Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Apache Arrow C++ Datasets
Search
Kenta Murata
December 11, 2019
Technology
4
1.6k
Apache Arrow C++ Datasets
Introduce Apache Arrow C++ Datasets.
Presented Apache Arrow Tokyo Meetup 2019.
Kenta Murata
December 11, 2019
Tweet
Share
More Decks by Kenta Murata
See All by Kenta Murata
waitany と waitall を作った話
mrkn
0
210
HolidayJp.jl を作りました
mrkn
0
210
Calling Julia functions from Streamlit applications
mrkn
1
460
Red Data Tools で切り開く Ruby の未来
mrkn
3
1.2k
Method-based JIT compilation by transpiling to Julia
mrkn
0
7.3k
Reducing ActiveRecord memory consumption using Apache Arrow
mrkn
0
1.7k
RubyData and Rails
mrkn
0
3.1k
Tensor and Arrow
mrkn
0
950
RubyData Current and Future
mrkn
1
3.5k
Other Decks in Technology
See All in Technology
CodePipelineのアクション統合から学ぶAWS CDKの抽象化技術 / codepipeline-actions-cdk-abstraction
gotok365
5
330
Aspire をカスタマイズしよう & Aspire 9.2
nenonaninu
0
310
AIでめっちゃ便利になったけど、結局みんなで学ぶよねっていう話
kakehashi
PRO
1
460
より良い開発者体験を実現するために~開発初心者が感じた生成AIの可能性~
masakiokuda
0
220
3月のAWSアップデートを5分間でざっくりと!
kubomasataka
0
140
QA/SDETの現在と、これからの挑戦
imtnd
0
160
【Oracle Cloud ウェビナー】ご希望のクラウドでOracle Databaseを実行〜マルチクラウド・ソリューション徹底解説〜
oracle4engineer
PRO
1
130
OPENLOGI Company Profile for engineer
hr01
1
25k
コスト最適重視でAurora PostgreSQLのログ分析基盤を作ってみた #jawsug_tokyo
non97
1
810
MySQL Indexes and Histograms – How they really speed up your queries
lefred
0
120
ワールドカフェI /チューターを改良する / World Café I and Improving the Tutors
ks91
PRO
0
140
持続可能なドキュメント運用のリアル: 1年間の成果とこれから
akitok_
1
250
Featured
See All Featured
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
GitHub's CSS Performance
jonrohan
1030
460k
A Tale of Four Properties
chriscoyier
158
23k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
YesSQL, Process and Tooling at Scale
rocio
172
14k
Product Roadmaps are Hard
iamctodd
PRO
52
11k
Fontdeck: Realign not Redesign
paulrobertlloyd
84
5.5k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
178
53k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
2.9k
The Language of Interfaces
destraynor
157
25k
Art, The Web, and Tiny UX
lynnandtonic
298
20k
Stop Working from a Prison Cell
hatefulcrawdad
268
20k
Transcript
Apache Arrow C++ Datasets Kenta Murata Speee, Inc. 2019.12.11 Apache
Arrow Tokyo Meetup 2019
Kenta Murata • Fulltime OSS developer at Speee, Inc. •
CRuby committer (as of 2010.02) • Apache Arrow committer (as of 2019.10) • The 24th place (44 commits) • SparseTensor in Arrow C++ • GLib and Ruby binding, etc.
