Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Apache Arrow C++ Datasets
Search
Kenta Murata
December 11, 2019
Technology
4
1.6k
Apache Arrow C++ Datasets
Introduce Apache Arrow C++ Datasets.
Presented Apache Arrow Tokyo Meetup 2019.
Kenta Murata
December 11, 2019
Tweet
Share
More Decks by Kenta Murata
See All by Kenta Murata
waitany と waitall を作った話
mrkn
0
180
HolidayJp.jl を作りました
mrkn
0
190
Calling Julia functions from Streamlit applications
mrkn
1
420
Red Data Tools で切り開く Ruby の未来
mrkn
3
1.1k
Method-based JIT compilation by transpiling to Julia
mrkn
0
7.1k
Reducing ActiveRecord memory consumption using Apache Arrow
mrkn
0
1.7k
RubyData and Rails
mrkn
0
3.1k
Tensor and Arrow
mrkn
0
930
RubyData Current and Future
mrkn
1
3.5k
Other Decks in Technology
See All in Technology
Pwned Labsのすゝめ
ken5scal
1
400
生成AI×財務経理:PoCで挑むSlack AI Bot開発と現場巻き込みのリアル
pohdccoe
1
630
LINEギフトにおけるバックエンド開発
lycorptech_jp
PRO
0
270
PHPカンファレンス名古屋-テックリードの経験から学んだ設計の教訓
hayatokudou
2
540
ABWG2024採択者が語るエンジニアとしての自分自身の見つけ方〜発信して、つながって、世界を広げていく〜
maimyyym
1
140
RemoveだらけのPHPUnit 12に備えよう
cocoeyes02
0
280
EMConf JP 2025 懇親会LT / EMConf JP 2025 social gathering
sugamasao
2
190
内製化を加速させるlaC活用術
nrinetcom
PRO
2
140
脳波を用いた嗜好マッチングシステム
hokkey621
0
280
組織におけるCCoEの役割とAWS活用事例
nrinetcom
PRO
4
130
LINE NEWSにおけるバックエンド開発
lycorptech_jp
PRO
0
230
php-conference-nagoya-2025
fuwasegu
0
150
Featured
See All Featured
Making Projects Easy
brettharned
116
6k
Git: the NoSQL Database
bkeepers
PRO
427
65k
StorybookのUI Testing Handbookを読んだ
zakiyama
28
5.5k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.7k
The Pragmatic Product Professional
lauravandoore
32
6.4k
Designing for Performance
lara
604
68k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Raft: Consensus for Rubyists
vanstee
137
6.8k
Building Better People: How to give real-time feedback that sticks.
wjessup
367
19k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
The Cult of Friendly URLs
andyhume
78
6.2k
Transcript
Apache Arrow C++ Datasets Kenta Murata Speee, Inc. 2019.12.11 Apache
Arrow Tokyo Meetup 2019
Kenta Murata • Fulltime OSS developer at Speee, Inc. •
CRuby committer (as of 2010.02) • Apache Arrow committer (as of 2019.10) • The 24th place (44 commits) • SparseTensor in Arrow C++ • GLib and Ruby binding, etc.
