Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
KAIZEN platform Inc. の開発マネジメント
Search
Naoya Ito
July 07, 2014
Technology
173
85k
KAIZEN platform Inc. の開発マネジメント
Naoya Ito
July 07, 2014
Tweet
Share
More Decks by Naoya Ito
See All by Naoya Ito
Haskell を武器にして挑む競技プログラミング ─ 操作的思考から意味モデル思考へ
naoya
7
1.8k
Haskell でアルゴリズムを抽象化する / 関数型言語で競技プログラミング
naoya
21
7.2k
Functional TypeScript
naoya
18
6.6k
TypeScript 関数型スタイルでバックエンド開発のリアル
naoya
75
37k
シェルの履歴とイクンリメンタル検索を使う
naoya
16
6.5k
20230227-engineer-type-talk.pdf
naoya
91
82k
関数型プログラミングと型システムのメンタルモデル
naoya
63
110k
TypeScript による GraphQL バックエンド開発
naoya
29
36k
フロントエンドのパラダイムを参考にバックエンド開発を再考する / TypeScript による GraphQL バックエンド開発
naoya
67
24k
Other Decks in Technology
See All in Technology
コールドスタンバイ構成でCDは可能か
hiramax
0
120
Connection-based OAuthから学ぶOAuth for AI Agents
flatt_security
0
430
ECS_EKS以外の選択肢_ROSA入門_.pdf
masakiokuda
1
110
MySQLとPostgreSQLのコレーション / Collation of MySQL and PostgreSQL
tmtms
1
1.4k
Everything As Code
yosuke_ai
0
120
Redshift認可、アップデートでどう変わった?
handy
1
110
Bedrock AgentCore Memoryの新機能 (Episode) を試してみた / try Bedrock AgentCore Memory Episodic functionarity
hoshi7_n
2
2.1k
戰略轉變:從建構 AI 代理人到發展可擴展的技能生態系統
appleboy
0
140
日本の AI 開発と世界の潮流 / GenAI Development in Japan
hariby
2
650
20251219 OpenIDファウンデーション・ジャパン紹介 / OpenID Foundation Japan Intro
oidfj
0
550
AI時代のワークフロー設計〜Durable Functions / Step Functions / Strands Agents を添えて〜
yakumo
4
2.4k
さくらのクラウド開発ふりかえり2025
kazeburo
2
1.2k
Featured
See All Featured
Exploring anti-patterns in Rails
aemeredith
2
210
jQuery: Nuts, Bolts and Bling
dougneiner
65
8.3k
Optimizing for Happiness
mojombo
379
70k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.7k
Heart Work Chapter 1 - Part 1
lfama
PRO
3
35k
16th Malabo Montpellier Forum Presentation
akademiya2063
PRO
0
32
How to Ace a Technical Interview
jacobian
281
24k
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
65
35k
The Power of CSS Pseudo Elements
geoffreycrofte
80
6.1k
Docker and Python
trallard
47
3.7k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
32
2.8k
Unlocking the hidden potential of vector embeddings in international SEO
frankvandijk
0
130
Transcript
,"*;&/QMBUGPSN*OD ͷ։ൃϚωδϝϯτ /BPZB*UP ,"*;&/QMBUGPSN*OD 4UBSUVQ8FFLFOE5PLZPY%FW-07&Πϕϯτ
QMBO#$% "#ςετͷ4BB43BJMT+BWB4DSJQU
ݱࡏͷ৫ن • ࣾһ໊ऑ • ͏ͪɺ1. ։ൃ໊ఔ ࡢळʹɺࣾһ໊͕ɻ ΘΓͱٸ
ݱͰىͬͨ͜͜ͱ • ਓ͕૿͑ͯΔͷʹ։ൃ্͕͕Βͳ͍ – ͍͢͝ΤϯδχΞ͔Γͳͷʹŋŋŋ • ͳΜ͔͍Ζ͍Ζࠞཚͯ͠Δ – ʮ͋ΕͲ͜ ʯʮͦ͜ʯʮͦͬͯ͜ ʯʮͦ͜ ͩΑʂʯ
ελʔτΞοϓ͋Δ͋Δ
ελʔτΞοϓ͋Δ͋ΔͰΓ্ ͕͍ͬͯ·͕͢͜͜Ͱݱࡏͷ։ൃ ͷݱͷ༷ࢠΛݟͯΈ·͠ΐ͏
None
None
None
None
None
None
ΊͪΌͪ͘Όྑ͍ײ͡͡Ό Ͷʔ͔
ΞδϟΠϧ։ൃͷࠨཌྷɾӈཌྷ • ϨϑτΟϯά – εΫϥϜɺேձɺࣗݾ৫ԽFUD • ϥΠτΟϯά – ܧଓతΠϯςάϨʔγϣϯɺܧଓతσϦό ϦʔɺςετࣗಈԽFUD cf.
