Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
機械学習を理論から真剣に取り組んでみた件 その1:回帰に関する復習
Search
NearMeの技術発表資料です
PRO
July 28, 2023
Science
0
110
機械学習を理論から真剣に取り組んでみた件 その1:回帰に関する復習
機械学習のイントロとして、まずは回帰の復習を扱っています。特に、線形であるものについて簡単にまとめています。非線形については、次回以降で明らかにし、カーネル法へのかけ渡しとしての資料です!
NearMeの技術発表資料です
PRO
July 28, 2023
Tweet
Share
More Decks by NearMeの技術発表資料です
See All by NearMeの技術発表資料です
LlamaIndex Workflow: Build Practical AI Agents Fast
nearme_tech
PRO
0
5
Box-Muller法
nearme_tech
PRO
1
16
Kiro触ってみた
nearme_tech
PRO
0
50
今だからこそ入門する Server-Sent Events (SSE)
nearme_tech
PRO
4
380
ReactNative のアップグレード作業が (意外に)楽しかった話
nearme_tech
PRO
2
96
強化学習アルゴリズムPPOの改善案を考えてみた
nearme_tech
PRO
0
32
Apple Containerについて調べて触ってみた
nearme_tech
PRO
0
440
Rust 並列強化学習
nearme_tech
PRO
0
32
並列で⽣成AIにコーディングをやらせる
nearme_tech
PRO
1
220
Other Decks in Science
See All in Science
防災デジタル分野での官民共創の取り組み (1)防災DX官民共創をどう進めるか
ditccsugii
0
330
データベース11: 正規化(1/2) - 望ましくない関係スキーマ
trycycle
PRO
0
960
AI(人工知能)の過去・現在・未来 —AIは人間を超えるのか—
tagtag
0
110
研究って何だっけ / What is Research?
ks91
PRO
1
140
動的トリートメント・レジームを推定するDynTxRegimeパッケージ
saltcooky12
0
200
実力評価性能を考慮した弓道高校生全国大会の大会制度設計の提案 / (konakalab presentation at MSS 2025.03)
konakalab
2
210
知能とはなにかーヒトとAIのあいだー
tagtag
0
100
白金鉱業Meetup_Vol.20 効果検証ことはじめ / Introduction to Impact Evaluation
brainpadpr
1
1.2k
ランサムウェア対策にも考慮したVMware、Hyper-V、Azure、AWS間のリアルタイムレプリケーション「Zerto」を徹底解説
climbteam
0
140
Agent開発フレームワークのOverviewとW&B Weaveとのインテグレーション
siyoo
0
360
テンソル分解による糖尿病の組織特異的遺伝子発現の統合解析を用いた関連疾患の予測
tagtag
2
280
「美は世界を救う」を心理学で実証したい~クラファンを通じた新しい研究方法
jimpe_hitsuwari
1
170
Featured
See All Featured
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.7k
How to Ace a Technical Interview
jacobian
280
24k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.7k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.7k
The Illustrated Children's Guide to Kubernetes
chrisshort
49
51k
Site-Speed That Sticks
csswizardry
13
920
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
10
890
Embracing the Ebb and Flow
colly
88
4.9k
Designing for humans not robots
tammielis
254
26k
KATA
mclloyd
PRO
32
15k
Transcript
0 機械学習を理論から真剣に取り組んでみた件 その1:回帰に関する復習 2023-07-21 第53回NearMe技術勉強会 Asahi Kaito
1 機械学習では避けられない、 行列の理論に関しての復習を扱います。
2 その中で、前提となる回帰問題について、復習します。
3 1. 回帰について 1-1. 線形な単回帰と重回帰 1次式で表すことができるもの
4 1. 回帰について 1-1. 線形な単回帰と重回帰 • 単回帰 ◦ 1つの変数 x
に依存してある従属変数 y が関係あると仮定する ◦ 線形な単回帰では、以下の関係 (1) を仮定、ただしci (i=0, 1)は定数 ◦ 問題 → ci (i=0, 1)の決定!!
5 1. 回帰について 1-1. 線形な単回帰と重回帰 • 単回帰 ◦ 問題 →
ci (i=0, 1)の決定(最適な直線を引こう!)!!
6 1. 回帰について 1-1. 線形な単回帰と重回帰 • 線形な単回帰の基本的な解法 ◦ 訓練データ を用いて、以下の誤差関数を最小化できるci
(i=0, 1) を求める。
7 1. 回帰について 1-1. 線形な単回帰と重回帰 • 線形な単回帰の基本的な解法
8 1. 回帰について 1-1. 線形な単回帰と重回帰 • 線形な単回帰の基本的な解法 c1 について、下に凸
9 1. 回帰について 1-1. 線形な単回帰と重回帰 • 線形な単回帰の基本的な解法 c1 について、下に凸 c0
について、下に凸
10 1. 回帰について 1-1. 線形な単回帰と重回帰 • 線形な単回帰の基本的な解法 → 誤差を最小にするci (i=0,
1)が存在する!! c1 について、下に凸 c0 について、下に凸
11 1. 回帰について 1-1. 線形な単回帰と重回帰 • 線形な単回帰の基本的な解法
12 1. 回帰について 1-1. 線形な単回帰と重回帰 • 線形な単回帰の基本的な解法
13 1. 回帰について 1-1. 線形な単回帰と重回帰 • 線形な単回帰の基本的な解法 ◦ あとは、以下の連立方程式を解けば良い
14 1. 回帰について 1-1. 線形な単回帰と重回帰 • 線形な単回帰の基本的な解法 ◦ 連立方程式を行列で表現して...
