Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Amazon Machine Learning を使ってみた
Search
Kenta Murata
April 21, 2015
Technology
17
5.2k
Amazon Machine Learning を使ってみた
画面を指さしながら説明するために作った背景画像の上に、簡単な説明テキストを追加したやつです。
Kenta Murata
April 21, 2015
Tweet
Share
More Decks by Kenta Murata
See All by Kenta Murata
waitany と waitall を作った話
mrkn
0
300
HolidayJp.jl を作りました
mrkn
0
330
Calling Julia functions from Streamlit applications
mrkn
1
550
Red Data Tools で切り開く Ruby の未来
mrkn
3
1.3k
Method-based JIT compilation by transpiling to Julia
mrkn
0
8.4k
Apache Arrow C++ Datasets
mrkn
4
1.8k
Reducing ActiveRecord memory consumption using Apache Arrow
mrkn
0
1.8k
RubyData and Rails
mrkn
0
3.3k
Tensor and Arrow
mrkn
0
1k
Other Decks in Technology
See All in Technology
SREが向き合う大規模リアーキテクチャ 〜信頼性とアジリティの両立〜
zepprix
0
460
仕様書駆動AI開発の実践: Issue→Skill→PRテンプレで 再現性を作る
knishioka
2
670
プロダクト成長を支える開発基盤とスケールに伴う課題
yuu26
4
1.3k
Introduction to Bill One Development Engineer
sansan33
PRO
0
360
AI駆動開発を事業のコアに置く
tasukuonizawa
1
250
小さく始めるBCP ― 多プロダクト環境で始める最初の一歩
kekke_n
1
440
M&A 後の統合をどう進めるか ─ ナレッジワーク × Poetics が実践した組織とシステムの融合
kworkdev
PRO
1
470
Ruby版 JSXのRuxが気になる
sansantech
PRO
0
160
Oracle Cloud Observability and Management Platform - OCI 運用監視サービス概要 -
oracle4engineer
PRO
2
14k
AzureでのIaC - Bicep? Terraform? それ早く言ってよ会議
torumakabe
1
570
All About Sansan – for New Global Engineers
sansan33
PRO
1
1.4k
Oracle Base Database Service 技術詳細
oracle4engineer
PRO
15
93k
Featured
See All Featured
Speed Design
sergeychernyshev
33
1.5k
Build your cross-platform service in a week with App Engine
jlugia
234
18k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
133
19k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
