Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Scaling Science
Search
Matt Wood
November 21, 2012
Science
3
510
Scaling Science
Introducing five principles for reproducibility.
Matt Wood
November 21, 2012
Tweet
Share
More Decks by Matt Wood
See All by Matt Wood
Field Notes from Expeditions in the Cloud
mza
2
400
A Platform for Big Data
mza
6
750
The Data Lifecycle
mza
5
510
Provision Throughput Like a Boss
mza
0
440
Impact of Cloud Computing: Life Sciences
mza
2
860
Latency's Worst Nightmare: Performance Tuning Tips and Tricks
mza
4
1.1k
Under the Covers of DynamoDB
mza
4
1.1k
From Analytics to Intelligence: Amazon Redshift
mza
9
1k
High Performance Web Applications
mza
6
630
Other Decks in Science
See All in Science
Masseyのレーティングを用いたフォーミュラレースドライバーの実績評価手法の開発 / Development of a Performance Evaluation Method for Formula Race Drivers Using Massey Ratings
konakalab
0
170
Hakonwa-Quaternion
hiranabe
1
110
地表面抽出の方法であるSMRFについて紹介
kentaitakura
1
760
LayerXにおける業務の完全自動運転化に向けたAI技術活用事例 / layerx-ai-jsai2025
shimacos
2
1.2k
「美は世界を救う」を心理学で実証したい~クラファンを通じた新しい研究方法
jimpe_hitsuwari
1
140
機械学習 - DBSCAN
trycycle
PRO
0
930
ガウス過程回帰とベイズ最適化
nearme_tech
PRO
1
450
統計学入門講座 第4回スライド
techmathproject
0
150
テンソル分解による糖尿病の組織特異的遺伝子発現の統合解析を用いた関連疾患の予測
tagtag
2
200
データベース10: 拡張実体関連モデル
trycycle
PRO
0
750
データベース12: 正規化(2/2) - データ従属性に基づく正規化
trycycle
PRO
0
720
白金鉱業Meetup Vol.16_数理最適化案件のはじめかた・すすめかた
brainpadpr
3
1.8k
Featured
See All Featured
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
46
9.6k
Faster Mobile Websites
deanohume
307
31k
Building a Modern Day E-commerce SEO Strategy
aleyda
42
7.4k
Optimizing for Happiness
mojombo
379
70k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
44
2.4k
Bash Introduction
62gerente
613
210k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
53
2.9k
Intergalactic Javascript Robots from Outer Space
tanoku
271
27k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.9k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.7k
Transcript
Scaling Science
[email protected]
Dr. Matt Wood
Hello
Science
Beautiful, unique.
Impossible to re-create
Snowflake Science
Reproducibility
Reproducibility scales science
Reproduce. Reuse. Remix.
Value++
None
How do we get from here to there? 5PRINCIPLES REPRODUCIBILITY
OF
1. Data has Gravity 5 PRINCIPLES REPRODUCIBILITY OF
Increasingly large data collections
1000 Genomes Project: 200Tb
Challenging to obtain and manage
Expensive to experiment
Large barrier to reproducibility
Data size will increase
Data integration will increase
Data dependencies will increase
Move data to the users
Move data to the users X
Move tools to the data
Place data where it can consumed by tools
Place tools where they can access data
None
None
None
Canonical source
None
More data, more users, more uses, more locations
Cost
Force multiplier
Cost
Complexity
Cost and complexity kill reproducibility
Utility computing
Availability
Pay-as-you-go
Flexibility
Performance
CPU + IO
Intel Xeon E5 NVIDIA Tesla GPUs
240 TFLOPS
90 - 120k IOPS on SSDs
Performance through productivity
Cost
On-demand access
Reserved capacity
100% Reserved capacity
100% Reserved capacity On-demand
100% Reserved capacity On-demand
Spot instances
Utility computing enhanced reproducibility
None
2. Ease of use is a pre-requisite 5 PRINCIPLES REPRODUCIBILITY
OF
http://headrush.typepad.com/creating_passionate_users/2005/10/getting_users_p.html
Help overcome the suck threshold
Easy to embrace and extend
Choose the right abstraction for the user
$ ec2-run-instances
$ starcluster start
None
Package and automate
Package and automate Amazon machine images, VM import
Package and automate Amazon machine images, VM import Deployment scripts,
CloudFormation, Chef, Puppet
Expert-as-a-service
None
None
1000 Genomes Cloud BioLinux
None
Your HiSeq data Illumina BaseSpace
Architectural freedom
Freedom of abstraction
3. Reuse is as important as reproduction 5 PRINCIPLES REPRODUCIBILITY
OF
Seven Deadly sins of Bioinformatics: http://www.slideshare.net/dullhunk/the-seven-deadly-sins-of-bioinformatics
Seven Deadly sins of Bioinformatics: http://www.slideshare.net/dullhunk/the-seven-deadly-sins-of-bioinformatics
Infonauts are hackers
They have their own way of working
The ‘Big Red Button’
Fire and forget reproduction is a good first step, but
limits longer term value.
Monolithic, one-stop-shop
Work well for intended purpose
Challenging to install, dependency heavy
Di cult to grok
Inflexible
Infonauts are hackers: embrace it.
Small things. Loosely coupled.
Easier to grok
Easier to reuse
Easier to integrate
Lower barrier to entry
Scale out
Build for reuse. Be remix friendly. Maximize value.
4. Build for collaboration 5 PRINCIPLES REPRODUCIBILITY OF
Workflows are memes
Reproduction is just the first step
Bill of materials: code, data, configuration, infrastructure
Full definition for reproduction
Utility computing provides a playground for bioinformatics
Code + AMI + custom datasets + public datasets +
databases + compute + result data
Code + AMI + custom datasets + public datasets +
databases + compute + result data
Code + AMI + custom datasets + public datasets +
databases + compute + result data
Code + AMI + custom datasets + public datasets +
databases + compute + result data
Package, automate, contribute.
Utility platform provides scale for production runs
Drug discovery on 50k cores: Less than $1000
5. Provenance is a first class object 5 PRINCIPLES REPRODUCIBILITY
OF
Versioning becomes really important
Especially in an active community
Doubly so with loosely coupled tools
Provenance metadata is a first class entity
Distributed provenance
1. Data has gravity 2. Ease of use is a
pre-requisite 3. Reuse is as important as reproduction 4. Build for collaboration 5. Provenance is a first class object 5PRINCIPLES REPRODUCIBILITY OF
None
Thank you aws.amazon.com @mza
[email protected]