Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
CVPR2025論文紹介:Unboxed
Search
村川卓也
August 09, 2025
Research
0
210
CVPR2025論文紹介:Unboxed
村川卓也
August 09, 2025
Tweet
Share
Other Decks in Research
See All in Research
AIスパコン「さくらONE」の オブザーバビリティ / Observability for AI Supercomputer SAKURAONE
yuukit
2
970
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1k
AWSで実現した大規模日本語VLM学習用データセット "MOMIJI" 構築パイプライン/buiding-momiji
studio_graph
2
940
Sat2City:3D City Generation from A Single Satellite Image with Cascaded Latent Diffusion
satai
4
320
音声感情認識技術の進展と展望
nagase
0
390
不確実性下における目的と手段の統合的探索に向けた連続腕バンディットの応用 / iot70_gp_rff_mab
monochromegane
2
250
SNLP2025:Can Language Models Reason about Individualistic Human Values and Preferences?
yukizenimoto
0
220
LLM-jp-3 and beyond: Training Large Language Models
odashi
1
680
学習型データ構造:機械学習を内包する新しいデータ構造の設計と解析
matsui_528
4
1.7k
教師あり学習と強化学習で作る 最強の数学特化LLM
analokmaus
2
680
製造業主導型経済からサービス経済化における中間層形成メカニズムのパラダイムシフト
yamotty
0
200
論文紹介:Not All Tokens Are What You Need for Pretraining
kosuken
1
220
Featured
See All Featured
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Statistics for Hackers
jakevdp
799
230k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
Build your cross-platform service in a week with App Engine
jlugia
234
18k
It's Worth the Effort
3n
187
29k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
32
2.7k
Product Roadmaps are Hard
iamctodd
PRO
55
12k
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
Optimizing for Happiness
mojombo
379
70k
Making Projects Easy
brettharned
120
6.5k
How to train your dragon (web standard)
notwaldorf
97
6.4k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
Transcript
Unboxed: Geometrically and Temporally Consistent Video Outpainting 村川卓也(名工大玉木研B4) 2025/8/9 Zhongrui
Yu, Martina Megaro-Boldini, Robert W. Sumner, Abdelaziz Djelouah CVPR2025
Video outpainting ◼時空間的一貫性を保ちながら動画像のフレーム外を拡張する手法 ◼生成品質と計算コストはトレードオフ
概要 ◼従来手法のvideo outpainting • 生成領域の物体生成に弱い • 物体の重複,形状が不安定,消失 • 高解像度化への制約 •
生成時間とVRAM使用量の増加 ◼提案手法 • 3段階の生成 • 静的領域と動的オブジェクトで 個別に生成 入力動画 (左) , 提案手法, MOTIA [Wang+, ECCV2024]の比較
◼Dehan [Dehan+, CVPR2022] • オプティカルフローを用いた時間的一貫性の改善 • 視点の動きが激しい動画や動く物体の生成が困難 ◼M3DDM [Fan+, ACM
MM2023] • Diffusionと3D U-Netを用いたvideo outpainting • 動画全体から抽出したフレームによる時間的一貫性の 改善 • フレーム外情報が少ない動画の生成が困難 ◼MOTIA [Wang+, ECCV2024] • 生成前に入力動画でファインチューニングを行い, 学習動画と異なるドメインの動画の生成に対応 • 他手法と比較して生成時間とVRAM使用量が大幅に増加 • 動的オブジェクトが重複して出現することがある 関連研究
前処理: 動的オブジェクトをマスク,3D Gaussian Splattingによる3次元再構成 1. 背景等の静的領域の生成と3D Gaussian Splattingの更新 2. 動的オブジェクトのinpainting
3. Guided Video Synthesisを用いた生成品質の改善 3段階生成の概要
前処理: 動的オブジェクトをマスク,3D Gaussian Splattingによる3次元再構成 1. 背景等の静的領域の生成と3D Gaussian Splattingの更新 2. 動的オブジェクトのinpainting
