Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Write an embedded time-series database in Go
Search
nakabonne
November 13, 2021
Programming
1
610
Write an embedded time-series database in Go
nakabonne
November 13, 2021
Tweet
Share
More Decks by nakabonne
See All by nakabonne
Want to quickly put dbg! into external crates?
nakabonne
0
31
モジュールの深さについて / depth of module
nakabonne
0
140
Web API × Clean Architecture / CleanArchitecture Go
nakabonne
3
18k
Other Decks in Programming
See All in Programming
Nurturing OpenJDK distribution: Eclipse Temurin Success History and plan
ivargrimstad
0
880
3 Effective Rules for Using Signals in Angular
manfredsteyer
PRO
0
100
Better Code Design in PHP
afilina
PRO
0
120
TypeScript Graph でコードレビューの心理的障壁を乗り越える
ysk8hori
2
1.1k
Duckdb-Wasmでローカルダッシュボードを作ってみた
nkforwork
0
120
型付き API リクエストを実現するいくつかの手法とその選択 / Typed API Request
euxn23
8
2.2k
ペアーズにおけるAmazon Bedrockを⽤いた障害対応⽀援 ⽣成AIツールの導⼊事例 @ 20241115配信AWSウェビナー登壇
fukubaka0825
6
1.9k
.NET のための通信フレームワーク MagicOnion 入門 / Introduction to MagicOnion
mayuki
1
1.4k
Laravel や Symfony で手っ取り早く OpenAPI のドキュメントを作成する
azuki
2
110
GitHub Actionsのキャッシュと手を挙げることの大切さとそれに必要なこと
satoshi256kbyte
5
430
とにかくAWS GameDay!AWSは世界の共通言語! / Anyway, AWS GameDay! AWS is the world's lingua franca!
seike460
PRO
1
860
Jakarta EE meets AI
ivargrimstad
0
530
Featured
See All Featured
We Have a Design System, Now What?
morganepeng
50
7.2k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
42
9.2k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
246
1.3M
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
16
2.1k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
356
29k
The Pragmatic Product Professional
lauravandoore
31
6.3k
The Power of CSS Pseudo Elements
geoffreycrofte
73
5.3k
Designing the Hi-DPI Web
ddemaree
280
34k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5k
Why You Should Never Use an ORM
jnunemaker
PRO
54
9.1k
Side Projects
sachag
452
42k
Automating Front-end Workflow
addyosmani
1366
200k
Transcript
Write an embedded time-series database in Go @GoCon 2021 Autumn
Ryo Nakao (@nakabonne)
自己紹介 • 中尾 涼 (@nakabonne) • 株式会社サイバーエージェント • PipeCD フルタイム開発
Agenda • 時系列データの特徴 • tstorageの設計 • Goでの実装について
Write an embedded time-series database in Go Ryo Nakao (@nakabonne)
Write an embedded time-series database in Go Ryo Nakao (@nakabonne)
Embedded database • ライブラリとして提供されている埋め込み可能なデータベース • 有名なものでLevelDBやRocksDBなどがある
モチベーション 00
負荷テストツールのメモリパフォーマンス低下
負荷テストツールのメモリパフォーマンス低下 • 計測結果をSliceにappendしていくだけだった • ディスクも活用したストレージエンジンが欲しい • Go言語からEmbedded databaseとして利用できるものが無い • →
作るしかない
tstorage
時系列データの特徴 01
時系列データ • タイムスタンプ順に並んだ値(データ ポイントと呼ぶ)の集まり • 時間の経過とともにデータがどう変化 するかを見るために使われる • e.g. システムメトリクス、株価データ
時系列データの特徴(一部) • データ量が膨大 • 直近のデータを読み出す • 期間指定して一括で読み出す
データ量が膨大 • 一定間隔おきに、永続的にデータが取り込まれる • データ量は線形的に増えていく
直近のデータを読み出す 直近のデータの推移を観察するために使われることが多い
期間を指定して一括で読み出す 時間の経過と共にどう変化したかを観察するために使われる
速く書いて 速く読みたい こういった特徴がある中で なるべく多くのケースで
できるだけDRAMを使おう
データモデル 02
• タイムスタンプでパーティ ショニング • 完全に独立した小さなDBを 追加していく • 最近のデータはヒープ上 • ほとんどのケースで読み出
しが高速
• (再掲)読み出す時は範囲 指定して一括で読み出す • タイムスタンプが近いデー タが集まっているので、空 間的局所性を高める
Memory Partitionと Disk Partition に分ける とりあえず
実装 ~ Memory Partition 03
Memory Partition • インメモリDB • データロスを防ぐために Write Ahead Logに書き 込む
