Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Amazon Machine Learning を使ってみた
Search
Kenta Murata
April 21, 2015
Technology
17
5.1k
Amazon Machine Learning を使ってみた
画面を指さしながら説明するために作った背景画像の上に、簡単な説明テキストを追加したやつです。
Kenta Murata
April 21, 2015
Tweet
Share
More Decks by Kenta Murata
See All by Kenta Murata
waitany と waitall を作った話
mrkn
0
240
HolidayJp.jl を作りました
mrkn
0
260
Calling Julia functions from Streamlit applications
mrkn
1
500
Red Data Tools で切り開く Ruby の未来
mrkn
3
1.2k
Method-based JIT compilation by transpiling to Julia
mrkn
0
7.6k
Apache Arrow C++ Datasets
mrkn
4
1.6k
Reducing ActiveRecord memory consumption using Apache Arrow
mrkn
0
1.7k
RubyData and Rails
mrkn
0
3.2k
Tensor and Arrow
mrkn
0
980
Other Decks in Technology
See All in Technology
American airlines ®️ USA Contact Numbers: Complete 2025 Support Guide
airhelpsupport
0
390
OpenTelemetryセマンティック規約の恩恵とMackerel APMにおける活用例 / SRE NEXT 2025
mackerelio
2
1.6k
セキュアな社内Dify運用と外部連携の両立 ~AIによるAPIリスク評価~
zozotech
PRO
0
100
Zero Data Loss Autonomous Recovery Service サービス概要
oracle4engineer
PRO
2
7.8k
shake-upを科学する
rsakata
7
920
AWS CDK 入門ガイド これだけは知っておきたいヒント集
anank
4
570
Copilot coding agentにベットしたいCTOが開発組織で取り組んだこと / GitHub Copilot coding agent in Team
tnir
0
150
オフィスビルを監視しよう:フィジカル×デジタルにまたがるSLI/SLO設計と運用の難しさ / Monitoring Office Buildings: The Challenge of Physical-Digital SLI/SLO Design & Operation
bitkey
1
340
AIエージェントが書くのなら直接CloudFormationを書かせればいいじゃないですか何故AWS CDKを使う必要があるのさ
watany
17
6.9k
ロールが細分化された組織でSREは何をするか?
tgidgd
1
200
Delta airlines®️ USA Contact Numbers: Complete 2025 Support Guide
airtravelguide
0
350
大量配信システムにおけるSLOの実践:「見えない」信頼性をSLOで可視化
plaidtech
PRO
0
290
Featured
See All Featured
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
181
