Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AIを選択する自由
Search
NAVITIME JAPAN
PRO
April 04, 2019
Technology
0
31
AIを選択する自由
2019/4/4に開催されたRepro様主催『Repro Tech #7 Practical AI Supported by NAVITIME』にて発表した資料です。
NAVITIME JAPAN
PRO
April 04, 2019
Tweet
Share
More Decks by NAVITIME JAPAN
See All by NAVITIME JAPAN
つよつよリーダーが 抜けたらどうする? 〜ナビタイムのAgile⽀援組織の変遷〜
navitimejapan
PRO
23
16k
実践ジオフェンス 効率的に開発するために
navitimejapan
PRO
3
870
安全で使いやすいCarPlayアプリの 魅せ方:HIGと実例から学ぶ
navitimejapan
PRO
1
250
見えないユーザの声はログに埋もれている! ~ログから具体的なユーザの体験を数値化した事例紹介~
navitimejapan
PRO
6
3.2k
ユーザーのためなら 『デザイン』 以外にも手を伸ばせる
navitimejapan
PRO
2
1.7k
フツーのIT女子が、 Engineering Managerになるまで
navitimejapan
PRO
3
380
不確実性に打ち勝つOKR戦略/How to manage uncertainty with OKR strategy
navitimejapan
PRO
4
3.7k
アジャイルを小さいままで 組織に広める 二周目 / Agile Transformation in NAVITIME JAPAN iteration 2
navitimejapan
PRO
4
1.4k
変更障害率0%よりも「継続的な学習と実験」を価値とする 〜障害を「起こってはならないもの」としていた組織がDirtの実施に至るまで〜 / DevOps Transformation in NAVITIME JAPAN
navitimejapan
PRO
8
5.7k
Other Decks in Technology
See All in Technology
品質のための共通認識
kakehashi
PRO
3
260
非CUDAの悲哀 〜Claude Code と挑んだ image to 3D “Hunyuan3D”を EVO-X2(Ryzen AI Max+395)で動作させるチャレンジ〜
hawkymisc
2
190
新 Security HubがついにGA!仕組みや料金を深堀り #AWSreInvent #regrowth / AWS Security Hub Advanced GA
masahirokawahara
1
2.1k
ログ管理の新たな可能性?CloudWatchの新機能をご紹介
ikumi_ono
1
780
[デモです] NotebookLM で作ったスライドの例
kongmingstrap
0
150
文字列の並び順 / Unicode Collation
tmtms
3
590
2025年 開発生産「可能」性向上報告 サイロ解消からチームが能動性を獲得するまで/ 20251216 Naoki Takahashi
shift_evolve
PRO
1
200
評価駆動開発で不確実性を制御する - MLflow 3が支えるエージェント開発
databricksjapan
1
200
OCI Oracle Database Services新機能アップデート(2025/09-2025/11)
oracle4engineer
PRO
1
200
ExpoのインダストリーブースでみたAWSが見せる製造業の未来
hamadakoji
0
120
今年のデータ・ML系アップデートと気になるアプデのご紹介
nayuts
1
420
コンテキスト情報を活用し個社最適化されたAI Agentを実現する4つのポイント
kworkdev
PRO
0
1.4k
Featured
See All Featured
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
35
2.3k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
31
3k
Six Lessons from altMBA
skipperchong
29
4.1k
It's Worth the Effort
3n
187
29k
Building Adaptive Systems
keathley
44
2.9k
Unsuck your backbone
ammeep
671
58k
Product Roadmaps are Hard
iamctodd
PRO
55
12k
The World Runs on Bad Software
bkeepers
PRO
72
12k
Java REST API Framework Comparison - PWX 2021
mraible
34
9k
KATA
mclloyd
PRO
33
15k
RailsConf 2023
tenderlove
30
1.3k
The Cost Of JavaScript in 2023
addyosmani
55
9.4k
Transcript
AIを選択する自由 2019 年 4 月 4 日
自己紹介 大川舞子 (おおかわ まいこ) • iOS開発 → インフラ運用 → 社内ツー
ル開発 • 最近は機械学習モデルの開発運 用、ワークフローの整備
所属プロジェクトの社内立ち位置 • R&D部門。「新しいことやってる人達」 • 社内で宙ぶらりんの案件も引き取る。 • 最近、社内でAI屋さんと認識され辛い。AIはなる べく作りたくない。(お世話が大変=手離れしないの で。。) •
AI以外の手段や、外部サービスの利用も検討
本題
Q. どうしてAIを使うのか?
A. AIの方が楽だから
と言える時だけ AIを選択しよう
AIのつらみ • 結果を保証できない • リリース後も改善で人が張り付く必要がある(こと が多い)
👂🐙
弊社のレコメンデーションの歴史 機械学習黎明期に0から機械 学習モデルを実装。 • → 改善しても精度が良くな らない。メンテ辛い • → 費用対効果が伴わない
ため一度機能をクローズ
あるある
じゃあなぜ今 AIでレコメンデーションを 作っているのか?
AIによるレコメンデーション • 外部サービスが提供されつつある • 学習データがシンプルで既存資産が利用できる
機は熟した
自分で機械学習モデルを作る 外部サービスを利用する 検討した方法
自分で機械学習モデルを作る
外部サービスを利用する Amazon Personalize (beta)
自分で機械学習モデルを作る 外部サービスを利用する 検討した方法
自分で機械学習モデルを作る OSSを利用する 外部サービスを利用する 検討した方法
OSSを利用する Microsoft / Product Recommendations Solution https://github.com/Microsoft/Product-Re commendations
Product Recommendations Solution • Microsoft の AI レコメンド サービス がOSS化
• eコマースレコメンドに最適 化したモデル/パラメータが 利用可 • REST API / テストツール/ Swaggerも同時提供
学習データについて • 協調フィルタリングは学習データがシンプル • 既存資産(アクセスログ)から生成可能なケースが 多い • → データを作るためにサービスに手を入れる必要 がない
NAVITIME Travel
NAVITIME Travel
構成図 オンプレ Azure アプリ Server API Management App Service Blob
Storage Azure function Treasure Data
構成図 オンプレ Azure アプリ Server API Management App Service Blob
Storage Azure function Treasure Data Access Log
モデル生成(日次) オンプレ Azure 4/4モデル 4/2モデル 4/3モデル アプリ Server API Management
App Service Blob Storage Azure function Treasure Data Access Log 学習データ 向き先変更 モデル 生成 データ抽出 & 配置
推論(ユーザリクエスト) オンプレ Azure 4/4モデル 4/2モデル 4/3モデル アプリ Server API Management
App Service Blob Storage Azure function Treasure Data
学習データサンプル 学習データ、必須は3カラムのみ。 アクセスログから抽出可能
実例 (ナビタイムトラベル スポットレコメンデーション) スポット詳細ページヘのア クセスのうち駅を除いたも の
構成図(予定) AWS Azure DynamoDB API Management App Service Blob Storage
Azure function EC2 fluentd API Gateway アプリ 疎結合のためレコメ ンデーションのバック エンドは変更する必 要がない
まとめ
費用対効果があると 判断した時だけ AIを選択することで 世界平和を実現しよう
ありがとうございました