Stewardship and Sustainability of Urban and Community Forests
pwiseman
0
110
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
49
9.9k
We Have a Design System, Now What?
morganepeng
54
8k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.9k
Mozcon NYC 2025: Stop Losing SEO Traffic
samtorres
0
140
Future Trends and Review - Lecture 12 - Web Technologies (1019888BNR)
signer
PRO
0
3.2k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.4k
Impact Scores and Hybrid Strategies: The future of link building
tamaranovitovic
0
200
Transcript
Amazon ML Λ ͬͯΈͨ Kenta Murata 2015.04.21
ػցֶश
ػցֶशͰͰ͖Δ͜ͱ 1. ճؼ 2. ྨ 3. ΫϥελϦϯά
ػցֶशͰͰ͖Δ͜ͱ 1. ճؼ 2. ྨ 3. ΫϥελϦϯά → ࣮ͷ༧ଌ http://commons.wikimedia.org/wiki/File:Linear_regression.svg
http://commons.wikimedia.org/wiki/File:Polyreg_scheffe.svg
ػցֶशͰͰ͖Δ͜ͱ 1. ճؼ 2. ྨ 3. ΫϥελϦϯά → ࣮ͷ༧ଌ →
͔̋×͔Λ༧ଌ http://en.wikipedia.org/wiki/File:SVM_with_soft_margin.pdf
ػցֶशͰͰ͖Δ͜ͱ 1. ճؼ 2. ྨ 3. ΫϥελϦϯά → ࣮ͷ༧ଌ →
͔̋×͔Λ༧ଌ → ࣗಈάϧʔϓ͚ http://commons.wikimedia.org/wiki/File:KMeans-density-data.svg
Amazon Machine Learning
Amazon Machine Learning ͰͰ͖Δ͜ͱ 1. ճؼ 2. ೋྨ 3. ଟྨ
Amazon Machine Learning ͰͰ͖Δ͜ͱ 1. ճؼ 2. ೋྨ 3. ଟྨ
ͬͯΈͨ
Amazon Machine Learning Ͱ ଟྨثΛ࡞Δ
σʔλͷ४උ ↓ σʔλιʔε࡞ ↓ Ϟσϧ࡞ ↓ (σʔλιʔεͷࣗಈׂ) ↓ Ϟσϧͷֶश ↓
ϞσϧͷධՁ ଟྨثͷ࡞खॱ
σʔλͷ४උ
None
70,000ݸͷखॻ͖ࣈ http://myselph.de/neuralNet.html 28px 28px
60,000ݸ → ֶश༻ 10,000ݸ → ධՁ༻ ֶश༻ͱධՁ༻ʹ༧Ί͚ͯ͞Ε͍ͯΔ
όΠφϦσʔλͳͷͰ CSV ม͢Δ
28px 28px y, x1, x2,ɾɾɾ, x_k,ɾɾɾ, x784 8, 0, 0,ɾɾɾ,
221,ɾɾɾ, 0 256֊ௐάϨΠεέʔϧ ਖ਼ղϥϕϧ ϐΫηϧ
μϯϩʔυ͢Δ
https://rubygems.org/gems/mnist
$ gem install mnist $ mnist2csv train-images-idx3-ubyte.gz train-labels-idx1-ubyte.gz > mnist_train.csv
$ mnist2csv t10k-images-idx3-ubyte.gz t10k-labels-idx1-ubyte.gz > mnist_test.csv
CSV ϑΝΠϧΛ S3 ʹΞοϓϩʔυ͢Δ
σʔλιʔεΛ࡞Δ
None