Apache Arrow C++ ͷߏ Base Datasets Query Engine Data Frame
Apache Arrow C++ Datasets • 1ͭҎ্ͷσʔλιʔεΛ·ͱΊͯ1ͭͷσʔληοτͱ ͯ͠ѻ͏ͨΊͷ API Λఏڙ͢Δ •
༷ʑͳछྨͷσʔλϑΥʔϚοτͷҧ͍Λٵऩ͢Δ • ҟͳΔεΩʔϚͷσʔλιʔεΛ1ͭʹ౷߹Ͱ͖Δ • ෳछྨͷετϨʔδ͔ΒͷσʔλೖྗʹରԠͰ͖Δ • কདྷతʹϑΝΠϧͷॻ͖ग़͠ʹରԠ͢Δ༧ఆ
ෳͷσʔλιʔε͔Β1ͭͷςʔϒϧΛ࡞ΕΔ a.parquet b.parquet Query 1 Query 2 c.csv d.json Record
Batch 1 Record Batch 2 Amazon S3 Amazon Redshift Local File System In-Memory Arrow Table
ϑΝΠϧ͔ΒͷಡΈࠐΈ Discover Scan Filter & Project Collect
ϑΝΠϧ͔ΒͷಡΈࠐΈ • ϑΝΠϧΛεΩϟϯͯ͠ Record Batch Λ࡞Δ • ෳϑΝΠϧΛฒྻεΩϟϯͰ͖Δ • ϑΝΠϧγεςϜ্ͷσΟϨΫτϦ͔Βࢦఆͨ͠ϧʔϧʹج͍ͮͯϑΝΠϧΛൃݟ͢Δ
• ෳͷϑΝΠϧʹׂ͞ΕͨσʔλΛ࠶ߏ͢Δ • σʔλΛෳϑΝΠϧʹׂ͢Δͱ͖ͷεΩʔϚׂͷنଇʹैͬͯॲཧ͢Δ • ݅ࣜͰߦΛϑΟϧλϦϯάͰ͖Δ • ݁ՌΛ࡞ΔͨΊʹඞཁͳΧϥϜͷΈΛಡΈࠐΉ • ϩʔΧϧετϨʔδʹΩϟογϡΛ࡞Δ • ඞཁʹͳΔ·ͰϑΝΠϧΛಡΈࠐ·ͳ͍ (lazy scan)
ϑΝΠϧͷൃݟ • ϕʔεσΟϨΫτϦͷҐஔͱϑΝΠϧϑΥʔϚοτΛࢦఆ ͢ΔͱɺͦͷσΟϨΫτϦҎԼʹ͋ΔରϑΝΠϧΛ͢ ͯϦετΞοϓͯ͘͠ΕΔ • αϒσΟϨΫτϦΛ࠶ؼతʹ୳͢͜ͱՄೳ • ແࢹ͢ΔϑΝΠϧ໊ͷϓϨϑΟοΫεΛࢦఆͰ͖Δ •
ରϑΝΠϧΛͯ͢ಡΈࠐΉͨΊʹඞཁͳϚʔδࡁΈͷ εΩʔϚΛ࡞ͬͯ͘ΕΔ (༧ఆ)
ϑΝΠϧͷൃݟͷྫ /data/.metadata /data/2018/12/JP/Tokyo/001.parquet /data/2018/12/JP/Tokyo/002.parquet /data/2018/12/JP/Osaka/001.parquet /data/2018/12/US/CA/001.parquet /data/2019/01/JP/Tokyo/001.parquet /data/2019/01/JP/Osaka/001.parquet /data/2019/01/US/CA/001.parquet /data/2019/01/US/NY/001.parquet
/tmp/Tokyo.parquet ↓͜ΕΒͷϑΝΠϧ͚ͩϐοΫΞοϓ͍ͨ͠
ϑΝΠϧͷൃݟͷྫ using namespace arrow; using namespace arrow::dataset; fs::Selector selector; selector.base_dir
= “/data”; selector.recursive = true; std::shared_ptr<FileSystemDataSourceDiscovery> discovery; ARROW_OK_AND_ASSIGN( discovery, FileSystemDataSourceDiscovery::Make( fs, selector, std::make_shared<dataset::ParquetFileFormat>(), FileSystemDiscoveryOptions())); ARROW_OK_AND_ASSIGN(auto datasource, discovery->Finish());
