Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データコンペを開いた話
Search
Yamaguchi Takahiro
September 19, 2019
Science
0
410
データコンペを開いた話
データコンペを開いた時のあれこれのお話です
Yamaguchi Takahiro
September 19, 2019
Tweet
Share
More Decks by Yamaguchi Takahiro
See All by Yamaguchi Takahiro
コンペを気楽に開催しよーぜ!@関西Kaggler会
nyk510
0
1.2k
Django のセキュリティリリースを見る
nyk510
0
70
3分でMLアプリを作る 〜推論コードにちょっとのStreamlitを添えて〜
nyk510
1
1.1k
硬派で真面目なグラフを描く
nyk510
0
490
CORSをちゃんと理解する atmaバックエンド勉強会#4
nyk510
0
380
pythonで気軽にパッケージを作るのは良いという話。
nyk510
14
9.5k
RestAPIのページネーション atma バックエンド勉強会 #3
nyk510
1
890
AWS CPU Credit を完全に理解する
nyk510
0
430
atmaCup#8 Opening
nyk510
0
240
Other Decks in Science
See All in Science
重複排除・高速バックアップ・ランサムウェア対策 三拍子そろったExaGrid × Veeam連携セミナー
climbteam
0
210
butterfly_effect/butterfly_effect_in-house
florets1
1
150
はじめてのバックドア基準:あるいは、重回帰分析の偏回帰係数を因果効果の推定値として解釈してよいのか問題
takehikoihayashi
2
1.5k
トラブルがあったコンペに学ぶデータ分析
tereka114
2
1.5k
非同期コミュニケーションの構造 -チャットツールを用いた組織における情報の流れの設計について-
koisono
0
220
Valuable Lessons Learned on Kaggle’s ARC AGI LLM Challenge (PyDataGlobal 2024)
ianozsvald
0
260
大規模言語モデルの論理構造の把握能力と予測モデルの生成
fuyu_quant0
0
110
オンプレミス環境にKubernetesを構築する
koukimiura
0
160
Factorized Diffusion: Perceptual Illusions by Noise Decomposition
tomoaki0705
0
350
01_篠原弘道_SIPガバニングボード座長_ポスコロSIPへの期待.pdf
sip3ristex
0
240
MoveItを使った産業用ロボット向け動作作成方法の紹介 / Introduction to creating motion for industrial robots using MoveIt
ry0_ka
0
340
Visual Analytics for R&D Intelligence @Funding the Commons & DeSci Tokyo 2024
hayataka88
0
150
Featured
See All Featured
Rebuilding a faster, lazier Slack
samanthasiow
80
8.9k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
33
2.1k
A better future with KSS
kneath
238
17k
Statistics for Hackers
jakevdp
797
220k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
49k
Java REST API Framework Comparison - PWX 2021
mraible
29
8.4k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.5k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Building Adaptive Systems
keathley
40
2.4k
Side Projects
sachag
452
42k
Become a Pro
speakerdeck
PRO
26
5.2k
Adopting Sorbet at Scale
ufuk
75
9.3k
Transcript
データコンペ を開いた話
Hello! 山口貴大 twitter @nyker_goto atma 株式会社 取締役/ DS / ふろんと
/ ばっくえんど / いんふら Kaggle Master kaggle.com/nyk510 京都大学大学院 最適化数理卒 SGDが好き 2
3 とつぜんですが
4 atmaCup ご存知ですよね?
5 え、知らない?
atmaCupとは atma 株式会社が主催するオンサイトデータコンペ https://atma-cup.atma.co.jp • 実際に会場に集まり、準備されたデータをテーマに沿って 分析・予測を行いその精度を競うイベント • 全員で一斉にスタートし短い時間で決着するため参加者のスキ ルがオンラインのデータコンペより強く結果に表れます。
6
atmaCup #1 8/3 #1(第2回)を開催 全参加者: 26人 (東京から10人以上) 参加者の半数が Kaggler の超ハイレベルな大会
Kaggle GrandMaster: 1人 Kaggle Master: 5人 Kaggle Expert: 7人 終了後のアンケートでは 全員が次回も参加したい(5段階評価)と回答 :D 7
しかし!! 8
コンペを作るのは なかなか大変!!! 9
大変だったこと × システムを作るのが大変 × 使うデータの選定が大変 × いい感じの解ける問題を作るのが大変 10
Kaggle っぽいシステムを作る必要性 • スコア計算/ランキング • ディスカッション・Vote • チームマージ… Vue.js +
Nuxt ✖ DjangoRestFramework GitlabCIによる自動デプロイ + AWS(ECS) つくってわかるアプリとしての Kaggle の凄さ 1.システムを作るのが大変 11
2.使うデータの選定が大変 それを解いてためになる問題にしたい • 匿名データではないリアルなデータを用意 (まあまあ大変) Train/Public/Private の分割は慎重に…… • Leakage があると何を言われるかわからないこわい
いい感じ(要出典)にハンドリングできるデータ量に • 一日しかないのでその中で扱えるぐらいのいい感じ(要出典)の データ 12
3.いい感じの解ける問題を作るのが大変 Leak とかなかったらいいかというとそうでもない • 解けないと面白くない • でも簡単すぎると差がつかない いい感じ(要出典)に差がつくような問題設定にする必要がある 13
結果どうなるか… 14
いい感じに作るの 大変すぎて病む 15
16 *コンペ前日
よかったこと!! × みんなで解くのは楽しい これは本当に、たのしい!! × [回答者として]とても勉強になる みんなが何をやっているか知れるのは大きい × [出題者として]出題の難しさを知れる 17
よだん AutoMLも参戦してました (8位/31) くわしい顛末はブログで AutoML Tablesを使ってKagglerを倒せなかった話 #atmaCup https://atma.hatenablog.com/entry/2019/08/26/180951 18
次回 10月 ~ 11月頃 開催予定 データ提供元募集中! atmaCup #2
THANKS! Arigato Gozaimashita !! 20