Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AIを選択する自由
Search
NAVITIME JAPAN
PRO
April 04, 2019
Technology
0
31
AIを選択する自由
2019/4/4に開催されたRepro様主催『Repro Tech #7 Practical AI Supported by NAVITIME』にて発表した資料です。
NAVITIME JAPAN
PRO
April 04, 2019
Tweet
Share
More Decks by NAVITIME JAPAN
See All by NAVITIME JAPAN
つよつよリーダーが 抜けたらどうする? 〜ナビタイムのAgile⽀援組織の変遷〜
navitimejapan
PRO
23
15k
実践ジオフェンス 効率的に開発するために
navitimejapan
PRO
3
800
安全で使いやすいCarPlayアプリの 魅せ方:HIGと実例から学ぶ
navitimejapan
PRO
1
240
見えないユーザの声はログに埋もれている! ~ログから具体的なユーザの体験を数値化した事例紹介~
navitimejapan
PRO
6
3.1k
ユーザーのためなら 『デザイン』 以外にも手を伸ばせる
navitimejapan
PRO
2
1.6k
フツーのIT女子が、 Engineering Managerになるまで
navitimejapan
PRO
3
370
不確実性に打ち勝つOKR戦略/How to manage uncertainty with OKR strategy
navitimejapan
PRO
4
3.6k
アジャイルを小さいままで 組織に広める 二周目 / Agile Transformation in NAVITIME JAPAN iteration 2
navitimejapan
PRO
4
1.3k
変更障害率0%よりも「継続的な学習と実験」を価値とする 〜障害を「起こってはならないもの」としていた組織がDirtの実施に至るまで〜 / DevOps Transformation in NAVITIME JAPAN
navitimejapan
PRO
7
5.7k
Other Decks in Technology
See All in Technology
GPUをつかってベクトル検索を扱う手法のお話し~NVIDIA cuVSとCAGRA~
fshuhe
0
180
re:Invent 2025の見どころと便利アイテムをご紹介 / Highlights and Useful Items for re:Invent 2025
yuj1osm
0
320
【SORACOM UG Explorer 2025】さらなる10年へ ~ SORACOM MVC 発表
soracom
PRO
0
170
OTEPsで知るOpenTelemetryの未来 / Observability Conference Tokyo 2025
arthur1
0
320
頭部ふわふわ浄酔器
uyupun
0
240
入院医療費算定業務をAIで支援する:包括医療費支払い制度とDPCコーディング (公開版)
hagino3000
0
120
パフォーマンスチューニングのために普段からできること/Performance Tuning: Daily Practices
fujiwara3
2
140
serverless team topology
_kensh
3
240
20251029_Cursor Meetup Tokyo #02_MK_「あなたのAI、私のシェル」 - プロンプトインジェクションによるエージェントのハイジャック
mk0721
PRO
5
1.9k
クラウドとリアルの融合により、製造業はどう変わるのか?〜クラスメソッドの製造業への取組と共に〜
hamadakoji
0
450
IBC 2025 動画技術関連レポート / IBC 2025 Report
cyberagentdevelopers
PRO
2
220
AWS re:Invent 2025事前勉強会資料 / AWS re:Invent 2025 pre study meetup
kinunori
0
770
Featured
See All Featured
Reflections from 52 weeks, 52 projects
jeffersonlam
355
21k
Raft: Consensus for Rubyists
vanstee
140
7.2k
KATA
mclloyd
PRO
32
15k
Six Lessons from altMBA
skipperchong
29
4k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
Making the Leap to Tech Lead
cromwellryan
135
9.6k
Making Projects Easy
brettharned
120
6.4k
Building Better People: How to give real-time feedback that sticks.
wjessup
370
20k
Automating Front-end Workflow
addyosmani
1371
200k
Java REST API Framework Comparison - PWX 2021
mraible
34
8.9k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.2k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.7k
Transcript
AIを選択する自由 2019 年 4 月 4 日
自己紹介 大川舞子 (おおかわ まいこ) • iOS開発 → インフラ運用 → 社内ツー
ル開発 • 最近は機械学習モデルの開発運 用、ワークフローの整備
所属プロジェクトの社内立ち位置 • R&D部門。「新しいことやってる人達」 • 社内で宙ぶらりんの案件も引き取る。 • 最近、社内でAI屋さんと認識され辛い。AIはなる べく作りたくない。(お世話が大変=手離れしないの で。。) •
AI以外の手段や、外部サービスの利用も検討
本題
Q. どうしてAIを使うのか?
A. AIの方が楽だから
と言える時だけ AIを選択しよう
AIのつらみ • 結果を保証できない • リリース後も改善で人が張り付く必要がある(こと が多い)
👂🐙
弊社のレコメンデーションの歴史 機械学習黎明期に0から機械 学習モデルを実装。 • → 改善しても精度が良くな らない。メンテ辛い • → 費用対効果が伴わない
ため一度機能をクローズ
あるある
じゃあなぜ今 AIでレコメンデーションを 作っているのか?
AIによるレコメンデーション • 外部サービスが提供されつつある • 学習データがシンプルで既存資産が利用できる
機は熟した
自分で機械学習モデルを作る 外部サービスを利用する 検討した方法
自分で機械学習モデルを作る
外部サービスを利用する Amazon Personalize (beta)
自分で機械学習モデルを作る 外部サービスを利用する 検討した方法
自分で機械学習モデルを作る OSSを利用する 外部サービスを利用する 検討した方法
OSSを利用する Microsoft / Product Recommendations Solution https://github.com/Microsoft/Product-Re commendations
Product Recommendations Solution • Microsoft の AI レコメンド サービス がOSS化
• eコマースレコメンドに最適 化したモデル/パラメータが 利用可 • REST API / テストツール/ Swaggerも同時提供
学習データについて • 協調フィルタリングは学習データがシンプル • 既存資産(アクセスログ)から生成可能なケースが 多い • → データを作るためにサービスに手を入れる必要 がない
NAVITIME Travel
NAVITIME Travel
構成図 オンプレ Azure アプリ Server API Management App Service Blob
Storage Azure function Treasure Data
構成図 オンプレ Azure アプリ Server API Management App Service Blob
Storage Azure function Treasure Data Access Log
モデル生成(日次) オンプレ Azure 4/4モデル 4/2モデル 4/3モデル アプリ Server API Management
App Service Blob Storage Azure function Treasure Data Access Log 学習データ 向き先変更 モデル 生成 データ抽出 & 配置
推論(ユーザリクエスト) オンプレ Azure 4/4モデル 4/2モデル 4/3モデル アプリ Server API Management
App Service Blob Storage Azure function Treasure Data
学習データサンプル 学習データ、必須は3カラムのみ。 アクセスログから抽出可能
実例 (ナビタイムトラベル スポットレコメンデーション) スポット詳細ページヘのア クセスのうち駅を除いたも の
構成図(予定) AWS Azure DynamoDB API Management App Service Blob Storage
Azure function EC2 fluentd API Gateway アプリ 疎結合のためレコメ ンデーションのバック エンドは変更する必 要がない
まとめ
費用対効果があると 判断した時だけ AIを選択することで 世界平和を実現しよう
ありがとうございました