Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
機械学習を理論から真剣に取り組んでみた件 その2:線形化に挑戦しよう!
Search
NearMeの技術発表資料です
PRO
August 18, 2023
Science
0
160
機械学習を理論から真剣に取り組んでみた件 その2:線形化に挑戦しよう!
カーネル法を用いて、線型の形で最小化問題に挑むことができるようにする方法についてです。今回では、多項式回帰について適用しています。
NearMeの技術発表資料です
PRO
August 18, 2023
Tweet
Share
More Decks by NearMeの技術発表資料です
See All by NearMeの技術発表資料です
ガウス過程回帰とベイズ最適化
nearme_tech
PRO
0
35
確率的プログラミング入門
nearme_tech
PRO
2
35
Observability and OpenTelemetry
nearme_tech
PRO
2
29
観察研究における因果推論
nearme_tech
PRO
1
72
React
nearme_tech
PRO
2
33
Architecture Decision Record (ADR)
nearme_tech
PRO
1
820
遺伝的アルゴリズムを実装する
nearme_tech
PRO
1
46
Fractional Derivative!
nearme_tech
PRO
1
37
GitHub Projectsにおける チケットの ステータス更新自動化について
nearme_tech
PRO
1
58
Other Decks in Science
See All in Science
位相的データ解析とその応用例
brainpadpr
1
620
プロダクト開発を通して学んだナレッジマネジメントの哲学
sonod
0
150
Coqで選択公理を形式化してみた
soukouki
0
200
How were Quaternion discovered
kinakomoti321
2
1.1k
ほたるのひかり/RayTracingCamp10
kugimasa
0
210
Презентация программы магистратуры СПбГУ "Искусственный интеллект и наука о данных"
dscs
0
390
【人工衛星開発】能見研究室紹介動画
02hattori11sat03
0
150
(2024) Livres, Femmes et Math
mansuy
0
110
ICRA2024 速報
rpc
3
5.2k
Analysis-Ready Cloud-Optimized Data for your community and the entire world with Pangeo-Forge
jbusecke
0
110
教師なしテンソル分解に基づく、有糸分裂後の転写再活性化におけるヒストン修飾ブックマークとしての転写因子候補の抽出法
tagtag
0
120
創薬における機械学習技術について
kanojikajino
13
4.4k
Featured
See All Featured
Embracing the Ebb and Flow
colly
84
4.5k
Ruby is Unlike a Banana
tanoku
97
11k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
169
50k
Raft: Consensus for Rubyists
vanstee
136
6.6k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
131
33k
Java REST API Framework Comparison - PWX 2021
mraible
PRO
28
8.2k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
8
900
Build The Right Thing And Hit Your Dates
maggiecrowley
33
2.4k
Product Roadmaps are Hard
iamctodd
PRO
49
11k
Building Applications with DynamoDB
mza
90
6.1k
Designing on Purpose - Digital PM Summit 2013
jponch
115
7k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
506
140k
Transcript
0 機械学習を理論から真剣に取り組んでみた件 その2:線形化に挑戦しよう! 2023-08-18 第56回NearMe技術勉強会 Asahi Kaito
1 前回のスライドの復習から始めます
2 1. 回帰について 1-1. 線形な単回帰と重回帰 • 単回帰 ◦ 1つの変数 x
に依存してある従属変数 y が関係あると仮定する ◦ 線形な単回帰では、以下の関係 (1) を仮定、ただしci (i=0, 1)は定数 ◦ 問題 → ci (i=0, 1)の決定!!
3 1. 回帰について 1-1. 線形な単回帰と重回帰 • 単回帰 ◦ 問題 →
ci (i=0, 1)の決定(最適な直線を引こう!)!!
4 1. 回帰について 1-1. 線形な単回帰と重回帰 • 線形な単回帰の基本的な解法 ◦ 訓練データ を用いて、以下の誤差関数を最小化できるci
(i=0, 1)を求める。
5 1. 回帰について 1-1. 線形な単回帰と重回帰 • 線形な単回帰の基本的な解法 ◦ 連立方程式を行列で表現して...
6 1. 回帰について 1-1. 線形な単回帰と重回帰 • 線形な単回帰の基本的な解法 ◦ 答え(係数行列の逆行列が存在すれば)
7 1. 回帰について 1-1. 線形な単回帰と重回帰 • 重回帰 ◦ 複数の変数 xi
(i=1, 2, 3, …, d) に依存している従属変数 y が関係あると仮定する ◦ 線形な重回帰では、以下の関係 (1) を仮定、ただしci (i=0, 1, 2, …, d)は定数 ◦ 問題 → ci (i=0, 1, 2, …, d) の決定!!
8 1. 回帰について 1-1. 線形な単回帰と重回帰 • 重回帰 ◦ これを、訓練データ分計算する必要があるので、さらに行列に拡張する
9 1. 回帰について 1-1. 線形な単回帰と重回帰 • 重回帰 ◦ ここでも、二乗誤差を計算してみる
10 1. 回帰について 1-1. 線形な単回帰と重回帰 • 重回帰 ◦ ベクトルで微分を行って、この値が0となるとき、 これが存在すれば
11 1. 回帰について 1-2. 非線形な単回帰と重回帰 • 非線形とは ◦ 説明変数が1次以外のものが含まれている ◦
例1: ◦ 例2: → ものによっては、線形のときのようにうまくいかないものも... → なんとか線形化できないか?
