの紹介
syumai
2
330
CloudRun, Spanner に対する負荷試験の反省と オブザーバビリティによるアプローチ
oyasumipants
1
210
Goで作るChrome Extensions / Fukuoka.go #21
n3xem
2
470
AIレビュー導入によるCIツールとの共存と最適化
kamo26sima
1
1.2k
CDK開発におけるコーディング規約の運用
yamanashi_ren01
2
270
Jakarta EE meets AI
ivargrimstad
0
900
JAWS Days 2025のインフラ
komakichi
1
370
5分で理解する SOLID 原則 #phpcon_nagoya
shogogg
1
430
AWS CDKにおけるL2 Constructの仕組み / aws-cdk-l2-construct
gotok365
4
300
Devin入門 〜月500ドルから始まるAIチームメイトとの開発生活〜 / Introduction Devin 〜Development With AI Teammates〜
rkaga
5
1.7k
DRFを少しずつ オニオンアーキテクチャに寄せていく DjangoCongress JP 2025
nealle
2
310
Expoによるアプリ開発の現在地とReact Server Componentsが切り開く未来
yukukotani
2
300
Featured
See All Featured
Java REST API Framework Comparison - PWX 2021
mraible
29
8.4k
For a Future-Friendly Web
brad_frost
176
9.6k
How to Ace a Technical Interview
jacobian
276
23k
How to Think Like a Performance Engineer
csswizardry
22
1.4k
What's in a price? How to price your products and services
michaelherold
244
12k
Unsuck your backbone
ammeep
669
57k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
59k
Fireside Chat
paigeccino
36
3.2k
Facilitating Awesome Meetings
lara
53
6.3k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
44
7.1k
GitHub's CSS Performance
jonrohan
1030
460k
Gamification - CAS2011
davidbonilla
80
5.2k
Transcript
1 データ分析やAIの "運用" について考える 2022/06/25 - OSH2022 -
株式会社エムネス 森藤 敏之(Toshiyuki Morito) 自己紹介 所属 氏名 • インフラ寄りのバックエンドエンジニア コミュニティ活動 •
GCPUG Hirosima(Google Cloud Platform User Group) • OSH実行委員 出身 廿日市出身(現在は東京在住) @mmorito_0318
データ分析やAIの利活用の背景 みなさんは MRI や CT の検査を受けたことがありますか?
目次 AIを用いた診断支援の取り組みを紹介します 診断支援の 取り組み内容 今後に向けた課 題 実証実験 の結果 自社サービス の紹介
データ分析や AIの利活用の背景
5 データ分析やAIの利活用の背景
データ分析やAI利活用の背景 図. 人口100万人あたりの放射線診断医 (縦軸) および 装置台数(横軸) MRIとCTの合計台数が世界ダントツ第1位 放射線科医数が世界ダントツ最下位 慢性的な人手不足により、画像診断の品質担保が困難に
データ分析やAI利活用の背景 脳の血管(動脈)が膨らんで弱くなっているところ 破裂すると、くも膜下出血をという脳出血を引き起こす 特に取り組むべき病変 脳動脈瘤 1日に数多くの患者を診断し、 膨大な画像から数mmの膨らみを 発見するのは至難の技だ
8 自社サービスの紹介
医療支援クラウドサービス「LOOKREC」
10 診断支援の取り組み内容
診断支援の取り組みにあたってやったこと 患者同意取得と 教師データの作成 解析依頼/結果参照 アプリ開発 実際の 読影業務に投入 結果分析 AIアルゴリズム 開発
実行可能 API開発
患者同意取得と教師データの作成 92%以上の患者から同意が得られ、年齢による差異がほとんど無かった
通常の読影業務 + 教師データ用の作成を依頼 (約200件) 患者同意取得と教師データの作成 診断時に図示したアノテーションの座標位置をもとに 病変の位置が特定できないか 医師毎にもとにした画像やアノテーションの表 現方法、病変までの距離に差異あり 複数の所見に言及された画像もあり、
動脈瘤のみの正確な抽出が困難
解析依頼 / 結果参照アプリ開発 Modality MR 部位 HEAD スライス厚 1mm以下、等間隔 断面
AXIAL / Oblique AXIAL 解析可能な画像のメタデータ
LCEES(LOOKREC CAD Education and Evaluation System) AIの指摘座標を表示 (前後5スライス) AI指摘に対するフィードバックの入力 ・TP(True
Positive): AI指摘あり / 動脈瘤あり ・TPの場合は瘤のより正確な座標とサイズを入力 ・FP(False Positive): AI指摘あり / 動脈瘤なし
実際の読影業務に投入 一次確定 入力開始 AI結果 改訂 最終診断 一次確定 入力開始 AI結果 改訂
一次読影 (放射線診断医) 二次読影 (放射線診断医) 一次読影者: AI支援なしで読影 ↓ AI結果を参照して所見を改訂可能 二次読影者: AI支援なしで読影 ↓ 一次読影とAI結果を参照して所見を改訂可能
17 実証実験の結果
BigQueryでデータ集計などした話 2年分のアクセスログから 医師の読影に要した時間、AI結果を参照した日時、回数を集計 AI結果を参照した日時とレポートの改訂履歴を 照らし合わせ、AI支援後の変更を集計 (約140TB) (約45,000件) (約11,500件)
分析結果 64,40 % 医師が初回読影で発見した動脈瘤 33.64 % AIによって追加された動脈瘤 発見された動脈瘤数 診断レポート件数
1,073 個 / 11,434 件 84.08 % 3mm未満の小さな動脈瘤 89.75 % 3mm未満の小さな動脈瘤 35 個 5mm以上の大きな動脈瘤 8 個 5mm以上の大きな動脈瘤 AIの方が発見数が多かった医師(34名中) 5 名
実証実験の振り返り AI支援によって30%以上の脳動脈瘤が発見された 1 手術候補となる5mm以上の動脈瘤も複数発見された 3mm未満の発見数が56%増加しており、偽陽性の診断が増加する可能性が懸念される AI支援が医師に与える影響が、数十%の幅で異なっていた 2 医師によってはAIを過度に信頼してしまい 自力で診断する意識の低下や結果をすぐに覆すことが懸念される AI支援が医師の読影時間に与える影響について継続して測定が必要
3 確実に読影時間は延びていると想定されるため 一時的な業務負荷の増加に対する継続的な測定/改善が必要
21 今後に向けた課題
今後に向けた課題 もっと多くの診断を支援するためには 1 複合的な情報 により異常を学習するアプローチが必要 家族歴 既往歴 喫煙の有無 年齢 /
性別 CSV CSV Order/Report 前回の画像と比較 前回の所見/診断と比較 論文や文献 他患者の過去症例 検査目的 / 依頼内容
今後に向けた課題 検査画像の解析依頼 ? 結果参照 直接的にAI支援の恩恵を受けるユーザー 間接的にAI支援の恩恵を受けるユーザー このサービスの 価値を最も享受 するのは誰? 2
最終的に高品質な医療を享受する患者 AI支援の恩恵を受ける者とその価値を享受する者が異なる
今後に向けた課題 AI支援を標準化するインターフェイスがまだ無い 3 AIの利用側と提供側を繋ぐ、インターフェイスの標準化が必要 DICOMWeb / GSPS / SecondaryCapture 解析依頼
/ 結果送信 I/F 結果参照(Viewer)
25 新たな取り組みとして
日本の医療均てん化に向けて…
27 ご清聴ありがとうございました
参考文献 - OECD Data. https://data.oecd.org (参照: Computed tomography (CT)
scanners, Magnetic resonance imaging (MRI) units)