Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Deep Learning and Natural Language Processing w...
Search
Melanie Warrick
June 17, 2016
Technology
1
450
Deep Learning and Natural Language Processing with Spark - Berlin
Melanie Warrick
June 17, 2016
Tweet
Share
More Decks by Melanie Warrick
See All by Melanie Warrick
PyCon.ru RL Talk Resources
nyghtowl
0
97
Career Path Advice
nyghtowl
0
220
AI & Enterprise
nyghtowl
0
330
Artificial Intelligence
nyghtowl
2
780
Reinforcement Learning
nyghtowl
2
490
Machine Learning
nyghtowl
0
350
Machine Learning Resources
nyghtowl
0
100
What is AI? - Jerusalem
nyghtowl
0
270
Computer Vision Deep Learning with DL4J
nyghtowl
0
560
Other Decks in Technology
See All in Technology
From Live Coding to Vibe Coding with Firebase Studio
firebasethailand
1
280
Bliki (ja), and the Cathedral, and the Bazaar
koic
8
1.5k
20150719_Amazon Nova Canvas Virtual try-onアプリ 作成裏話
riz3f7
0
140
少人数でも回る! DevinとPlaybookで支える運用改善
ishikawa_pro
4
1.5k
AIコードアシスタントとiOS開発
jollyjoester
1
240
Jitera Company Deck / JP
jitera
0
210
新規事業におけるAIリサーチの活用例
ranxxx
0
170
隙間時間で爆速開発! Claude Code × Vibe Coding で作るマニュアル自動生成サービス
akitomonam
2
140
ObsidianをLLM時代のナレッジベースに! クリッピング→Markdown→CLI連携の実践
srvhat09
7
9.6k
手動からの解放!!Strands Agents で実現する総合テスト自動化
ideaws
3
370
Webの技術とガジェットで那須の子ども達にワクワクを! / IoTLT_20250720
you
PRO
0
130
(HackFes)米国国防総省のDevSecOpsライフサイクルをAWSのセキュリティサービスとOSSで実現
syoshie
5
670
Featured
See All Featured
Into the Great Unknown - MozCon
thekraken
40
1.9k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
BBQ
matthewcrist
89
9.7k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
110
19k
Designing Experiences People Love
moore
142
24k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
45
7.5k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
138
34k
Build your cross-platform service in a week with App Engine
jlugia
231
18k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.4k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
29
9.6k
Transcript
Deep Learning and Natural Language Processing with Spark Melanie Warrick
| Skymind | @nyghtowl Andy Petrella | Data Fellas | @noootsab
@nyghtowl Machine Learning
None
@nyghtowl
@nyghtowl
Natural Language Processing @nyghtowl • Question Answer • Image Captioning
• Topic Modeling/Sentiment Analysis • Language | Machine Translation • Text Generation NLP is hard
@nyghtowl Artificial Neural Nets Output | y Hidden Loss Function
Output k j X M kj W y Run until error stops improving = converge Input | X
@nyghtowl Recurrent Neural Net
@nyghtowl Long short-term Memory (LSTM)
@nyghtowl Sequence to Sequence
@nyghtowl Example: Word2Vec Word embeddings represent context King – Man
+ Woman ~ Queen
@nyghtowl Example: Image Captioning
@nyghtowl Sequence to Sequence
@nyghtowl Sentiment Analysis Reviews “Best part of the movie is
the end credits” “It should have been a great movie…” Sentiment
@nyghtowl Hadoop Spark AWS Skymind ND4J DeepLearning4J Native & JavaCPP
& OpenMP & Cuda 7.5 Canova Data Neural Nets Linear Algebra LIBND4J C Backend
@nyghtowl Data Fellas - Spark-Notebook only Scala based notebook that
is - scalable and enables interactive work on Spark, Akka, Cassandra, & Kafka - plotting interactive plots in any Scala type - Data Fellas enables data-driven business, bringing productivity to data science in enterprise
@nyghtowl Cluster Juju bundle including: • DL4J • Mesos •
Spark • Spark Notebook
@nyghtowl Blog Making deep learning accessible on Openstack
@nyghtowl Research References RNNs • DL4J Overview: ◦ RNN &
LSTM Overview: http://deeplearning4j.org/recurrentnetwork ◦ Using RNNs: http://deeplearning4j.org/usingrnns.html • Karpathy: https://karpathy.github.io/2015/05/21/rnn-effectiveness/ • Intro: http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/ Github Repos • Spark Notebook: https://github.com/andypetrella/spark-notebook • DL4J Examples: https://github.com/deeplearning4j/dl4j-0.4-examples • DL4J Spark Examples: https://github.com/deeplearning4j/dl4j-spark-cdh5-examples General ML Projects (referenced in presentation) • AlphaGo: http://i.dailymail.co.uk/i/pix/2016/03/09/09/320583D500000578-3483569- Google_has_confirmed_its_AlphaGo_computer_has_taken_the_first_vi-a-11_1457516282972.jpg • Switzerland SAR: http://www.forensicmag.com/article/2016/02/autonomous-drones-fly-search-and-rescue-operations • VIV: http://www.dailytech.com/ExSiri+CEO+Poaches+Apple+to+Create+Viv+The+Global+Brain/article36387.htm
@nyghtowl Image References • http://www.dailytech. com/ExSiri+CEO+Poaches+Apple+to+Create+Viv+The+Global+Brain/article36387.htm • http://3.bp.blogspot.com/- mMPT3tgVWaQ/U5qVs64HbRI/AAAAAAAAJCM/lEE4OiJmRSY/s1600/thumb-down-smiley.png •
http://4.bp.blogspot.com/-pUoO5oOuzOc/VcomU6qKT4I/AAAAAAAAAsg/TonkgL1iEjE/s1600/Screen% 2BShot%2B2015-08-11%2Bat%2B9.43.21%2BAM.png • http://www.ucreative.com/inspiration/interesting-patterns-and-fractals-from-nature/ • http://i.telegraph.co.uk/multimedia/archive/02122/WILLIAM-SHAKESPEAR_2122089b.jpg • https://karpathy.github.io/2015/05/21/rnn-effectiveness/ • https://pbs.twimg.com/media/CJm9HmfVEAEXU0c.jpg:large • http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/ • http://i.dailymail.co.uk/i/pix/2016/03/09/09/320583D500000578-3483569- Google_has_confirmed_its_AlphaGo_computer_has_taken_the_first_vi-a-11_1457516282972.jpg • http://www.forensicmag.com/article/2016/02/autonomous-drones-fly-search-and-rescue-operations • Susan Eraly
@nyghtowl Deep Learning and Natural Language Processing with Spark Andy
Petrella | Data Fellas | @noootsab Melanie Warrick | Skymind | @nyghtowl