Apache Arrow C++ ͷߏ Base Datasets Query Engine Data Frame
Apache Arrow C++ Datasets • 1ͭҎ্ͷσʔλιʔεΛ·ͱΊͯ1ͭͷσʔληοτͱ ͯ͠ѻ͏ͨΊͷ API Λఏڙ͢Δ •
༷ʑͳछྨͷσʔλϑΥʔϚοτͷҧ͍Λٵऩ͢Δ • ҟͳΔεΩʔϚͷσʔλιʔεΛ1ͭʹ౷߹Ͱ͖Δ • ෳछྨͷετϨʔδ͔ΒͷσʔλೖྗʹରԠͰ͖Δ • কདྷతʹϑΝΠϧͷॻ͖ग़͠ʹରԠ͢Δ༧ఆ
ෳͷσʔλιʔε͔Β1ͭͷςʔϒϧΛ࡞ΕΔ a.parquet b.parquet Query 1 Query 2 c.csv d.json Record
Batch 1 Record Batch 2 Amazon S3 Amazon Redshift Local File System In-Memory Arrow Table
ϑΝΠϧ͔ΒͷಡΈࠐΈ Discover Scan Filter & Project Collect
ϑΝΠϧ͔ΒͷಡΈࠐΈ • ϑΝΠϧΛεΩϟϯͯ͠ Record Batch Λ࡞Δ • ෳϑΝΠϧΛฒྻεΩϟϯͰ͖Δ • ϑΝΠϧγεςϜ্ͷσΟϨΫτϦ͔Βࢦఆͨ͠ϧʔϧʹج͍ͮͯϑΝΠϧΛൃݟ͢Δ
• ෳͷϑΝΠϧʹׂ͞ΕͨσʔλΛ࠶ߏ͢Δ • σʔλΛෳϑΝΠϧʹׂ͢Δͱ͖ͷεΩʔϚׂͷنଇʹैͬͯॲཧ͢Δ • ݅ࣜͰߦΛϑΟϧλϦϯάͰ͖Δ • ݁ՌΛ࡞ΔͨΊʹඞཁͳΧϥϜͷΈΛಡΈࠐΉ • ϩʔΧϧετϨʔδʹΩϟογϡΛ࡞Δ • ඞཁʹͳΔ·ͰϑΝΠϧΛಡΈࠐ·ͳ͍ (lazy scan)
ϑΝΠϧͷൃݟ • ϕʔεσΟϨΫτϦͷҐஔͱϑΝΠϧϑΥʔϚοτΛࢦఆ ͢ΔͱɺͦͷσΟϨΫτϦҎԼʹ͋ΔରϑΝΠϧΛ͢ ͯϦετΞοϓͯ͘͠ΕΔ • αϒσΟϨΫτϦΛ࠶ؼతʹ୳͢͜ͱՄೳ • ແࢹ͢ΔϑΝΠϧ໊ͷϓϨϑΟοΫεΛࢦఆͰ͖Δ •
ରϑΝΠϧΛͯ͢ಡΈࠐΉͨΊʹඞཁͳϚʔδࡁΈͷ εΩʔϚΛ࡞ͬͯ͘ΕΔ (༧ఆ)
ϑΝΠϧͷൃݟͷྫ /data/.metadata /data/2018/12/JP/Tokyo/001.parquet /data/2018/12/JP/Tokyo/002.parquet /data/2018/12/JP/Osaka/001.parquet /data/2018/12/US/CA/001.parquet /data/2019/01/JP/Tokyo/001.parquet /data/2019/01/JP/Osaka/001.parquet /data/2019/01/US/CA/001.parquet /data/2019/01/US/NY/001.parquet
/tmp/Tokyo.parquet ↓͜ΕΒͷϑΝΠϧ͚ͩϐοΫΞοϓ͍ͨ͠
ϑΝΠϧͷൃݟͷྫ using namespace arrow; using namespace arrow::dataset; fs::Selector selector; selector.base_dir
= “/data”; selector.recursive = true; std::shared_ptr<FileSystemDataSourceDiscovery> discovery; ARROW_OK_AND_ASSIGN( discovery, FileSystemDataSourceDiscovery::Make( fs, selector, std::make_shared<dataset::ParquetFileFormat>(), FileSystemDiscoveryOptions())); ARROW_OK_AND_ASSIGN(auto datasource, discovery->Finish());