54k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
30
2.1k
Done Done
chrislema
184
16k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
281
13k
The Invisible Side of Design
smashingmag
301
51k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
29
9.6k
Automating Front-end Workflow
addyosmani
1370
200k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
31
1.3k
Building Adaptive Systems
keathley
43
2.7k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.4k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
53
2.9k
Mobile First: as difficult as doing things right
swwweet
223
9.7k
Transcript
Amazon ML Λ ͬͯΈͨ Kenta Murata 2015.04.21
ػցֶश
ػցֶशͰͰ͖Δ͜ͱ 1. ճؼ 2. ྨ 3. ΫϥελϦϯά
ػցֶशͰͰ͖Δ͜ͱ 1. ճؼ 2. ྨ 3. ΫϥελϦϯά → ࣮ͷ༧ଌ http://commons.wikimedia.org/wiki/File:Linear_regression.svg
http://commons.wikimedia.org/wiki/File:Polyreg_scheffe.svg
ػցֶशͰͰ͖Δ͜ͱ 1. ճؼ 2. ྨ 3. ΫϥελϦϯά → ࣮ͷ༧ଌ →
͔̋×͔Λ༧ଌ http://en.wikipedia.org/wiki/File:SVM_with_soft_margin.pdf
ػցֶशͰͰ͖Δ͜ͱ 1. ճؼ 2. ྨ 3. ΫϥελϦϯά → ࣮ͷ༧ଌ →
͔̋×͔Λ༧ଌ → ࣗಈάϧʔϓ͚ http://commons.wikimedia.org/wiki/File:KMeans-density-data.svg
Amazon Machine Learning
Amazon Machine Learning ͰͰ͖Δ͜ͱ 1. ճؼ 2. ೋྨ 3. ଟྨ
Amazon Machine Learning ͰͰ͖Δ͜ͱ 1. ճؼ 2. ೋྨ 3. ଟྨ
ͬͯΈͨ
Amazon Machine Learning Ͱ ଟྨثΛ࡞Δ
σʔλͷ४උ ↓ σʔλιʔε࡞ ↓ Ϟσϧ࡞ ↓ (σʔλιʔεͷࣗಈׂ) ↓ Ϟσϧͷֶश ↓
ϞσϧͷධՁ ଟྨثͷ࡞खॱ
σʔλͷ४උ
None
70,000ݸͷखॻ͖ࣈ http://myselph.de/neuralNet.html 28px 28px
60,000ݸ → ֶश༻ 10,000ݸ → ධՁ༻ ֶश༻ͱධՁ༻ʹ༧Ί͚ͯ͞Ε͍ͯΔ
όΠφϦσʔλͳͷͰ CSV ม͢Δ
28px 28px y, x1, x2,ɾɾɾ, x_k,ɾɾɾ, x784 8, 0, 0,ɾɾɾ,
221,ɾɾɾ, 0 256֊ௐάϨΠεέʔϧ ਖ਼ղϥϕϧ ϐΫηϧ
μϯϩʔυ͢Δ
https://rubygems.org/gems/mnist
$ gem install mnist $ mnist2csv train-images-idx3-ubyte.gz train-labels-idx1-ubyte.gz > mnist_train.csv
$ mnist2csv t10k-images-idx3-ubyte.gz t10k-labels-idx1-ubyte.gz > mnist_test.csv
CSV ϑΝΠϧΛ S3 ʹΞοϓϩʔυ͢Δ
