Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Scaling Science
Search
Matt Wood
November 21, 2012
Science
3
550
Scaling Science
Introducing five principles for reproducibility.
Matt Wood
November 21, 2012
Tweet
Share
More Decks by Matt Wood
See All by Matt Wood
Field Notes from Expeditions in the Cloud
mza
2
460
A Platform for Big Data
mza
6
810
The Data Lifecycle
mza
5
550
Provision Throughput Like a Boss
mza
0
500
Impact of Cloud Computing: Life Sciences
mza
2
900
Latency's Worst Nightmare: Performance Tuning Tips and Tricks
mza
4
1.1k
Under the Covers of DynamoDB
mza
4
1.2k
From Analytics to Intelligence: Amazon Redshift
mza
9
1k
High Performance Web Applications
mza
6
670
Other Decks in Science
See All in Science
AIによる科学の加速: 各領域での革新と共創の未来
masayamoriofficial
0
400
検索と推論タスクに関する論文の紹介
ynakano
1
140
baseballrによるMLBデータの抽出と階層ベイズモデルによる打率の推定 / TokyoR118
dropout009
2
660
知能とはなにかーヒトとAIのあいだー
tagtag
PRO
0
170
データマイニング - グラフ構造の諸指標
trycycle
PRO
0
250
学術講演会中央大学学員会府中支部
tagtag
PRO
0
350
データベース08: 実体関連モデルとは?
trycycle
PRO
0
1k
HajimetenoLT vol.17
hashimoto_kei
1
170
良書紹介04_生命科学の実験デザイン
bunnchinn3
0
110
次代のデータサイエンティストへ~スキルチェックリスト、タスクリスト更新~
datascientistsociety
PRO
2
27k
会社でMLモデルを作るとは @電気通信大学 データアントレプレナーフェロープログラム
yuto16
1
520
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
190
Featured
See All Featured
Bridging the Design Gap: How Collaborative Modelling removes blockers to flow between stakeholders and teams @FastFlow conf
baasie
0
440
Test your architecture with Archunit
thirion
1
2.1k
B2B Lead Gen: Tactics, Traps & Triumph
marketingsoph
0
52
HDC tutorial
michielstock
1
360
How to train your dragon (web standard)
notwaldorf
97
6.5k
Exploring anti-patterns in Rails
aemeredith
2
250
Amusing Abliteration
ianozsvald
0
96
Raft: Consensus for Rubyists
vanstee
141
7.3k
The untapped power of vector embeddings
frankvandijk
1
1.6k
Navigating Algorithm Shifts & AI Overviews - #SMXNext
aleyda
0
1.1k
Exploring the relationship between traditional SERPs and Gen AI search
raygrieselhuber
PRO
2
3.6k
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
3
450
Transcript
Scaling Science
[email protected]
Dr. Matt Wood
Hello
Science
Beautiful, unique.
Impossible to re-create
Snowflake Science
Reproducibility
Reproducibility scales science
Reproduce. Reuse. Remix.
Value++
None
How do we get from here to there? 5PRINCIPLES REPRODUCIBILITY
OF
1. Data has Gravity 5 PRINCIPLES REPRODUCIBILITY OF
Increasingly large data collections
1000 Genomes Project: 200Tb
Challenging to obtain and manage
Expensive to experiment
Large barrier to reproducibility
Data size will increase
Data integration will increase
Data dependencies will increase
Move data to the users
Move data to the users X
Move tools to the data
Place data where it can consumed by tools
Place tools where they can access data
None
None
None
Canonical source
None
More data, more users, more uses, more locations
Cost
Force multiplier
Cost
Complexity
Cost and complexity kill reproducibility
Utility computing
Availability
Pay-as-you-go
Flexibility
Performance
CPU + IO
Intel Xeon E5 NVIDIA Tesla GPUs
240 TFLOPS
90 - 120k IOPS on SSDs
Performance through productivity
Cost
On-demand access
Reserved capacity
100% Reserved capacity
100% Reserved capacity On-demand
100% Reserved capacity On-demand
Spot instances
Utility computing enhanced reproducibility
None
2. Ease of use is a pre-requisite 5 PRINCIPLES REPRODUCIBILITY
OF
http://headrush.typepad.com/creating_passionate_users/2005/10/getting_users_p.html
Help overcome the suck threshold
Easy to embrace and extend
Choose the right abstraction for the user
$ ec2-run-instances
$ starcluster start
None
Package and automate
Package and automate Amazon machine images, VM import
Package and automate Amazon machine images, VM import Deployment scripts,
CloudFormation, Chef, Puppet
Expert-as-a-service
None
None
1000 Genomes Cloud BioLinux
None
Your HiSeq data Illumina BaseSpace
Architectural freedom
Freedom of abstraction
3. Reuse is as important as reproduction 5 PRINCIPLES REPRODUCIBILITY
OF
Seven Deadly sins of Bioinformatics: http://www.slideshare.net/dullhunk/the-seven-deadly-sins-of-bioinformatics
Seven Deadly sins of Bioinformatics: http://www.slideshare.net/dullhunk/the-seven-deadly-sins-of-bioinformatics
Infonauts are hackers
They have their own way of working
The ‘Big Red Button’
Fire and forget reproduction is a good first step, but
limits longer term value.
Monolithic, one-stop-shop
Work well for intended purpose
Challenging to install, dependency heavy
Di cult to grok
Inflexible
Infonauts are hackers: embrace it.
Small things. Loosely coupled.
Easier to grok
Easier to reuse
Easier to integrate
Lower barrier to entry
Scale out
Build for reuse. Be remix friendly. Maximize value.
4. Build for collaboration 5 PRINCIPLES REPRODUCIBILITY OF
Workflows are memes
Reproduction is just the first step
Bill of materials: code, data, configuration, infrastructure
Full definition for reproduction
Utility computing provides a playground for bioinformatics
Code + AMI + custom datasets + public datasets +
databases + compute + result data
Code + AMI + custom datasets + public datasets +
databases + compute + result data
Code + AMI + custom datasets + public datasets +
databases + compute + result data
Code + AMI + custom datasets + public datasets +
databases + compute + result data
Package, automate, contribute.
Utility platform provides scale for production runs
Drug discovery on 50k cores: Less than $1000
5. Provenance is a first class object 5 PRINCIPLES REPRODUCIBILITY
OF
Versioning becomes really important
Especially in an active community
Doubly so with loosely coupled tools
Provenance metadata is a first class entity
Distributed provenance
1. Data has gravity 2. Ease of use is a
pre-requisite 3. Reuse is as important as reproduction 4. Build for collaboration 5. Provenance is a first class object 5PRINCIPLES REPRODUCIBILITY OF
None
Thank you aws.amazon.com @mza
[email protected]