Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
評価指標入門を読んでみた
Search
NearMeの技術発表資料です
PRO
June 09, 2023
Business
0
230
評価指標入門を読んでみた
NearMeの技術発表資料です
PRO
June 09, 2023
Tweet
Share
More Decks by NearMeの技術発表資料です
See All by NearMeの技術発表資料です
ローカルLLMを⽤いてコード補完を⾏う VSCode拡張機能を作ってみた
nearme_tech
PRO
0
82
初めてのmarimo (ハンズオン)
nearme_tech
PRO
0
18
ローカルLLM
nearme_tech
PRO
0
32
LlamaIndex Workflow: Build Practical AI Agents Fast
nearme_tech
PRO
0
19
Box-Muller法
nearme_tech
PRO
1
34
Kiro触ってみた
nearme_tech
PRO
0
250
今だからこそ入門する Server-Sent Events (SSE)
nearme_tech
PRO
4
520
ReactNative のアップグレード作業が (意外に)楽しかった話
nearme_tech
PRO
2
120
強化学習アルゴリズムPPOの改善案を考えてみた
nearme_tech
PRO
0
79
Other Decks in Business
See All in Business
やらないことを決めると未来が見える!「迷わない」組織になるための マルチプロダクト戦略
onyoda
0
1.8k
カンパニーデック 2025.11.28
toggletest
0
880
Company Profile
katsuegu23
2
12k
ホワイトプラス会社紹介資料 / wp_introduction
whiteplus_recruit
0
140
[NGA] カンパニーデック202511Ver.
ngaltd
PRO
1
630
CREALで働く
creal
PRO
0
1.2k
フロントエンドにおける「型」の責任分解に対する1つのアプローチ
kinocoboy2
5
1.6k
ファーストピンの気持ち
in0u
1
280
日本マーケティング学会2025発表_組織の市場志向形成におけるバウンダリースパナー行動とマーケターの越境的役割
nazoru
PRO
0
760
アッテル会社紹介資料/culture deck
attelu
11
16k
らんみるぷろじぇくと採用情報
ranmil
0
200
曖昧なLLMの出力をプロダクト価値へつなげる、要求の具体化と評価
zerebom
3
380
Featured
See All Featured
The Cost Of JavaScript in 2023
addyosmani
55
9.3k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.8k
Side Projects
sachag
455
43k
KATA
mclloyd
PRO
32
15k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
What's in a price? How to price your products and services
michaelherold
246
13k
Build your cross-platform service in a week with App Engine
jlugia
234
18k
Code Review Best Practice
trishagee
74
19k
BBQ
matthewcrist
89
9.9k
Embracing the Ebb and Flow
colly
88
4.9k
A Tale of Four Properties
chriscoyier
162
23k
Unsuck your backbone
ammeep
671
58k
Transcript
0 評価指標入門を読んでみた 2023-06-09 第47回NearMe技術勉強会 Takuma Kakinoue
1 レビュー • 評価指標入門(技術評論社) ◦ 総評:技術書というより、データサイエンティストの 心構えが学べる本。 ▪
良かった点 • 機械学習とビジネスのつながりが詳しく書いてある。 • 他の参考書にはない視点で語っており、 ハッと気づかされたことが多い。 ▪ 個人的にイマイチだった点 • 機械学習の誤差関数(RMSEなど)についての説明が若干長かった。 (ある程度、機械学習やってる人なら当たり前に 知ってそう)
2 評価指標入門の概要 • 近年のデータサイエンス事情 ◦ モデルの性能に固執するデータサイエンティストが増えた • 高性能な機械学習モデル ≠
ビジネス上で価値のあるモデル ◦ モデルの評価指標(損失関数)とビジネスの評価指標(KPI)は異なる • データサイエンティストの役割はサイエンスとビジネスの橋渡し ◦ ビジネスの問題をどうやってサイエンスの問題へ落とし込むか ▪ 評価指標、問題設定 そもそも企業のデータサイエンティストは売上を伸ばすために雇われている!
3 適切な評価指標を選ぶ • ECサイトでのクーポン配布の例 ◦ 男性と女性のどちらにクーポンを配布すべきかの意思決定に機械学習を用いる ▪ 性別に応じて、クーポン配布によって売上がいくら伸びるか予測するモデルを作った ◦ モデルAの方が誤差が少ないので、モデルAを意思決定に使おう!
▪ モデルAによると、男性にクーポンを配布すれば売上が伸びる! • しかし、実際は、男性にクーポンを配布しても売上は-100になる... ◦ 評価指標を、平均絶対誤差ではなく、符号的中率にすれば良い! ※参考文献:評価指標入門
4 問題設定の再設計 • 回帰か?分類か? ◦ 株価の自動売買 ▪ 株価は連続値なので回帰問題として解きたくなる。 • しかし、連続値は取りうる値が無数にあるので予測が難しい。
▪ 結局、重要なのは上がるか下がるかの2択なので2値分類として解くことが多い。 ◦ 降水量の予測(あまりビジネスとは関係ないが..) ▪ これも一見、回帰問題で解きたくなるが.. ▪ 同じ入力に対しても、3mmにも6mmにもなり得る(多峰性がある)。 • 単一の値を学習する代わりに、離散的な確率分布を多クラス分類で学習する。 ※参考文献:評価指標入門
5 参考文献 • 評価指標入門,高柳慎一,長田怜士,技術評論社,2023
6 Thank you