Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Scaling Science
Search
Matt Wood
November 21, 2012
Science
3
480
Scaling Science
Introducing five principles for reproducibility.
Matt Wood
November 21, 2012
Tweet
Share
More Decks by Matt Wood
See All by Matt Wood
Field Notes from Expeditions in the Cloud
mza
2
380
A Platform for Big Data
mza
6
730
The Data Lifecycle
mza
5
490
Provision Throughput Like a Boss
mza
0
430
Impact of Cloud Computing: Life Sciences
mza
2
840
Latency's Worst Nightmare: Performance Tuning Tips and Tricks
mza
4
1.1k
Under the Covers of DynamoDB
mza
4
1k
From Analytics to Intelligence: Amazon Redshift
mza
9
980
High Performance Web Applications
mza
6
610
Other Decks in Science
See All in Science
局所保存性・相似変換対称性を満たす機械学習モデルによる数値流体力学
yellowshippo
1
210
[第62回 CV勉強会@関東] Long-CLIP: Unlocking the Long-Text Capability of CLIP / kantoCV 62th ECCV 2024
lychee1223
1
900
地表面抽出の方法であるSMRFについて紹介
kentaitakura
1
610
The thin line between reconstruction, classification, and hallucination in brain decoding
ykamit
1
1.4k
多次元展開法を用いた 多値バイクラスタリング モデルの提案
kosugitti
0
290
Transformers are Universal in Context Learners
gpeyre
0
790
CV_3_Keypoints
hachama
0
160
Factorized Diffusion: Perceptual Illusions by Noise Decomposition
tomoaki0705
0
370
化学におけるAI・シミュレーション活用のトレンドと 汎用原子レベルシミュレーター: Matlantisを使った素材開発
matlantis
0
560
06_浅井雄一郎_株式会社浅井農園代表取締役社長_紹介資料.pdf
sip3ristex
0
320
01_篠原弘道_SIPガバニングボード座長_ポスコロSIPへの期待.pdf
sip3ristex
0
330
サイゼミ用因果推論
lw
1
6.8k
Featured
See All Featured
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
32
2.2k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
KATA
mclloyd
29
14k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
31
1.1k
Site-Speed That Sticks
csswizardry
5
500
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
41
2.3k
Rails Girls Zürich Keynote
gr2m
94
13k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
178
53k
RailsConf 2023
tenderlove
30
1.1k
Art, The Web, and Tiny UX
lynnandtonic
298
20k
Transcript
Scaling Science
[email protected]
Dr. Matt Wood
Hello
Science
Beautiful, unique.
Impossible to re-create
Snowflake Science
Reproducibility
Reproducibility scales science
Reproduce. Reuse. Remix.
Value++
None
How do we get from here to there? 5PRINCIPLES REPRODUCIBILITY
OF
1. Data has Gravity 5 PRINCIPLES REPRODUCIBILITY OF
Increasingly large data collections
1000 Genomes Project: 200Tb
Challenging to obtain and manage
Expensive to experiment
Large barrier to reproducibility
Data size will increase
Data integration will increase
Data dependencies will increase
Move data to the users
Move data to the users X
Move tools to the data
Place data where it can consumed by tools
Place tools where they can access data
None
None
None
Canonical source
None
More data, more users, more uses, more locations
Cost
Force multiplier
Cost
Complexity
Cost and complexity kill reproducibility
Utility computing
Availability
Pay-as-you-go
Flexibility
Performance
CPU + IO
Intel Xeon E5 NVIDIA Tesla GPUs
240 TFLOPS
90 - 120k IOPS on SSDs
Performance through productivity
Cost
On-demand access
Reserved capacity
100% Reserved capacity
100% Reserved capacity On-demand
100% Reserved capacity On-demand
Spot instances
Utility computing enhanced reproducibility
None
2. Ease of use is a pre-requisite 5 PRINCIPLES REPRODUCIBILITY
OF
http://headrush.typepad.com/creating_passionate_users/2005/10/getting_users_p.html
Help overcome the suck threshold
Easy to embrace and extend
Choose the right abstraction for the user
$ ec2-run-instances
$ starcluster start
None
Package and automate
Package and automate Amazon machine images, VM import
Package and automate Amazon machine images, VM import Deployment scripts,
CloudFormation, Chef, Puppet
Expert-as-a-service
None
None
1000 Genomes Cloud BioLinux
None
Your HiSeq data Illumina BaseSpace
Architectural freedom
Freedom of abstraction
3. Reuse is as important as reproduction 5 PRINCIPLES REPRODUCIBILITY
OF
Seven Deadly sins of Bioinformatics: http://www.slideshare.net/dullhunk/the-seven-deadly-sins-of-bioinformatics
Seven Deadly sins of Bioinformatics: http://www.slideshare.net/dullhunk/the-seven-deadly-sins-of-bioinformatics
Infonauts are hackers
They have their own way of working
The ‘Big Red Button’
Fire and forget reproduction is a good first step, but
limits longer term value.
Monolithic, one-stop-shop
Work well for intended purpose
Challenging to install, dependency heavy
Di cult to grok
Inflexible
Infonauts are hackers: embrace it.
Small things. Loosely coupled.
Easier to grok
Easier to reuse
Easier to integrate
Lower barrier to entry
Scale out
Build for reuse. Be remix friendly. Maximize value.
4. Build for collaboration 5 PRINCIPLES REPRODUCIBILITY OF
Workflows are memes
Reproduction is just the first step
Bill of materials: code, data, configuration, infrastructure
Full definition for reproduction
Utility computing provides a playground for bioinformatics
Code + AMI + custom datasets + public datasets +
databases + compute + result data
Code + AMI + custom datasets + public datasets +
databases + compute + result data
Code + AMI + custom datasets + public datasets +
databases + compute + result data
Code + AMI + custom datasets + public datasets +
databases + compute + result data
Package, automate, contribute.
Utility platform provides scale for production runs
Drug discovery on 50k cores: Less than $1000
5. Provenance is a first class object 5 PRINCIPLES REPRODUCIBILITY
OF
Versioning becomes really important
Especially in an active community
Doubly so with loosely coupled tools
Provenance metadata is a first class entity
Distributed provenance
1. Data has gravity 2. Ease of use is a
pre-requisite 3. Reuse is as important as reproduction 4. Build for collaboration 5. Provenance is a first class object 5PRINCIPLES REPRODUCIBILITY OF
None
Thank you aws.amazon.com @mza
[email protected]