Ξοϓϩʔυͨ͠ CSV ϑΝΠϧ
None
None
None
None
ྨରͷΧϥϜΛબͯ͠Ͷὑ
σʔλΛݟͯࣗಈఆ
༧ଌ݁Ռ͕σʔλιʔεͷͲͷߦʹରԠ͢Δ͔Λ ࣝผ͢ΔͨΊͷ ID ͕͋Εࢦఆ͢Δ ࠓճແ͍ͷͰࢦఆ͠ͳ͍
None
None
None
None
ϞσϧΛ࡞Δ
None
ೖྗσʔλΛબ
બͿ
None
None
σʔλΛ 7:3 ʹׂͯ͠ 7 ͷํΛ܇࿅ʹɺ3 ͷํ ΛϞσϧͷධՁʹ͏
͍Ζ͍ΖࣗͰࢦఆ͢Δ ࠓճͬͪ͜
None
σʔλͷલॲཧํ๏ͳͲ Λ JSON Ͱࢦఆ͢Δ ϑΟʔϧυɻ ࠓճ CSV ʹมͨ͠ ͚ͩͰલॲཧ͕ྃͯ͠ ΔͷͰσϑΥϧτͷ··
Ͱ͓̺
None
Regularization (ਖ਼ଇԽ) ɺϞσϧͷաֶश (܇࿅σʔ λʹద߹͗ͯ͢͠͠·͏ࣄ) Λ͙ͨΊʹߦ͏ɻ L1 (Lasso ճؼ) ɺෆཁͳύϥϝʔλΛͬͯϞσϧΛ
γϯϓϧʹ͍ͨ͠ͱ͖ʹ͏ɻ L2 (Ridge ճؼ) Β͔ͳϞσϧ͕ཉ͍͠ͱ͖ʹ͏ɻ (ײ: L1 ͱ L2 ΛࠞͥΒΕΕͬͱྑ͍ͷʹ)
None
Ϟσϧͷ࡞ޙʹࣗಈతʹධՁ࣮ࢪ͢Δ͔Ͳ͏͔ɻ ࠓճผʹධՁΛΔͷͰ No ΛબͿɻ
None
None
ϞσϧΛ࡞Δ
ֶशδϣϒࣗಈతʹ։࢝͢Δ
None
60,000 ڭࢣσʔλ → 20
ϞσϧΛධՁ͢Δ
None
None
None
None
None
None
None
10,000 ςετσʔλ → 1ʙ2
None
ҎԼͷࣜͰܭࢉ͞ΕΔϞσϧͷ༏ल͞ΛଌΔྔ 2 × ద߹ × ࠶ݱ ద߹ + ࠶ݱ
ਅͷྨ 1 ͦͷଞ ༧ ଌ ݁ Ռ 1 True Positive
False Positive ͦ ͷ ଞ False Negative True Negative ద߹ ʹ ࠶ݱ ʹ True Positive True Positive + False Positive True Positive True Positive + False Negative TP FP FN TN TP FP FN TN
None
1,000 ڭࢣσʔλͰ࡞ͬͨϞσϧͷ߹
None
ڭࢣσʔλ͕ଟ͍΄ͲϞσϧͷੑೳ͕ྑ͘ͳΔ
ϞσϧΛ͏
Ϟσϧͷ͍ํ 1. όον༧ଌ 2. ϦΞϧλΠϜ༧ଌ
Ϟσϧͷ͍ํ 1. όον༧ଌ 2. ϦΞϧλΠϜ༧ଌ → ·ͱ·ͬͨσʔλΛ·ͱΊͯ༧ଌ
Ϟσϧͷ͍ํ 1. όον༧ଌ 2. ϦΞϧλΠϜ༧ଌ → ·ͱ·ͬͨσʔλΛ·ͱΊͯ༧ଌ → API Λͬͯ1ͭͣͭ༧ଌ
Amazon Machine Learning ͷྉۚମܥ
Amazon Machine Learning ͷྉۚମܥ
1,000 σʔλͰϞσϧΛ࡞ͬͨͱ͖
70,000 σʔλͰϞσϧΛ࡞ͬͨͱ͖
S3 price
Amazon Machine Learning ΛͬͯΈͨײ 1. Α͘Ͱ͖ͯΔ 2. ͬ͘͞ͱϓϩτλΠϓ͍ͨ࣌͠ʹศརͦ͏ 3. ֶशࡁΈͷϞσϧΛΤΫεϙʔτͰ͖ͳ͍
Amazon Machine Learning ΛͬͯΈͨײ 1. Α͘Ͱ͖ͯΔ 2. ͬ͘͞ͱϓϩτλΠϓ͍ͨ࣌͠ʹศརͦ͏ → ΞϧΰϦζϜΛදʹग़ͣ͞ʹ্ख͘؆ུԽͯ͠Δ
3. ֶशࡁΈͷϞσϧΛΤΫεϙʔτͰ͖ͳ͍
Amazon Machine Learning ΛͬͯΈͨײ 1. Α͘Ͱ͖ͯΔ 2. ͬ͘͞ͱϓϩτλΠϓ͍ͨ࣌͠ʹศརͦ͏ → ΞϧΰϦζϜΛදʹग़ͣ͞ʹ্ख͘؆ུԽͯ͠Δ
→ ࣮ӡ༻લʹ༷ʑͳಛϕΫτϧΛ؆୯ʹࢼͤΔ 3. ֶशࡁΈͷϞσϧΛΤΫεϙʔτͰ͖ͳ͍
Amazon Machine Learning ΛͬͯΈͨײ 1. Α͘Ͱ͖ͯΔ 2. ͬ͘͞ͱϓϩτλΠϓ͍ͨ࣌͠ʹศརͦ͏ → ΞϧΰϦζϜΛදʹग़ͣ͞ʹ্ख͘؆ུԽͯ͠Δ
→ ࣮ӡ༻લʹ༷ʑͳಛϕΫτϧΛ؆୯ʹࢼͤΔ 3. ֶशࡁΈͷϞσϧΛΤΫεϙʔτͰ͖ͳ͍ → ࣮ӡ༻࣌ࣗͰ࣮ͨ͠ϞσϧΛ͏ ɹ ϓϩτλΠϓͰ্ख͘ߦ͖ͦ͏ͳ͜ͱ͕ ɹ ͔ͬͯΔͷͰ࣮ίετؾʹͳΒͳ͍!?