σʔλׂͷنଇΛࢦఆ /data/2018 /data/2018/12 /data/2018/12/JP /data/2018/12/JP/Tokyo/001.parquet auto partition_scheme = schema({field(“year”, int32()),
field(“month”, int32()), field(“country”, utf8()), field(“city”, utf8())}); ASSERT_OK(discovery->SetPartitionScheme(partition_scheme)); ARROW_OK_AND_ASSIGN(auto datasource, discovery->Finish()); year month country city => {“year": 2018} => {“year”: 2018, “month”: 12} => {“year”: 2018, “month”: 12, “country”: “JP”} => {“year”: 2018, “month”: 12, “country”: “JP”, “city”: “Tokyo”}
ϑΟϧλϦϯά • ݅ࣜΛͬͯߦΛϑΟϧλϦϯάͰ͖Δ • year ͕ 2019 Ͱ sales ͕
100.0 ΑΓେ͖͍ߦ͚ͩΛऔΓ ग़͢߹࣍ͷࣜΛεΩϟφʹࢦఆ͢Δ “year”_ == 2019 && “sales”_ > 100.0 • εΩʔϚׂͷنଇʹैͬͯɺ݅ʹ߹க͠ͳ͍ϑΝΠϧ ͷಡΈࠐΈΛলུ͢Δ
औΓग़͢ΧϥϜͷࢦఆ • ͯ͢ͷΧϥϜΛಡΈࠐ·ͳͯ͘ྑ͍߹ɺϓϩδΣΫ γϣϯ (ࣹӨ) ػೳΛͬͯऔΓग़͢ΧϥϜΛ੍ݶͰ͖Δ • ͜ͷػೳͰಡΈࠐΉΧϥϜΛ੍ݶ͢ΔͱɺෆཁͳΧϥϜͷ σγϦΞϥΠζͱܕม͕লུ͞ΕͯɺϑΝΠϧϑΥʔ ϚοτʹΑͬͯσʔλͷಡΈग़͕͘͠ͳΔ
σʔληοτΛ࡞ͬͯಡΈࠐΜͰ Arrow Table Λ࡞Δ·Ͱͷྫ // σʔληοτͷ࡞ ASSERT_OK_AND_ASSIGN(auto dataset, Dataset::Make({data_source}, discovery->Inspect()));
// εΩϟφϏϧμ ASSERT_OK_AND_ASSIGN(auto scanner_builder, dataset->NewScan()); // ϑΟϧλͷઃఆ auto filter = (“year”_ == 2019 && “sales”_ > 100.0); ASSERT_OK(scanner_builder->Filter(filter)); // ϓϩδΣΫγϣϯͷઃఆ std::vector<std::string> columns{“item_id”, “item_name”, “sales”}; ASSERT_OK(scanner_builder->Project(columns)); // εΩϟφੜ ASSERT_OK_AND_ASSIGN(auto scanner, scanner_builder->Finish(); // σʔλΛಡΈࠐΜͰ Arrow Table Λ࡞Δ (͜͜Ͱ࣮ࡍʹϑΝΠϧ͕ಡΈࠐ·ΕΔ) ASSERT_OK_AND_ASSIGN(auto table, scanner->ToTable());