3. Guided Video Synthesisを用いた生成品質の改善 3段階生成の概要
前処理: 動的オブジェクトをマスク,3D Gaussian Splattingによる3次元再構成 1. 背景等の静的領域の生成と3D Gaussian Splattingの更新 2. 動的オブジェクトのinpainting
3. Guided Video Synthesisを用いた生成品質の改善 3段階生成の概要
前処理: 動的オブジェクトをマスク,3D Gaussian Splattingによる3次元再構成 1. 背景等の静的領域の生成と3D Gaussian Splattingの更新 2. 動的オブジェクトのinpainting
3. Guided Video Synthesisを用いた生成品質の改善 3段階生成の概要
前処理: 動的オブジェクトをマスク,3D Gaussian Splattingによる3次元再構成 1. 背景等の静的領域の生成と3D Gaussian Splattingの更新 2. 動的オブジェクトのinpainting
3. Guided Video Synthesisを用いた生成品質の改善 3段階生成の概要
◼3D Gaussian Splatting • 3Dガウス分布を使用して2次元の 入力動画の3次元復元を行う 3D Gaussian SplattingとInpainting ◼Inpainting
• フレーム内のマスク部分や欠損部分 を生成 [Suvorov+, arXiv2021] [Kerbl+, arXiv2023] 入力画像 生成画像
◼動的オブジェクトをマスク 1. SAM2 [Ravi+, arXiv2024]でセグメンテーション 2. エピポーラ誤差で動的オブジェクトのセグメント を判別してマスク ◼3D Gaussian
Splatting (GS) [Kerbl+, SIGGRAPH2024]で3次元再構成 前処理
◼静的領域の生成と3D GSの更新 1. Stable Diffusion XL [Podell+, arXiv2023] (SDXL)でフ レーム外をimage
outpainting 2. 画像再構成損失(L1, SSIM)と深度損失 [Piccinelli+, CVPR2024]を最適化 3. 生成領域を3D GSモデルに反映 生成1:静的領域の生成
◼動的オブジェクトのinpainting • 前処理の段階でSAM2によって検出した動的オブジェクトを補完 • 2Dトラッキングのbboxで生成領域を指定 • 生成前に入力フレームの動的オブジェクトに部分的にマスクをして部分的に生 成することでSDXLをファインチューニング 生成2:動的オブジェクトの生成
◼改善点 • 静的領域:現実のわずかな動き(葉っぱの動き等) • 動的オブジェクト:生成2の時点で時間的一貫性に欠ける ◼Guided Video Synthesisを用いた生成品質の改善 • 各フレームに少量のノイズを付与
• 静的領域/動的オブジェクトで異なる 更新量を与えるマスクでノイズ除去 • 静的領域:小さな変化 • 動的オブジェクト:大きな変化 生成3: Guided Video Synthesisを用いた改善
◼評価データセット • DAVIS [Perazzi+, CVPR2016] • YouTube-VOS [Xu+, arXiv2018] ◼実験方法
• 各動画の左右25%, 66%をマスク • 25%, 66%で得られた値を平均 実験設定 ◼評価指標 • PSNR↑ • 生成後の画像の類似度 • SSIM↑ • 生成後の構造的な見た目の類似度 • LPIPS↓ [Zhang+, CVPR2018] • 視覚的類似度 • FVD↓ [Unterthiner+, arXiv2018] • 生成動画と入力動画の特徴分布の距離 • Ewarp ↓ [Lai+, ECCV2018] • ワープ誤差による時間的一貫性の定量 化
◼従来手法 • 生成失敗,ぼやけた生成 • 元フレームと生成領域の境界が 不自然 • 生成領域の物体の形状が不安定 ◼提案手法 •
元フレームと生成領域の一貫性 の向上 • 物体の自然な生成 定性的比較1
◼難易度の高い動画で比較 • 物体が複数出現 • 複雑な背景 定性的比較2 ◼従来手法 • ぼやけた生成 •
物体の消失や重複 • 元フレームと生成領域の境界 が不自然 ◼提案手法 • 複数物体の生成に対応 • 自然な背景の生成
◼従来手法と比較して大幅に改善 • DAVISデータセットのLPIPS以外の全ての指標で最も良い値を記録 • DAVISデータセットのLPIPSはMOTIAを実行して得られた値よりも改善 定量的比較
◼定性的比較 • フルパイプラインが静的・動的 領域の両方で時間的一貫性が保 たれている ◼定量的比較 • フルパイプラインが全ての評価 指標で最高値を記録 Ablation
study
◼投票による主観評価 • 37名, 619票のアンケートにより生成品質を主観的に評価 • 評価項目 • 現実感 • 時間的一貫性
• 全体的な視覚品質(色再現性,境界の滑らかさ,ぼけ具合など) • 全ての項目で提案手法は80%以上の票を獲得 User study
◼従来手法と比較して最大VRAM使用量が減少 • 生成領域が拡大してもVRAM使用量が変わらない ◼従来手法と比較して生成時間は増加 生成時間と最大VRAM使用量 OOM (Out of Memory) NVIDIA
40GB V100 GPU x1を使用
◼3段階の生成 1. 背景等の静的領域の生成と3D Gaussian Splattingの更新 2. 動的オブジェクトのinpainting 3. Guided Video
Synthesisを用いた生成品質の改善 ◼従来手法との比較 • 動的オブジェクトの時間的一貫性を改善 • 全ての評価指標で高い値 • 投票の主観的評価で80%以上の票を獲得 • 最大VRAM使用量が最も少ない • 高解像度の生成でも使用量が不変 • 生成時間は増加 まとめ