Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Deep Learning and Natural Language Processing w...
Search
Melanie Warrick
June 17, 2016
Technology
1
470
Deep Learning and Natural Language Processing with Spark - Berlin
Melanie Warrick
June 17, 2016
Tweet
Share
More Decks by Melanie Warrick
See All by Melanie Warrick
PyCon.ru RL Talk Resources
nyghtowl
0
98
Career Path Advice
nyghtowl
0
230
AI & Enterprise
nyghtowl
0
350
Artificial Intelligence
nyghtowl
2
790
Reinforcement Learning
nyghtowl
2
510
Machine Learning
nyghtowl
0
360
Machine Learning Resources
nyghtowl
0
110
What is AI? - Jerusalem
nyghtowl
0
290
Computer Vision Deep Learning with DL4J
nyghtowl
0
590
Other Decks in Technology
See All in Technology
Identity Management for Agentic AI 解説
fujie
0
330
Amazon Quick Suite で始める手軽な AI エージェント
shimy
1
1.5k
【ServiceNow SNUG Meetup LT deck】WorkFlow Editorの廃止と Flow Designerへの移行戦略
niwato
0
120
NIKKEI Tech Talk #41: セキュア・バイ・デザインからクラウド管理を考える
sekido
PRO
0
190
[Data & AI Summit '25 Fall] AIでデータ活用を進化させる!Google Cloudで作るデータ活用の未来
kirimaru
0
110
AI との良い付き合い方を僕らは誰も知らない
asei
0
210
2025-12-18_AI駆動開発推進プロジェクト運営について / AIDD-Promotion project management
yayoi_dd
0
150
アプリにAIを正しく組み込むための アーキテクチャ── 国産LLMの現実と実践
kohju
0
170
M&Aで拡大し続けるGENDAのデータ活用を促すためのDatabricks権限管理 / AEON TECH HUB #22
genda
0
190
半年で、AIゼロ知識から AI中心開発組織の変革担当に至るまで
rfdnxbro
0
120
Strands AgentsとNova 2 SonicでS2Sを実践してみた
yama3133
1
1.5k
Amazon Bedrock Knowledge Bases × メタデータ活用で実現する検証可能な RAG 設計
tomoaki25
6
1.9k
Featured
See All Featured
Done Done
chrislema
186
16k
The AI Revolution Will Not Be Monopolized: How open-source beats economies of scale, even for LLMs
inesmontani
PRO
2
2.7k
Test your architecture with Archunit
thirion
1
2.1k
Kristin Tynski - Automating Marketing Tasks With AI
techseoconnect
PRO
0
110
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.8k
Claude Code のすすめ
schroneko
65
200k
The Impact of AI in SEO - AI Overviews June 2024 Edition
aleyda
5
680
How to audit for AI Accessibility on your Front & Back End
davetheseo
0
120
SEOcharity - Dark patterns in SEO and UX: How to avoid them and build a more ethical web
sarafernandez
0
83
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
The Cult of Friendly URLs
andyhume
79
6.7k
How to train your dragon (web standard)
notwaldorf
97
6.4k
Transcript
Deep Learning and Natural Language Processing with Spark Melanie Warrick
| Skymind | @nyghtowl Andy Petrella | Data Fellas | @noootsab
@nyghtowl Machine Learning
None
@nyghtowl
@nyghtowl
Natural Language Processing @nyghtowl • Question Answer • Image Captioning
• Topic Modeling/Sentiment Analysis • Language | Machine Translation • Text Generation NLP is hard
@nyghtowl Artificial Neural Nets Output | y Hidden Loss Function
Output k j X M kj W y Run until error stops improving = converge Input | X
@nyghtowl Recurrent Neural Net
@nyghtowl Long short-term Memory (LSTM)
@nyghtowl Sequence to Sequence
@nyghtowl Example: Word2Vec Word embeddings represent context King – Man
+ Woman ~ Queen
@nyghtowl Example: Image Captioning
@nyghtowl Sequence to Sequence
@nyghtowl Sentiment Analysis Reviews “Best part of the movie is
the end credits” “It should have been a great movie…” Sentiment
@nyghtowl Hadoop Spark AWS Skymind ND4J DeepLearning4J Native & JavaCPP
& OpenMP & Cuda 7.5 Canova Data Neural Nets Linear Algebra LIBND4J C Backend
@nyghtowl Data Fellas - Spark-Notebook only Scala based notebook that
is - scalable and enables interactive work on Spark, Akka, Cassandra, & Kafka - plotting interactive plots in any Scala type - Data Fellas enables data-driven business, bringing productivity to data science in enterprise
@nyghtowl Cluster Juju bundle including: • DL4J • Mesos •
Spark • Spark Notebook
@nyghtowl Blog Making deep learning accessible on Openstack
@nyghtowl Research References RNNs • DL4J Overview: ◦ RNN &
LSTM Overview: http://deeplearning4j.org/recurrentnetwork ◦ Using RNNs: http://deeplearning4j.org/usingrnns.html • Karpathy: https://karpathy.github.io/2015/05/21/rnn-effectiveness/ • Intro: http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/ Github Repos • Spark Notebook: https://github.com/andypetrella/spark-notebook • DL4J Examples: https://github.com/deeplearning4j/dl4j-0.4-examples • DL4J Spark Examples: https://github.com/deeplearning4j/dl4j-spark-cdh5-examples General ML Projects (referenced in presentation) • AlphaGo: http://i.dailymail.co.uk/i/pix/2016/03/09/09/320583D500000578-3483569- Google_has_confirmed_its_AlphaGo_computer_has_taken_the_first_vi-a-11_1457516282972.jpg • Switzerland SAR: http://www.forensicmag.com/article/2016/02/autonomous-drones-fly-search-and-rescue-operations • VIV: http://www.dailytech.com/ExSiri+CEO+Poaches+Apple+to+Create+Viv+The+Global+Brain/article36387.htm
@nyghtowl Image References • http://www.dailytech. com/ExSiri+CEO+Poaches+Apple+to+Create+Viv+The+Global+Brain/article36387.htm • http://3.bp.blogspot.com/- mMPT3tgVWaQ/U5qVs64HbRI/AAAAAAAAJCM/lEE4OiJmRSY/s1600/thumb-down-smiley.png •
http://4.bp.blogspot.com/-pUoO5oOuzOc/VcomU6qKT4I/AAAAAAAAAsg/TonkgL1iEjE/s1600/Screen% 2BShot%2B2015-08-11%2Bat%2B9.43.21%2BAM.png • http://www.ucreative.com/inspiration/interesting-patterns-and-fractals-from-nature/ • http://i.telegraph.co.uk/multimedia/archive/02122/WILLIAM-SHAKESPEAR_2122089b.jpg • https://karpathy.github.io/2015/05/21/rnn-effectiveness/ • https://pbs.twimg.com/media/CJm9HmfVEAEXU0c.jpg:large • http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/ • http://i.dailymail.co.uk/i/pix/2016/03/09/09/320583D500000578-3483569- Google_has_confirmed_its_AlphaGo_computer_has_taken_the_first_vi-a-11_1457516282972.jpg • http://www.forensicmag.com/article/2016/02/autonomous-drones-fly-search-and-rescue-operations • Susan Eraly
@nyghtowl Deep Learning and Natural Language Processing with Spark Andy
Petrella | Data Fellas | @noootsab Melanie Warrick | Skymind | @nyghtowl