ෳϑΝΠϧͷฒྻಡΈࠐΈ • ϑΝΠϧ୯ҐͰಡΈࠐΈλεΫ͕࡞ΒΕɺεϨουϓʔϧ ͰλεΫ͕ฒྻ࣮ߦ͞ΕΔ • Parquet ϑΥʔϚοτͰɺ1ͭͷϑΝΠϧߦάϧʔϓ ͝ͱʹγʔέϯγϟϧʹಡΈࠐ·ΕΔ • 1ͭͷϑΝΠϧ͔Β1ͭҎ্ͷ
Arrow Record Batch ͕ੜ ͞Εͯɺ࠷ޙʹ·ͱΊͯ Arrow Table ͕ੜ͞ΕΔ
༷ʑͳϑΝΠϧϑΥʔϚοτʹରԠ͢Δ • ݱࡏෳͷ Parquet ϑΝΠϧʹׂ͞Εͨσʔληο τͷରԠΛඋத • AVRO, ORC, JSON,
CSV ͳͲͷҰൠతͳσʔλอଘ༻ͷ ϑΥʔϚοτকདྷతʹରԠ͞ΕΔ • Parquet Ҏ֎ͷϑΥʔϚοτʹରԠ͢Δ Pull Request ৗʹ welcome ͩͱࢥ͏
༷ʑͳϑΝΠϧγεςϜͷରԠ • ରԠࡁΈͷͷ • ϩʔΧϧϑΝΠϧγεςϜ • HDFS • Amazon S3
• ςετ༻ͷϞοΫϑΝΠϧγεςϜ • কདྷతʹରԠ͍ͨ͠ͷ • Google Cloud Storage • Microsoft Azure BLOB Storage
RDB ͔ΒͷಡΈࠐΈ • RDB ͷςʔϒϧΫΤϦͷ݁ՌΛσʔλιʔεͱͯ͑͠ΔΑ͏ʹ͢Δ ܭը͋Δ • ࣍ͷγεςϜ໊ࢦ͠͞Ε͍ͯΔ • SQLite3
• PostgreSQL protocol (pgsql, Vertica, Redshift) • MySQL (and MemSQL) • Microsoft SQL Server (TDS) • HiveServer2 (Hive and Impala) • ClickHouse
Apache Arrow C++ Datasets • Apache Arrow C++ Datasets ͕͋Εɺ͍Ζ͍Ζͳॴ
ʹอଘ͞Ε͍ͯΔ͍Ζ͍ΖͳϑΥʔϚοτͷσʔλΛޮ Α͘ಡΈࠐΜͰ1ͭͷ Arrow Table ʹͰ͖Δ • Arrow Table Λ࡞ͬͨ͋ͱʁ • ͞Βʹੳ༻ͷΫΤϦΛ࣮ߦ͍ͨ͠ • ूܭ౷ܭॲཧΛ͍ͨ͠
Arrow Table Λ࡞ͬͨ͋ͱ • ੳ༻ͷΫΤϦΛ࣮ߦ͍ͨ͠ => Apache Arrow C++ Query
Engine • ूܭ౷ܭॲཧΛ͍ͨ͠ => Apache Arrow C++ Data Frame
Apache Arrow C++ Query Engine • ϝϞϦ্ͷ Arrow Record Batch
ʹରͯ͠SQL෩ͷΫΤ ϦɺσʔλੳͰΑ͘ར༻͞ΕΔ࣌ܥྻૢ࡞ pivot ૢ࡞ͳͲΛ࣮ߦ͢ΔػೳΛఏڙ͢Δ • σʔλϕʔεΛஔ͖͑Δ͜ͱҙਤͤͣɺC++ ͷڞ༗ϥ ΠϒϥϦͱͯ͠ҰൠͷΞϓϦέʔγϣϯʹຒΊࠐΜͰΘ ΕΔ͜ͱΛఆ͍ͯ͠Δ • ·ͩ։ൃ࢝·͍ͬͯͳ͍͕ٞ͞Ε͍ͯΔ
Apache Arrow C++ Data Frame • ϝϞϦ্ͷ Arrow Record Batch
ʹରͯ͠ɺ͍ΘΏΔ σʔλϑϨʔϜ͕උ͍͑ͯΔΑ͏ͳσʔλૢ࡞ɺੳɺू ܭͳͲͷػೳΛఏڙ͢Δ • ։ൃ·ͩ࢝·͍ͬͯͳ͍͕ٞ͞Ε͍ͯΔ • pandas2 Arrow C++ Data Frame ΛόοΫΤϯυͱ ͯ͠࡞ΕΒΕΔͷ͔ͳʁ
Datasets Query Engine Data Frame ϑΝΠϧDBʹอଘ͞Εͨσʔλ ͷΞΫηε͕؆୯ʹͳΔ ϝϞϦ্ͷςʔϒϧσʔλʹର͢Δ ੳΫΤϦ͕؆୯ʹ࣮ߦͰ͖Δ ϝϞϦ্ͷςʔϒϧσʔλΛσʔλ
ϑϨʔϜͱͯ͠ར༻Ͱ͖Δ