h&p://blogs.itmedia.co.jp/hiranabe/2012/09/rightwing-‐and-‐le>wing-‐of-‐agile.html
ϥΠτΟϯά ٕज़ϓϥΫςΟε
(JU)VCͰϓϧϦΫ։ൃ ͯ͢ͷมߋ1VMM 3FRVFTUͰ
ܧଓతΠϯςάϨʔγϣϯ
ܧଓతσϦόϦʔ master deployment/ edge deployment/ qa มߋNBTUFS QVMMSFRVFTU NFSHFͨ͠ ΒࣗಈͰ
FEHFɻ (開発環境) ຊ൪ϦϦʔε NBTUFS͔ΒRB QVMMSFRVFTU RBNFSHF͞ ΕΔͱ2"ڥࣗ ಈσϓϩΠ FEHFQVTI ͞ΕΔͱ։ൃػ ࣗಈσϓϩΠ deployment/ production 2"ऴΘͬͨ ΒQSPEVDUJPO ಉ༷ʹ
1VMM3FRVFTUσϓϩΠ • σϓϩΠλεΫ1VMM3FRVFTUͰ࣮ߦ – σϓϩΠͷݟ͑ΔԽ – NFSHFϘλϯΛԡ͢ͱ$JSDMF$*ܦ༝ͰσϓϩΠ͕Δ
σϓϩΠνϟοτͰ
ίʔυϨϏϡϫʔͷࣗಈΞαΠϯ
&&ςετࣗಈԽ
Πϯϑϥɺ$IFGͰίʔυԽ
4FSWFSTQFD %PDLFSͰ Πϯϑϥ$*
ϨϑτΟϯά νʔϜڥ
ϦϞʔτϫʔΫX4RXJHHMF
ேձ IVCPU͕ேձͷ࣌ؒʹ ͳΔͱڭ͑ͯ͘ΕΔ Ͱɺ[PPNVTͰϏσΧ ϯ ˞εΫγϣͳ͔ͬͨ
None
ϓϩδΣΫτݟऔΓਤ ேձͰू·ͬͨใ͔Βɺࠓ ୭͕ͳʹΛͬͯͯɺ͍ͭऴΘ Δ͔ΛඵͰΘ͔ΔΑ͏ʹ
,15
None
,"*;&/ͷΞδϟΠϧͷ࣮ࡍ • ܕͲ͓ΓͷεΫϥϜ͏ͬͯͳ͍ – εϓϦϯτܭըɺόʔϯμϯνϟʔτɺݟ ੵΓϙʔΧʔͳΜ͔ͳ͍ • िͷ಄ʹશମײͷڞ༗ΛOBPZB͔Β͢Δɺఔ – λΠϜϘοΫεɺৼΓฦΓɺ͘Β͍ΛΏΔ͘
λεΫཧ͔ΒϓϩδΣΫτ੍ • Δ͖͜ͱΛɺΑΓେ͖ͳཻͰଊ͑Δ – λεΫˠϓϩδΣΫτ – ʮ˓˓Λ˚˚ʹॻ͖͑Δʯˠʮ%8)ߏஙϓϩδΣΫτʯ • ϓϩδΣΫτͷதͤΔ –
1.ɺΤϯδχΞʙ͘Β͍ͷ1+ – 1+ΛͲ͏ਐΊΔ͔͓·͔ͤɻϊʔλον ΓํࣗతʹܾΊΔɻղ͘ ͖ ϓϩδΣΫτͷݯ صʹࡌͤΔ
୭͕ϑΝγϦςʔτ • ϨϑτΟϯά νʔϜڥ Ϛωʔδϟʔ͕ $50OBPZB • ϥΠτΟϯά
