$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データコンペを開いた話
Search
Yamaguchi Takahiro
September 19, 2019
Science
0
420
データコンペを開いた話
データコンペを開いた時のあれこれのお話です
Yamaguchi Takahiro
September 19, 2019
Tweet
Share
More Decks by Yamaguchi Takahiro
See All by Yamaguchi Takahiro
コンペを気楽に開催しよーぜ!@関西Kaggler会
nyk510
0
1.3k
Django のセキュリティリリースを見る
nyk510
0
110
3分でMLアプリを作る 〜推論コードにちょっとのStreamlitを添えて〜
nyk510
1
1.1k
硬派で真面目なグラフを描く
nyk510
0
540
CORSをちゃんと理解する atmaバックエンド勉強会#4
nyk510
0
420
pythonで気軽にパッケージを作るのは良いという話。
nyk510
14
9.8k
RestAPIのページネーション atma バックエンド勉強会 #3
nyk510
1
1k
AWS CPU Credit を完全に理解する
nyk510
0
470
atmaCup#8 Opening
nyk510
0
290
Other Decks in Science
See All in Science
タンパク質間相互作⽤を利⽤した⼈⼯知能による新しい薬剤遺伝⼦-疾患相互作⽤の同定
tagtag
0
120
データベース12: 正規化(2/2) - データ従属性に基づく正規化
trycycle
PRO
0
1k
機械学習 - 決定木からはじめる機械学習
trycycle
PRO
0
1.2k
生成AIと学ぶPythonデータ分析再入門-Pythonによるクラスタリング・可視化をサクサク実施-
datascientistsociety
PRO
4
1.9k
Performance Evaluation and Ranking of Drivers in Multiple Motorsports Using Massey’s Method
konakalab
0
120
AI(人工知能)の過去・現在・未来 —AIは人間を超えるのか—
tagtag
1
210
先端因果推論特別研究チームの研究構想と 人間とAIが協働する自律因果探索の展望
sshimizu2006
3
570
データから見る勝敗の法則 / The principle of victory discovered by science (open lecture in NSSU)
konakalab
1
250
academist Prize 4期生 研究トーク延長戦!「美は世界を救う」っていうけど、どうやって?
jimpe_hitsuwari
0
460
Hakonwa-Quaternion
hiranabe
1
160
Celebrate UTIG: Staff and Student Awards 2025
utig
0
380
baseballrによるMLBデータの抽出と階層ベイズモデルによる打率の推定 / TokyoR118
dropout009
2
640
Featured
See All Featured
Embracing the Ebb and Flow
colly
88
4.9k
4 Signs Your Business is Dying
shpigford
186
22k
The Invisible Side of Design
smashingmag
302
51k
Avoiding the “Bad Training, Faster” Trap in the Age of AI
tmiket
0
32
jQuery: Nuts, Bolts and Bling
dougneiner
65
8.3k
Utilizing Notion as your number one productivity tool
mfonobong
2
180
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.5k
How to build a perfect <img>
jonoalderson
0
4.6k
技術選定の審美眼(2025年版) / Understanding the Spiral of Technologies 2025 edition
twada
PRO
115
91k
Docker and Python
trallard
47
3.7k
30 Presentation Tips
portentint
PRO
1
160
The Cult of Friendly URLs
andyhume
79
6.7k
Transcript
データコンペ を開いた話
Hello! 山口貴大 twitter @nyker_goto atma 株式会社 取締役/ DS / ふろんと
/ ばっくえんど / いんふら Kaggle Master kaggle.com/nyk510 京都大学大学院 最適化数理卒 SGDが好き 2
3 とつぜんですが
4 atmaCup ご存知ですよね?
5 え、知らない?
atmaCupとは atma 株式会社が主催するオンサイトデータコンペ https://atma-cup.atma.co.jp • 実際に会場に集まり、準備されたデータをテーマに沿って 分析・予測を行いその精度を競うイベント • 全員で一斉にスタートし短い時間で決着するため参加者のスキ ルがオンラインのデータコンペより強く結果に表れます。
6
atmaCup #1 8/3 #1(第2回)を開催 全参加者: 26人 (東京から10人以上) 参加者の半数が Kaggler の超ハイレベルな大会
Kaggle GrandMaster: 1人 Kaggle Master: 5人 Kaggle Expert: 7人 終了後のアンケートでは 全員が次回も参加したい(5段階評価)と回答 :D 7
しかし!! 8
コンペを作るのは なかなか大変!!! 9
大変だったこと × システムを作るのが大変 × 使うデータの選定が大変 × いい感じの解ける問題を作るのが大変 10
Kaggle っぽいシステムを作る必要性 • スコア計算/ランキング • ディスカッション・Vote • チームマージ… Vue.js +
Nuxt ✖ DjangoRestFramework GitlabCIによる自動デプロイ + AWS(ECS) つくってわかるアプリとしての Kaggle の凄さ 1.システムを作るのが大変 11
2.使うデータの選定が大変 それを解いてためになる問題にしたい • 匿名データではないリアルなデータを用意 (まあまあ大変) Train/Public/Private の分割は慎重に…… • Leakage があると何を言われるかわからないこわい
いい感じ(要出典)にハンドリングできるデータ量に • 一日しかないのでその中で扱えるぐらいのいい感じ(要出典)の データ 12
3.いい感じの解ける問題を作るのが大変 Leak とかなかったらいいかというとそうでもない • 解けないと面白くない • でも簡単すぎると差がつかない いい感じ(要出典)に差がつくような問題設定にする必要がある 13
結果どうなるか… 14
いい感じに作るの 大変すぎて病む 15
16 *コンペ前日
よかったこと!! × みんなで解くのは楽しい これは本当に、たのしい!! × [回答者として]とても勉強になる みんなが何をやっているか知れるのは大きい × [出題者として]出題の難しさを知れる 17
よだん AutoMLも参戦してました (8位/31) くわしい顛末はブログで AutoML Tablesを使ってKagglerを倒せなかった話 #atmaCup https://atma.hatenablog.com/entry/2019/08/26/180951 18
次回 10月 ~ 11月頃 開催予定 データ提供元募集中! atmaCup #2
THANKS! Arigato Gozaimashita !! 20