Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Scaling Science
Search
Matt Wood
November 21, 2012
Science
3
520
Scaling Science
Introducing five principles for reproducibility.
Matt Wood
November 21, 2012
Tweet
Share
More Decks by Matt Wood
See All by Matt Wood
Field Notes from Expeditions in the Cloud
mza
2
410
A Platform for Big Data
mza
6
760
The Data Lifecycle
mza
5
510
Provision Throughput Like a Boss
mza
0
450
Impact of Cloud Computing: Life Sciences
mza
2
860
Latency's Worst Nightmare: Performance Tuning Tips and Tricks
mza
4
1.1k
Under the Covers of DynamoDB
mza
4
1.1k
From Analytics to Intelligence: Amazon Redshift
mza
9
1k
High Performance Web Applications
mza
6
640
Other Decks in Science
See All in Science
データベース15: ビッグデータ時代のデータベース
trycycle
PRO
0
310
マウス肝炎ウイルス感染の遺伝子発現へのテンソル分解の適用によるSARS-CoV-2感染関連重要ヒト遺伝子と有効な薬剤の同定
tagtag
0
130
統計的因果探索: 背景知識とデータにより因果仮説を探索する
sshimizu2006
4
950
機械学習 - K-means & 階層的クラスタリング
trycycle
PRO
0
1k
眼科AIコンテスト2024_特別賞_6位Solution
pon0matsu
0
430
Ignite の1年間の軌跡
ktombow
0
140
03_草原和博_広島大学大学院人間社会科学研究科教授_デジタル_シティズンシップシティで_新たな_学び__をつくる.pdf
sip3ristex
0
540
07_浮世満理子_アイディア高等学院学院長_一般社団法人全国心理業連合会代表理事_紹介資料.pdf
sip3ristex
0
540
KH Coderチュートリアル(スライド版)
koichih
1
43k
地表面抽出の方法であるSMRFについて紹介
kentaitakura
1
790
mathematics of indirect reciprocity
yohm
1
160
データベース01: データベースを使わない世界
trycycle
PRO
1
740
Featured
See All Featured
Making the Leap to Tech Lead
cromwellryan
134
9.4k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Code Review Best Practice
trishagee
69
19k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
870
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
26k
Rebuilding a faster, lazier Slack
samanthasiow
83
9.1k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
8
730
Six Lessons from altMBA
skipperchong
28
3.9k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
A better future with KSS
kneath
238
17k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Transcript
Scaling Science
[email protected]
Dr. Matt Wood
Hello
Science
Beautiful, unique.
Impossible to re-create
Snowflake Science
Reproducibility
Reproducibility scales science
Reproduce. Reuse. Remix.
Value++
None
How do we get from here to there? 5PRINCIPLES REPRODUCIBILITY
OF
1. Data has Gravity 5 PRINCIPLES REPRODUCIBILITY OF
Increasingly large data collections
1000 Genomes Project: 200Tb
Challenging to obtain and manage
Expensive to experiment
Large barrier to reproducibility
Data size will increase
Data integration will increase
Data dependencies will increase
Move data to the users
Move data to the users X
Move tools to the data
Place data where it can consumed by tools
Place tools where they can access data
None
None
None
Canonical source
None
More data, more users, more uses, more locations
Cost
Force multiplier
Cost
Complexity
Cost and complexity kill reproducibility
Utility computing
Availability
Pay-as-you-go
Flexibility
Performance
CPU + IO
Intel Xeon E5 NVIDIA Tesla GPUs
240 TFLOPS
90 - 120k IOPS on SSDs
Performance through productivity
Cost
On-demand access
Reserved capacity
100% Reserved capacity
100% Reserved capacity On-demand
100% Reserved capacity On-demand
Spot instances
Utility computing enhanced reproducibility
None
2. Ease of use is a pre-requisite 5 PRINCIPLES REPRODUCIBILITY
OF
http://headrush.typepad.com/creating_passionate_users/2005/10/getting_users_p.html
Help overcome the suck threshold
Easy to embrace and extend
Choose the right abstraction for the user
$ ec2-run-instances
$ starcluster start
None
Package and automate
Package and automate Amazon machine images, VM import
Package and automate Amazon machine images, VM import Deployment scripts,
CloudFormation, Chef, Puppet
Expert-as-a-service
None
None
1000 Genomes Cloud BioLinux
None
Your HiSeq data Illumina BaseSpace
Architectural freedom
Freedom of abstraction
3. Reuse is as important as reproduction 5 PRINCIPLES REPRODUCIBILITY
OF
Seven Deadly sins of Bioinformatics: http://www.slideshare.net/dullhunk/the-seven-deadly-sins-of-bioinformatics
Seven Deadly sins of Bioinformatics: http://www.slideshare.net/dullhunk/the-seven-deadly-sins-of-bioinformatics
Infonauts are hackers
They have their own way of working
The ‘Big Red Button’
Fire and forget reproduction is a good first step, but
limits longer term value.
Monolithic, one-stop-shop
Work well for intended purpose
Challenging to install, dependency heavy
Di cult to grok
Inflexible
Infonauts are hackers: embrace it.
Small things. Loosely coupled.
Easier to grok
Easier to reuse
Easier to integrate
Lower barrier to entry
Scale out
Build for reuse. Be remix friendly. Maximize value.
4. Build for collaboration 5 PRINCIPLES REPRODUCIBILITY OF
Workflows are memes
Reproduction is just the first step
Bill of materials: code, data, configuration, infrastructure
Full definition for reproduction
Utility computing provides a playground for bioinformatics
Code + AMI + custom datasets + public datasets +
databases + compute + result data
Code + AMI + custom datasets + public datasets +
databases + compute + result data
Code + AMI + custom datasets + public datasets +
databases + compute + result data
Code + AMI + custom datasets + public datasets +
databases + compute + result data
Package, automate, contribute.
Utility platform provides scale for production runs
Drug discovery on 50k cores: Less than $1000
5. Provenance is a first class object 5 PRINCIPLES REPRODUCIBILITY
OF
Versioning becomes really important
Especially in an active community
Doubly so with loosely coupled tools
Provenance metadata is a first class entity
Distributed provenance
1. Data has gravity 2. Ease of use is a
pre-requisite 3. Reuse is as important as reproduction 4. Build for collaboration 5. Provenance is a first class object 5PRINCIPLES REPRODUCIBILITY OF
None
Thank you aws.amazon.com @mza
[email protected]