Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データコンペを開いた話
Search
Yamaguchi Takahiro
September 19, 2019
Science
0
420
データコンペを開いた話
データコンペを開いた時のあれこれのお話です
Yamaguchi Takahiro
September 19, 2019
Tweet
Share
More Decks by Yamaguchi Takahiro
See All by Yamaguchi Takahiro
コンペを気楽に開催しよーぜ!@関西Kaggler会
nyk510
0
1.3k
Django のセキュリティリリースを見る
nyk510
0
95
3分でMLアプリを作る 〜推論コードにちょっとのStreamlitを添えて〜
nyk510
1
1.1k
硬派で真面目なグラフを描く
nyk510
0
520
CORSをちゃんと理解する atmaバックエンド勉強会#4
nyk510
0
400
pythonで気軽にパッケージを作るのは良いという話。
nyk510
14
9.7k
RestAPIのページネーション atma バックエンド勉強会 #3
nyk510
1
970
AWS CPU Credit を完全に理解する
nyk510
0
460
atmaCup#8 Opening
nyk510
0
260
Other Decks in Science
See All in Science
サイゼミ用因果推論
lw
1
7.4k
データベース01: データベースを使わない世界
trycycle
PRO
1
750
ド文系だった私が、 KaggleのNCAAコンペでソロ金取れるまで
wakamatsu_takumu
2
1.1k
メール送信サーバの集約における透過型SMTP プロキシの定量評価 / Quantitative Evaluation of Transparent SMTP Proxy in Email Sending Server Aggregation
linyows
0
990
データベース12: 正規化(2/2) - データ従属性に基づく正規化
trycycle
PRO
0
950
生成検索エンジン最適化に関する研究の紹介
ynakano
2
1.3k
動的トリートメント・レジームを推定するDynTxRegimeパッケージ
saltcooky12
0
170
機械学習 - 授業概要
trycycle
PRO
0
220
Cross-Media Information Spaces and Architectures (CISA)
signer
PRO
3
31k
統計的因果探索: 背景知識とデータにより因果仮説を探索する
sshimizu2006
4
970
3次元点群を利用した植物の葉の自動セグメンテーションについて
kentaitakura
2
1.3k
データベース05: SQL(2/3) 結合質問
trycycle
PRO
0
780
Featured
See All Featured
Reflections from 52 weeks, 52 projects
jeffersonlam
351
21k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
BBQ
matthewcrist
89
9.8k
Build The Right Thing And Hit Your Dates
maggiecrowley
37
2.8k
Visualization
eitanlees
146
16k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
36
2.5k
Designing for humans not robots
tammielis
253
25k
Building Flexible Design Systems
yeseniaperezcruz
328
39k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Optimizing for Happiness
mojombo
379
70k
The Cult of Friendly URLs
andyhume
79
6.5k
Rebuilding a faster, lazier Slack
samanthasiow
83
9.1k
Transcript
データコンペ を開いた話
Hello! 山口貴大 twitter @nyker_goto atma 株式会社 取締役/ DS / ふろんと
/ ばっくえんど / いんふら Kaggle Master kaggle.com/nyk510 京都大学大学院 最適化数理卒 SGDが好き 2
3 とつぜんですが
4 atmaCup ご存知ですよね?
5 え、知らない?
atmaCupとは atma 株式会社が主催するオンサイトデータコンペ https://atma-cup.atma.co.jp • 実際に会場に集まり、準備されたデータをテーマに沿って 分析・予測を行いその精度を競うイベント • 全員で一斉にスタートし短い時間で決着するため参加者のスキ ルがオンラインのデータコンペより強く結果に表れます。
6
atmaCup #1 8/3 #1(第2回)を開催 全参加者: 26人 (東京から10人以上) 参加者の半数が Kaggler の超ハイレベルな大会
Kaggle GrandMaster: 1人 Kaggle Master: 5人 Kaggle Expert: 7人 終了後のアンケートでは 全員が次回も参加したい(5段階評価)と回答 :D 7
しかし!! 8
コンペを作るのは なかなか大変!!! 9
大変だったこと × システムを作るのが大変 × 使うデータの選定が大変 × いい感じの解ける問題を作るのが大変 10
Kaggle っぽいシステムを作る必要性 • スコア計算/ランキング • ディスカッション・Vote • チームマージ… Vue.js +
Nuxt ✖ DjangoRestFramework GitlabCIによる自動デプロイ + AWS(ECS) つくってわかるアプリとしての Kaggle の凄さ 1.システムを作るのが大変 11
2.使うデータの選定が大変 それを解いてためになる問題にしたい • 匿名データではないリアルなデータを用意 (まあまあ大変) Train/Public/Private の分割は慎重に…… • Leakage があると何を言われるかわからないこわい
いい感じ(要出典)にハンドリングできるデータ量に • 一日しかないのでその中で扱えるぐらいのいい感じ(要出典)の データ 12
3.いい感じの解ける問題を作るのが大変 Leak とかなかったらいいかというとそうでもない • 解けないと面白くない • でも簡単すぎると差がつかない いい感じ(要出典)に差がつくような問題設定にする必要がある 13
結果どうなるか… 14
いい感じに作るの 大変すぎて病む 15
16 *コンペ前日
よかったこと!! × みんなで解くのは楽しい これは本当に、たのしい!! × [回答者として]とても勉強になる みんなが何をやっているか知れるのは大きい × [出題者として]出題の難しさを知れる 17
よだん AutoMLも参戦してました (8位/31) くわしい顛末はブログで AutoML Tablesを使ってKagglerを倒せなかった話 #atmaCup https://atma.hatenablog.com/entry/2019/08/26/180951 18
次回 10月 ~ 11月頃 開催予定 データ提供元募集中! atmaCup #2
THANKS! Arigato Gozaimashita !! 20