σʔλׂͷنଇΛࢦఆ /data/2018 /data/2018/12 /data/2018/12/JP /data/2018/12/JP/Tokyo/001.parquet auto partition_scheme = schema({field(“year”, int32()),
field(“month”, int32()), field(“country”, utf8()), field(“city”, utf8())}); ASSERT_OK(discovery->SetPartitionScheme(partition_scheme)); ARROW_OK_AND_ASSIGN(auto datasource, discovery->Finish()); year month country city => {“year": 2018} => {“year”: 2018, “month”: 12} => {“year”: 2018, “month”: 12, “country”: “JP”} => {“year”: 2018, “month”: 12, “country”: “JP”, “city”: “Tokyo”}
ϑΟϧλϦϯά • ݅ࣜΛͬͯߦΛϑΟϧλϦϯάͰ͖Δ • year ͕ 2019 Ͱ sales ͕
100.0 ΑΓେ͖͍ߦ͚ͩΛऔΓ ग़͢߹࣍ͷࣜΛεΩϟφʹࢦఆ͢Δ “year”_ == 2019 && “sales”_ > 100.0 • εΩʔϚׂͷنଇʹैͬͯɺ݅ʹ߹க͠ͳ͍ϑΝΠϧ ͷಡΈࠐΈΛলུ͢Δ
औΓग़͢ΧϥϜͷࢦఆ • ͯ͢ͷΧϥϜΛಡΈࠐ·ͳͯ͘ྑ͍߹ɺϓϩδΣΫ γϣϯ (ࣹӨ) ػೳΛͬͯऔΓग़͢ΧϥϜΛ੍ݶͰ͖Δ • ͜ͷػೳͰಡΈࠐΉΧϥϜΛ੍ݶ͢ΔͱɺෆཁͳΧϥϜͷ σγϦΞϥΠζͱܕม͕লུ͞ΕͯɺϑΝΠϧϑΥʔ ϚοτʹΑͬͯσʔλͷಡΈग़͕͘͠ͳΔ
σʔληοτΛ࡞ͬͯಡΈࠐΜͰ Arrow Table Λ࡞Δ·Ͱͷྫ // σʔληοτͷ࡞ ASSERT_OK_AND_ASSIGN(auto dataset, Dataset::Make({data_source}, discovery->Inspect()));
// εΩϟφϏϧμ ASSERT_OK_AND_ASSIGN(auto scanner_builder, dataset->NewScan()); // ϑΟϧλͷઃఆ auto filter = (“year”_ == 2019 && “sales”_ > 100.0); ASSERT_OK(scanner_builder->Filter(filter)); // ϓϩδΣΫγϣϯͷઃఆ std::vector<std::string> columns{“item_id”, “item_name”, “sales”}; ASSERT_OK(scanner_builder->Project(columns)); // εΩϟφੜ ASSERT_OK_AND_ASSIGN(auto scanner, scanner_builder->Finish(); // σʔλΛಡΈࠐΜͰ Arrow Table Λ࡞Δ (͜͜Ͱ࣮ࡍʹϑΝΠϧ͕ಡΈࠐ·ΕΔ) ASSERT_OK_AND_ASSIGN(auto table, scanner->ToTable());