σʔλιʔεΛ࡞Δ
None
Ξοϓϩʔυͨ͠ CSV ϑΝΠϧ
None
None
None
None
ྨରͷΧϥϜΛબͯ͠Ͷὑ
σʔλΛݟͯࣗಈఆ
༧ଌ݁Ռ͕σʔλιʔεͷͲͷߦʹରԠ͢Δ͔Λ ࣝผ͢ΔͨΊͷ ID ͕͋Εࢦఆ͢Δ ࠓճແ͍ͷͰࢦఆ͠ͳ͍
None
None
None
None
ϞσϧΛ࡞Δ
None
ೖྗσʔλΛબ
બͿ
None
None
σʔλΛ 7:3 ʹׂͯ͠ 7 ͷํΛ܇࿅ʹɺ3 ͷํ ΛϞσϧͷධՁʹ͏
͍Ζ͍ΖࣗͰࢦఆ͢Δ ࠓճͬͪ͜
None
σʔλͷલॲཧํ๏ͳͲ Λ JSON Ͱࢦఆ͢Δ ϑΟʔϧυɻ ࠓճ CSV ʹมͨ͠ ͚ͩͰલॲཧ͕ྃͯ͠ ΔͷͰσϑΥϧτͷ··
Ͱ͓̺
None
Regularization (ਖ਼ଇԽ) ɺϞσϧͷաֶश (܇࿅σʔ λʹద߹͗ͯ͢͠͠·͏ࣄ) Λ͙ͨΊʹߦ͏ɻ L1 (Lasso ճؼ) ɺෆཁͳύϥϝʔλΛͬͯϞσϧΛ
γϯϓϧʹ͍ͨ͠ͱ͖ʹ͏ɻ L2 (Ridge ճؼ) Β͔ͳϞσϧ͕ཉ͍͠ͱ͖ʹ͏ɻ (ײ: L1 ͱ L2 ΛࠞͥΒΕΕͬͱྑ͍ͷʹ)
None
Ϟσϧͷ࡞ޙʹࣗಈతʹධՁ࣮ࢪ͢Δ͔Ͳ͏͔ɻ ࠓճผʹධՁΛΔͷͰ No ΛબͿɻ
None
None
ϞσϧΛ࡞Δ
ֶशδϣϒࣗಈతʹ։࢝͢Δ
None
60,000 ڭࢣσʔλ → 20
ϞσϧΛධՁ͢Δ
None
None
None
None
None
None
None
10,000 ςετσʔλ → 1ʙ2
None
ҎԼͷࣜͰܭࢉ͞ΕΔϞσϧͷ༏ल͞ΛଌΔྔ 2 × ద߹ × ࠶ݱ ద߹ + ࠶ݱ
ਅͷྨ 1 ͦͷଞ ༧ ଌ ݁ Ռ 1 True Positive
False Positive ͦ ͷ ଞ False Negative True Negative ద߹ ʹ ࠶ݱ ʹ True Positive True Positive + False Positive True Positive True Positive + False Negative TP FP FN TN TP FP FN TN
None
1,000 ڭࢣσʔλͰ࡞ͬͨϞσϧͷ߹
None
ڭࢣσʔλ͕ଟ͍΄ͲϞσϧͷੑೳ͕ྑ͘ͳΔ
ϞσϧΛ͏
Ϟσϧͷ͍ํ 1. όον༧ଌ 2. ϦΞϧλΠϜ༧ଌ
Ϟσϧͷ͍ํ 1. όον༧ଌ 2. ϦΞϧλΠϜ༧ଌ → ·ͱ·ͬͨσʔλΛ·ͱΊͯ༧ଌ
Ϟσϧͷ͍ํ 1. όον༧ଌ 2. ϦΞϧλΠϜ༧ଌ → ·ͱ·ͬͨσʔλΛ·ͱΊͯ༧ଌ → API Λͬͯ1ͭͣͭ༧ଌ
Amazon Machine Learning ͷྉۚମܥ
Amazon Machine Learning ͷྉۚମܥ
1,000 σʔλͰϞσϧΛ࡞ͬͨͱ͖
70,000 σʔλͰϞσϧΛ࡞ͬͨͱ͖
S3 price
Amazon Machine Learning ΛͬͯΈͨײ 1. Α͘Ͱ͖ͯΔ 2. ͬ͘͞ͱϓϩτλΠϓ͍ͨ࣌͠ʹศརͦ͏ 3. ֶशࡁΈͷϞσϧΛΤΫεϙʔτͰ͖ͳ͍
Amazon Machine Learning ΛͬͯΈͨײ 1. Α͘Ͱ͖ͯΔ 2. ͬ͘͞ͱϓϩτλΠϓ͍ͨ࣌͠ʹศརͦ͏ → ΞϧΰϦζϜΛදʹग़ͣ͞ʹ্ख͘؆ུԽͯ͠Δ
3. ֶशࡁΈͷϞσϧΛΤΫεϙʔτͰ͖ͳ͍
Amazon Machine Learning ΛͬͯΈͨײ 1. Α͘Ͱ͖ͯΔ 2. ͬ͘͞ͱϓϩτλΠϓ͍ͨ࣌͠ʹศརͦ͏ → ΞϧΰϦζϜΛදʹग़ͣ͞ʹ্ख͘؆ུԽͯ͠Δ
→ ࣮ӡ༻લʹ༷ʑͳಛϕΫτϧΛ؆୯ʹࢼͤΔ 3. ֶशࡁΈͷϞσϧΛΤΫεϙʔτͰ͖ͳ͍
Amazon Machine Learning ΛͬͯΈͨײ 1. Α͘Ͱ͖ͯΔ 2. ͬ͘͞ͱϓϩτλΠϓ͍ͨ࣌͠ʹศརͦ͏ → ΞϧΰϦζϜΛදʹग़ͣ͞ʹ্ख͘؆ུԽͯ͠Δ
→ ࣮ӡ༻લʹ༷ʑͳಛϕΫτϧΛ؆୯ʹࢼͤΔ 3. ֶशࡁΈͷϞσϧΛΤΫεϙʔτͰ͖ͳ͍ → ࣮ӡ༻࣌ࣗͰ࣮ͨ͠ϞσϧΛ͏ ɹ ϓϩτλΠϓͰ্ख͘ߦ͖ͦ͏ͳ͜ͱ͕ ɹ ͔ͬͯΔͷͰ࣮ίετؾʹͳΒͳ͍!?