$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Deep Learning and Natural Language Processing w...
Search
Melanie Warrick
June 17, 2016
Technology
1
470
Deep Learning and Natural Language Processing with Spark - Berlin
Melanie Warrick
June 17, 2016
Tweet
Share
More Decks by Melanie Warrick
See All by Melanie Warrick
PyCon.ru RL Talk Resources
nyghtowl
0
98
Career Path Advice
nyghtowl
0
230
AI & Enterprise
nyghtowl
0
350
Artificial Intelligence
nyghtowl
2
790
Reinforcement Learning
nyghtowl
2
510
Machine Learning
nyghtowl
0
360
Machine Learning Resources
nyghtowl
0
110
What is AI? - Jerusalem
nyghtowl
0
290
Computer Vision Deep Learning with DL4J
nyghtowl
0
580
Other Decks in Technology
See All in Technology
pmconf2025 - 他社事例を"自社仕様化"する技術_iRAFT法
daichi_yamashita
0
400
mablでリグレッションテストをデイリー実行するまで #mablExperience
bengo4com
0
470
MCP・A2A概要 〜Google Cloudで構築するなら〜
shukob
0
150
20251127 BigQueryリモート関数で作る、お手軽AIバッチ実行環境
daimatz
0
420
32のキーワードで学ぶ はじめての耐量子暗号(PQC) / Getting Started with Post-Quantum Cryptography in 32 keywords
quiver
0
170
useEffectってなんで非推奨みたいなこと言われてるの?
maguroalternative
9
6.2k
A Compass of Thought: Guiding the Future of Test Automation ( #jassttokai25 , #jassttokai )
teyamagu
PRO
1
150
小さな判断で育つ、大きな意思決定力 / 20251204 Takahiro Kinjo
shift_evolve
PRO
1
260
Bakuraku Engineering Team Deck
layerx
PRO
11
5.3k
Symfony AI in Action
el_stoffel
2
350
MAP-7thplaceSolution
yukichi0403
2
240
「え?!それ今ではHTMLだけでできるの!?」驚きの進化を遂げたモダンHTML
riyaamemiya
9
4.4k
Featured
See All Featured
Building an army of robots
kneath
306
46k
The Cost Of JavaScript in 2023
addyosmani
55
9.3k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
Raft: Consensus for Rubyists
vanstee
140
7.2k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
132
19k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
Rails Girls Zürich Keynote
gr2m
95
14k
Practical Orchestrator
shlominoach
190
11k
Why Our Code Smells
bkeepers
PRO
340
57k
Code Review Best Practice
trishagee
73
19k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.8k
The Power of CSS Pseudo Elements
geoffreycrofte
80
6.1k
Transcript
Deep Learning and Natural Language Processing with Spark Melanie Warrick
| Skymind | @nyghtowl Andy Petrella | Data Fellas | @noootsab
@nyghtowl Machine Learning
None
@nyghtowl
@nyghtowl
Natural Language Processing @nyghtowl • Question Answer • Image Captioning
• Topic Modeling/Sentiment Analysis • Language | Machine Translation • Text Generation NLP is hard
@nyghtowl Artificial Neural Nets Output | y Hidden Loss Function
Output k j X M kj W y Run until error stops improving = converge Input | X
@nyghtowl Recurrent Neural Net
@nyghtowl Long short-term Memory (LSTM)
@nyghtowl Sequence to Sequence
@nyghtowl Example: Word2Vec Word embeddings represent context King – Man
+ Woman ~ Queen
@nyghtowl Example: Image Captioning
@nyghtowl Sequence to Sequence
@nyghtowl Sentiment Analysis Reviews “Best part of the movie is
the end credits” “It should have been a great movie…” Sentiment
@nyghtowl Hadoop Spark AWS Skymind ND4J DeepLearning4J Native & JavaCPP
& OpenMP & Cuda 7.5 Canova Data Neural Nets Linear Algebra LIBND4J C Backend
@nyghtowl Data Fellas - Spark-Notebook only Scala based notebook that
is - scalable and enables interactive work on Spark, Akka, Cassandra, & Kafka - plotting interactive plots in any Scala type - Data Fellas enables data-driven business, bringing productivity to data science in enterprise
@nyghtowl Cluster Juju bundle including: • DL4J • Mesos •
Spark • Spark Notebook
@nyghtowl Blog Making deep learning accessible on Openstack
@nyghtowl Research References RNNs • DL4J Overview: ◦ RNN &
LSTM Overview: http://deeplearning4j.org/recurrentnetwork ◦ Using RNNs: http://deeplearning4j.org/usingrnns.html • Karpathy: https://karpathy.github.io/2015/05/21/rnn-effectiveness/ • Intro: http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/ Github Repos • Spark Notebook: https://github.com/andypetrella/spark-notebook • DL4J Examples: https://github.com/deeplearning4j/dl4j-0.4-examples • DL4J Spark Examples: https://github.com/deeplearning4j/dl4j-spark-cdh5-examples General ML Projects (referenced in presentation) • AlphaGo: http://i.dailymail.co.uk/i/pix/2016/03/09/09/320583D500000578-3483569- Google_has_confirmed_its_AlphaGo_computer_has_taken_the_first_vi-a-11_1457516282972.jpg • Switzerland SAR: http://www.forensicmag.com/article/2016/02/autonomous-drones-fly-search-and-rescue-operations • VIV: http://www.dailytech.com/ExSiri+CEO+Poaches+Apple+to+Create+Viv+The+Global+Brain/article36387.htm
@nyghtowl Image References • http://www.dailytech. com/ExSiri+CEO+Poaches+Apple+to+Create+Viv+The+Global+Brain/article36387.htm • http://3.bp.blogspot.com/- mMPT3tgVWaQ/U5qVs64HbRI/AAAAAAAAJCM/lEE4OiJmRSY/s1600/thumb-down-smiley.png •
http://4.bp.blogspot.com/-pUoO5oOuzOc/VcomU6qKT4I/AAAAAAAAAsg/TonkgL1iEjE/s1600/Screen% 2BShot%2B2015-08-11%2Bat%2B9.43.21%2BAM.png • http://www.ucreative.com/inspiration/interesting-patterns-and-fractals-from-nature/ • http://i.telegraph.co.uk/multimedia/archive/02122/WILLIAM-SHAKESPEAR_2122089b.jpg • https://karpathy.github.io/2015/05/21/rnn-effectiveness/ • https://pbs.twimg.com/media/CJm9HmfVEAEXU0c.jpg:large • http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/ • http://i.dailymail.co.uk/i/pix/2016/03/09/09/320583D500000578-3483569- Google_has_confirmed_its_AlphaGo_computer_has_taken_the_first_vi-a-11_1457516282972.jpg • http://www.forensicmag.com/article/2016/02/autonomous-drones-fly-search-and-rescue-operations • Susan Eraly
@nyghtowl Deep Learning and Natural Language Processing with Spark Andy
Petrella | Data Fellas | @noootsab Melanie Warrick | Skymind | @nyghtowl