ෳϑΝΠϧͷฒྻಡΈࠐΈ • ϑΝΠϧ୯ҐͰಡΈࠐΈλεΫ͕࡞ΒΕɺεϨουϓʔϧ ͰλεΫ͕ฒྻ࣮ߦ͞ΕΔ • Parquet ϑΥʔϚοτͰɺ1ͭͷϑΝΠϧߦάϧʔϓ ͝ͱʹγʔέϯγϟϧʹಡΈࠐ·ΕΔ • 1ͭͷϑΝΠϧ͔Β1ͭҎ্ͷ
Arrow Record Batch ͕ੜ ͞Εͯɺ࠷ޙʹ·ͱΊͯ Arrow Table ͕ੜ͞ΕΔ
༷ʑͳϑΝΠϧϑΥʔϚοτʹରԠ͢Δ • ݱࡏෳͷ Parquet ϑΝΠϧʹׂ͞Εͨσʔληο τͷରԠΛඋத • AVRO, ORC, JSON,
CSV ͳͲͷҰൠతͳσʔλอଘ༻ͷ ϑΥʔϚοτকདྷతʹରԠ͞ΕΔ • Parquet Ҏ֎ͷϑΥʔϚοτʹରԠ͢Δ Pull Request ৗʹ welcome ͩͱࢥ͏
༷ʑͳϑΝΠϧγεςϜͷରԠ • ରԠࡁΈͷͷ • ϩʔΧϧϑΝΠϧγεςϜ • HDFS • Amazon S3
• ςετ༻ͷϞοΫϑΝΠϧγεςϜ • কདྷతʹରԠ͍ͨ͠ͷ • Google Cloud Storage • Microsoft Azure BLOB Storage
RDB ͔ΒͷಡΈࠐΈ • RDB ͷςʔϒϧΫΤϦͷ݁ՌΛσʔλιʔεͱͯ͑͠ΔΑ͏ʹ͢Δ ܭը͋Δ • ࣍ͷγεςϜ໊ࢦ͠͞Ε͍ͯΔ • SQLite3
• PostgreSQL protocol (pgsql, Vertica, Redshift) • MySQL (and MemSQL) • Microsoft SQL Server (TDS) • HiveServer2 (Hive and Impala) • ClickHouse
Apache Arrow C++ Datasets • Apache Arrow C++ Datasets ͕͋Εɺ͍Ζ͍Ζͳॴ
ʹอଘ͞Ε͍ͯΔ͍Ζ͍ΖͳϑΥʔϚοτͷσʔλΛޮ Α͘ಡΈࠐΜͰ1ͭͷ Arrow Table ʹͰ͖Δ • Arrow Table Λ࡞ͬͨ͋ͱʁ • ͞Βʹੳ༻ͷΫΤϦΛ࣮ߦ͍ͨ͠ • ूܭ౷ܭॲཧΛ͍ͨ͠
Arrow Table Λ࡞ͬͨ͋ͱ • ੳ༻ͷΫΤϦΛ࣮ߦ͍ͨ͠ => Apache Arrow C++ Query
Engine • ूܭ౷ܭॲཧΛ͍ͨ͠ => Apache Arrow C++ Data Frame
Apache Arrow C++ Query Engine • ϝϞϦ্ͷ Arrow Record Batch
ʹରͯ͠SQL෩ͷΫΤ ϦɺσʔλੳͰΑ͘ར༻͞ΕΔ࣌ܥྻૢ࡞ pivot ૢ࡞ͳͲΛ࣮ߦ͢ΔػೳΛఏڙ͢Δ • σʔλϕʔεΛஔ͖͑Δ͜ͱҙਤͤͣɺC++ ͷڞ༗ϥ ΠϒϥϦͱͯ͠ҰൠͷΞϓϦέʔγϣϯʹຒΊࠐΜͰΘ ΕΔ͜ͱΛఆ͍ͯ͠Δ • ·ͩ։ൃ࢝·͍ͬͯͳ͍͕ٞ͞Ε͍ͯΔ
Apache Arrow C++ Data Frame • ϝϞϦ্ͷ Arrow Record Batch
ʹରͯ͠ɺ͍ΘΏΔ σʔλϑϨʔϜ͕උ͍͑ͯΔΑ͏ͳσʔλૢ࡞ɺੳɺू ܭͳͲͷػೳΛఏڙ͢Δ • ։ൃ·ͩ࢝·͍ͬͯͳ͍͕ٞ͞Ε͍ͯΔ • pandas2 Arrow C++ Data Frame ΛόοΫΤϯυͱ ͯ͠࡞ΕΒΕΔͷ͔ͳʁ
Datasets Query Engine Data Frame ϑΝΠϧDBʹอଘ͞Εͨσʔλ ͷΞΫηε͕؆୯ʹͳΔ ϝϞϦ্ͷςʔϒϧσʔλʹର͢Δ ੳΫΤϦ͕؆୯ʹ࣮ߦͰ͖Δ ϝϞϦ্ͷςʔϒϧσʔλΛσʔλ
ϑϨʔϜͱͯ͠ར༻Ͱ͖Δ