ٕज़ڥ ͦΕઐͷνʔϜ ͕ – %FWFMPQFS1SPEVDUJWJUZ ࣗಈԽπʔϧͷಋೖΛ ϛογϣϯʹͨ͠ϩʔϧ͕ ͋Δ ืूཁ߲ʹࡌͬͯΔ Α
͜͜ʹࢸΔ·Ͱ
ٸͰɺͭ·ͮ͘ • ࢝͘Β͍ʹେ͖ͳো – ։ൃ͏·͘ճͬͯͳ͍ɺͷతͳग़དྷࣄ • ݄͘Β͍ʹʮ։ൃ͜ͷ··͡Ό·͍ͣΑͶʯ ͱ߹॓ – ʮ͠Β͘ϦϦʔεఀΊͯɺࠜͬ͜Λղܾ͠Α͏ʯͱ
ͨ͠ – ཌ݄͔ΒOBPZB͕Ϛωʔδϟʔʹ ސͳͷʹX
·ͣͬͨ͜ͱ • εΫϥϜಋೖͨ͠ ϦϑΝΫλϦϯάͨ͠ ς ετॻ͍ͨ – ͍͍͑ •
पғΛݟ͑ΔΑ͏ʹͨ͠ – λεΫ୯Ґ͔ΒϓϩδΣΫτ୯Ґ – ʑͷใڞ༗ – ͳͥ શମײΛϝϯόʔશһ͕ѲͰ͖ΔΑ͏ʹ
None
ͰɺϓϩδΣΫτݟऔΓਤ
ࣄΛɺݟ͑ΔΑ͏ʹ͢Δ • ϕλ͚ͩͲɺ݁ہ͜Ε – ͦΕΛɺେ͖ΊͷཻͰ – ཻΛ্͛ͯɺগͳ͍తෛՙͰશମΛѲ Ͱ͖ΔΑ͏ʹ • ਓ͕ؒࣗతʹಈ͚ΔΑ͏ʹͳΔʹɺ ಈ͚Δൣғ͕ѲͰ͖ͳ͚ΕͳΒͳ͍
ʮ͋ͷਓ͔͠Βͳ͍ʯΛͳ͘͢ • ࣄͷͷ͍͍ࠜͬͩͨ͜͜Ε – ʮͦΜͳ͜ͱಥવݴΘΕͯʯʮ͑ͬɺฉ͍ ͯͳ͍Αʯʮഎܠ͕Θ͔Βͳ͍ʯ • ʮใڞ༗͢Δͷʯͱ͍͏จԽͷΠ ϯετʔϧ – ΄Μͱ͏ʹͭ͘͜͠ݴ͍ଓ͚ͨ
None
ࠜؾΑ͘ଓ͚Δ • ࠷ॳ୭ॻ͔ͳ͔ͬͨ – ࣗͷใ͚͕ͩฒΜͰͨ • ਓɺਓɺਅࣅ͢Δਓ͕ग़͖ͯͨ – গͣͭ͠ɺपΓ͕ݟ͑ΔΑ͏ʹͳ͍ͬͯͬͨ
ؾ͍ͮͨΒΊͬͪΌڞ༗͞ ΕΔΑ͏ʹͳͬͯͨ
None
None
ࣾͷΈ·Ͱŋŋŋ͆
पΓ͕ݟ͑ͯ͘Δͱ • ঃʑʹɺվળ׆ಈ͕ࣗൃతʹൃੜ͠͡ΊΔ – ղ͖͘՝͕Θ͔ΕɺϘʔϧΛर͏ਓ͕ݱΕΔ – ͱ͖Ͳ͖ɺϘτϧωοΫΛऔΓআ͍ͯ͋͛Δ • ͦͷਓ͚ͩ͡ΌܾΊʹ͍͘͜ͱɺͱ͔
• ͋ͱɺ΄ͬͱ͍ͯճΓ࢝ΊΔ – Ϛωδϝϯτɺৗʹશମײ͕ѲͰ͖ΔΑ͏ʹɺΤ ωϧΪʔΛ͗ଓ͚Δ
Ϛωδϝϯτͱ • ʮཧʯͰͳ͘ʮࢧԉʯ – ʮίϯτϩʔϧ͢ΔʯͷͰͳ͘ʮྗΛൃش Ͱ͖ΔΑ͏ʹʯࢧԉ͢Δ
ͷนΛΓӽ͑Δʹ • ʮϚωδϝϯτΛ࢝ΊΔʯͱܾΊΔ – ͳΜͱͳ͘͏·͍͘͘ɺͳΜͯ͜ͱى͜Β ͳ͍ • ਓͷνʔϜͰ͏·͘ճͬͯͨ͜ͱ͕ɺճΒͳ͘ ͳͬͯΔͱ͍͏ࣄ࣮Λ·ͣड͚༰ΕΔ – νʔϜ׆ಈΛ͏·͘ճͨ͢Ίʹ࣮ߦ͖͢͜ ͱɺΛܧଓతʹߟ͑ଓ͚Δ
None
͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