15 1. 回帰について 1-1. 線形な単回帰と重回帰 • 線形な単回帰の基本的な解法 ◦ 係数行列の行列式を計算して...
16 1. 回帰について 1-1. 線形な単回帰と重回帰 • 線形な単回帰の基本的な解法 ◦ 解を求める!!
17 1. 回帰について 1-1. 線形な単回帰と重回帰 • 線形な単回帰の基本的な解法 ◦ 係数行列の逆行列は以下なので...
18 1. 回帰について 1-1. 線形な単回帰と重回帰 • 線形な単回帰の基本的な解法 ◦ 計算してみましょう!!
19 1. 回帰について 1-1. 線形な単回帰と重回帰 • 線形な単回帰の基本的な解法 ◦ 答え(係数行列の逆行列が存在すれば)
20 1. 回帰について 1-1. 線形な単回帰と重回帰 • 線形な単回帰の基本的な解法 ◦ もう一歩(統計的に意味のある量で表現!!)
21 1. 回帰について 1-1. 線形な単回帰と重回帰 • 線形な単回帰の基本的な解法 ◦ もう一歩(統計的に意味のある量で表現!!) 平均値の表現!!
(他の部分も)
22 1. 回帰について 1-1. 線形な単回帰と重回帰 • 線形な単回帰の基本的な解法 ◦ もう一歩(統計的に意味のある量で表現!!) →
(かの有名な)最小二乗法!!
23 1. 回帰について 1-1. 線形な単回帰と重回帰 • 重回帰 ◦ 複数の変数 xi
(i=1, 2, 3, …, d) に依存している従属変数 y が関係あると仮定する ◦ 線形な重回帰では、以下の関係 (1) を仮定、ただしci (i=0, 1, 2, …, d)は定数 ◦ 問題 → ci (i=0, 1, 2, …, d) の決定!!
24 1. 回帰について 1-1. 線形な単回帰と重回帰 • 重回帰
25 1. 回帰について 1-1. 線形な単回帰と重回帰 • 重回帰 ◦ これを、訓練データ分計算する必要があるので、さらに行列に拡張する
26 1. 回帰について 1-1. 線形な単回帰と重回帰 • 重回帰 ◦ これを、訓練データ分計算する必要があるので、さらに行列に拡張する
27 1. 回帰について 1-1. 線形な単回帰と重回帰 • 重回帰 ◦ ここでも、二乗誤差を計算してみる
28 1. 回帰について 1-1. 線形な単回帰と重回帰 • 重回帰 ◦ ベクトルで微分を行って、
29 1. 回帰について 1-1. 線形な単回帰と重回帰 • 重回帰 ◦ ベクトルで微分を行って、この値が0となるとき、
30 1. 回帰について 1-1. 線形な単回帰と重回帰 • 重回帰 ◦ ベクトルで微分を行って、この値が0となるとき、 これが存在すれば
31 1. 回帰について 1-2. 非線形な単回帰と重回帰 • 非線形とは ◦ 説明変数が1次以外のものが含まれている ◦
例1: ◦ 例2: → ものによっては、線形のときのようにうまくいかないものも... → なんとか線形化できないか?
32 次回 線形化手法 〜カーネル法〜
33 参考図書 http://www.rokakuho.co.jp/data/books/0171.html http://www.rokakuho.co.jp/data/books/0172.html
34 a. 線形な単回帰と重回帰に罰則の追加(正則化) • リッジ回帰、ラッソ回帰 → そこで、係数によるペナルティを設ける(正則化項の追加) 1. 回帰について(補足) c1
やc0 による影響が大きく出る
35 a. 線形な単回帰と重回帰に罰則の追加(正則化) • リッジ回帰、ラッソ回帰 → リッジ回帰 1. 回帰について(補足)
36 a. 線形な単回帰と重回帰に罰則の追加(正則化) • リッジ回帰、ラッソ回帰 → ラッソ回帰 1. 回帰について(補足)
37 b. 逆行列が計算できないときについて • 擬似逆行列、一般逆行列を用いる ◦ 例)ムーア・ペンローズ形一般逆行列 ▪ 元の行列が零行列でなく、行列式の値が0であるときは、2次正方行列では以下のようになる →
一般逆行列などは、右記の書籍などで学習できる https://www.utp.or.jp/book/b375477.html 1. 回帰について(補足)
38 Thank you