Logical structure ~ Memory Partition
Logical structure ~ Memory Partition とにかくここへの書き込み &読み込みが 速度パフォーマンスに直結する
How to represent data points • Sliceは基底配列に基づいている • 要素数がcapacityを超えると自動的に基底配列のメモリコピーが 発生
• 際限なくデータが取り込まれるケースでは理論的には要素の追加 をO(1)で行えるLinked-listベースのデータ構造が良さそう
Benchmarks ~ Slice vs Linked-list
Benchmarks ~ Slice vs Linked-list 何度実行しても時間計算量の面ではSliceのほうが僅かに勝利
Benchmarks ~ Slice vs Linked-list 基底配列はRAM上の隣り合った場所に並んでいるため、 キャッシュの空間的局所性が効く
https://groups.google.com/g/golang-nuts/c/mPKCoYNwsoU/m/OSVy4gbCWwMJ
速く書くのはいいけど... • メモリパーティションは揮発性ストレージ上で動作 • 突然のクラッシュに対応したい
Write Ahead Log (WAL) • 書き込みに先行して操作ログをディスクへ書き込む • リカバリ可能な形式で、なるべく小さくエンコード
WAL format op: オペレーションタイプ (Insert, Delete, etc) len metric: 後続するメトリック名文字列の長さ
metric: メトリック名 timestamp: 最大64ビットの整数値型UNIXタイムスタンプ value: 最大64ビットの浮動小数点型の値
WAL format op: オペレーションタイプ (Insert, Delete, etc) len metric: 後続するメトリック名文字列の長さ
metric: メトリック名 timestamp: 最大64ビットの整数値型UNIXタイムスタンプ value: 最大64ビットの浮動小数点型の値
Varints (Variable integers) • Protocol Bufferが内部で使用している可変長エンコーディン グ手法 • 数値の大きさに応じて消費サイズが変わる •
Goでは binary.PutVarint が担当
例) 10を64ビット整数値型として固定長エンコードした場合 → 必ず8バイト(64ビット)消費してしまう
例) Varintsで可変長エンコードした場合 → 1バイト(8ビット)で収まる
適切な位置で読み出しを終了 どのように終了位置を特定しているのか?
Varints の仕組み 先頭ビットが0であればそのバイトで読み出しを停止する
Varints (Variable integers) 数値型の値に関してはこのように Varints を用いて書き込んでいく
実装 ~ Disk Partition 04
Disk Partition • オンディスクDB • 1つのファイルに書き込ま れる
File format • 時系列データは不変で、範囲指定 して一括で読み込むケースがほと んど • Metric 毎にデータポイントをまと めて圧縮することで局所性↑
• mmapによって透過的にキャッ シュ
Memory-mapped data • マップされたファイルは []byte としてアクセス可能 • なんらかのインデックス構造がないと非効率
Metadata file • パーティション毎にjson形式の メタデータファイル • メトリック毎のファイル内バイ トオフセットやサイズが保存さ れている •
ヒープに乗るのはこのメタデー タのみ
やりたいこと • 書き込み時のオフセットの 保存 • 読み出し時のオフセットの 指定 • これらを同じインタフェー スで行いたい
• Goではここでio.Seekerが活 躍
io.Seeker • 次に読み書きする位置を指定する • 現在のオフセットを返してくれるの で、取得も指定もこれ一つで可能 • ランダムアクセスを許容するバイト 列であれば基本何でもOK
When flushing • ディスクへ書き込む際に各メトリッ クのオフセットを保存する必要 • io.Seekerを満たす *os.File を利用 •
メトリックの書き込みを開始するタ イミングでSeek(0, io.SeekCurrent) を呼ぶ
When reading • []byte の指定したオフセットから読 み出したい • io.ReadSeekerを満たす *bytes.Reader を利用
高速に読み出せるようになっ たけど...
(再掲)データ量が膨大 • Varintsでもかなり圧縮されるが、最低でも1バイト必要 • 時系列データの特徴に注目して1バイト未満に圧縮できないか
Encoding • タイムスタンプは単調増加する傾向にある • 差分の差分だけ書き込めば良いのでは? • → Delta-of-delta encoding
Delta-of-delta encoding 1600000000 1600000015 1600000030
Delta-of-delta encoding 1600000000 1600000015 1600000030 ±15 ±15
Delta-of-delta encoding 1600000000 1600000015 1600000030 ±15 ±15 ±0
Delta-of-delta encoding 1600000000 1600000015 1600000030 ±15 ±15 ±0 3番目以降はこの0 (1bit)
だけを書き込んでいく
When reading 1600000000 1600000015 1600000030 ±15 ±15 ±0 シーケンシャルに読み出してこのdelta-of-deltaを加算していく
Bit単位でストリームに読み書きする • Goの標準ioパッケージの読み書き最小単位はbyte • bit単位で読み書きするためにはビット演算する必要
Bit単位でストリームに読み書きする 0001000 1 00010001 io.Writer.Write() byte完成!
Bit単位でストリームに読み書きする • bitはboolで表現
Bit単位でストリームに読み書きする
Bit単位でストリームに読み書きする • 0で敷き詰められた8bitsを 用意
Bit単位でストリームに読み書きする • 1を書き込む場合は末尾の0 と1のビット和を取る • そして必要な分だけ左シフ トする
負荷テストツールのパフォーマンスが改善
• (ja) ゼロから作る時系列データベースエンジン : https://zenn.dev/nakabonne/articles/d300838a1500c7 • (en) Write a time-series
database engine from scratch: https://nakabonne.dev/posts/write-tsdb-from-scratch • Repo: https://github.com/nakabonne/tstorage More...
Thanks Any questions? @nakabonne