12 2回目:線形化手法 〜カーネル法〜
13 2. 線形化手法 〜カーネル法〜 2-1. カーネル関数について 2-1-1. カーネル関数とは • kが集合X上の2変数関数 •
以下の2つを満たすとき、kは集合X上のカーネル関数という (1) (2)
14 2. 線形化手法 〜カーネル法〜 2-1. カーネル関数について 2-1-2. カーネル関数の必要性 • 次元を上げることができる ◦
どういうこと? ▪ k(x, y)の分布は、x, yが実数であれば、3次元に分布する(z=k(x, y)) ▪ 高次元化することで、分類がより明確になることがある
15 2. 線形化手法 〜カーネル法〜 2-1. カーネル関数について 2-1-3. カーネル関数の例 • 以下の2つのものは、カーネル関数の例 (1)
(2)
16 2. 線形化手法 〜カーネル法〜 2-1. カーネル関数について 2-1-4. カーネル関数の特徴 • カーネル関数の和や積も、カーネル関数になる (1)
(2)
17 2. 線形化手法 〜カーネル法〜 2-1. カーネル関数について 2-1-4. カーネル関数の特徴 • これらを組み合わせて、カーネル関数を構築していく→どんなものがあるのかな? (1)
(2) (3) (4)
18 2. 線形化手法 〜カーネル法〜 2-2. カーネル関数の構築 2-2-1. カーネル関数の具体例 • 以下の関数(ガウスカーネル)がカーネル関数であることを示しましょう
19 2. 線形化手法 〜カーネル法〜 2-2. カーネル関数の構築 2-2-1. カーネル関数の具体例 • 以下の関数(ガウスカーネル)がカーネル関数であることを示しましょう (1)
20 2. 線形化手法 〜カーネル法〜 2-2. カーネル関数の構築 2-2-1. カーネル関数の具体例 • 以下の関数(ガウスカーネル)がカーネル関数であることを示しましょう (1)
21 2. 線形化手法 〜カーネル法〜 2-2. カーネル関数の構築 2-2-1. カーネル関数の具体例 • 以下の関数(ガウスカーネル)がカーネル関数であることを示しましょう (1)
22 2. 線形化手法 〜カーネル法〜 2-2. カーネル関数の構築 2-2-1. カーネル関数の具体例 • 以下の関数(ガウスカーネル)がカーネル関数であることを示しましょう (1)
23 2. 線形化手法 〜カーネル法〜 2-2. カーネル関数の構築 2-2-1. カーネル関数の具体例 • 以下の関数(ガウスカーネル)がカーネル関数であることを示しましょう (2)
24 2. 線形化手法 〜カーネル法〜 2-2. カーネル関数の構築 2-2-1. カーネル関数の具体例 • 以下の関数(ガウスカーネル)がカーネル関数であることを示しましょう (2)
25 2. 線形化手法 〜カーネル法〜 2-2. カーネル関数の利用(多項式回帰) 入力データ 出力データ 以下を最小にする次数が d
以下の多項式 f を見つけよ。
26 2. 線形化手法 〜カーネル法〜 2-2. カーネル関数の利用(多項式回帰) 適当なベクトル 以下の多項式 fv の次数は
d 以下となる。
27 2. 線形化手法 〜カーネル法〜 2-2. カーネル関数の利用(多項式回帰) で張られる空間への直交射影 P を用いると、
28 2. 線形化手法 〜カーネル法〜 2-2. カーネル関数の利用(多項式回帰) よって、以下のようにベクトル v を設定して良い!
29 2. 線形化手法 〜カーネル法〜 2-2. カーネル関数の利用(多項式回帰)
30 2. 線形化手法 〜カーネル法〜 2-2. カーネル関数の利用(多項式回帰)
31 2. 線形化手法 〜カーネル法〜 2-2. カーネル関数の利用(多項式回帰) → 係数 c を分離することができた!! カーネル関数
32 2. 線形化手法 〜カーネル法〜 2-2. カーネル関数の利用(多項式回帰)
33 2. 線形化手法 〜カーネル法〜 2-2. カーネル関数の利用(多項式回帰) 入力データ 出力データ 以下を最小にする次数が d
以下の多項式 f を見つけよ。
34 2. 線形化手法 〜カーネル法〜 2-2. カーネル関数の利用(多項式回帰)
35 2. 線形化手法 〜カーネル法〜 2-3. カーネル関数の実践(多項式回帰) To Colab : https://colab.research.google.com/drive/1pGGa5ui-RxsKLNi5Wb50zVLyn3Hbx4Dk?usp=sharing
36 次回 少しステップアップ!カーネル回帰
37 参考図書 http://www.rokakuho.co.jp/data/books/0171.html http://www.rokakuho.co.jp/data/books/0172.html
38 Thank you