Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
3分でMLアプリを作る 〜推論コードにちょっとのStreamlitを添えて〜
Search
Yamaguchi Takahiro
April 14, 2022
Technology
1
1.1k
3分でMLアプリを作る 〜推論コードにちょっとのStreamlitを添えて〜
3分クッキング的にMLアプリを作れるよという話です。
Yamaguchi Takahiro
April 14, 2022
Tweet
Share
More Decks by Yamaguchi Takahiro
See All by Yamaguchi Takahiro
コンペを気楽に開催しよーぜ!@関西Kaggler会
nyk510
0
1.3k
Django のセキュリティリリースを見る
nyk510
0
99
硬派で真面目なグラフを描く
nyk510
0
520
CORSをちゃんと理解する atmaバックエンド勉強会#4
nyk510
0
410
pythonで気軽にパッケージを作るのは良いという話。
nyk510
14
9.7k
RestAPIのページネーション atma バックエンド勉強会 #3
nyk510
1
970
AWS CPU Credit を完全に理解する
nyk510
0
460
atmaCup#8 Opening
nyk510
0
270
オンサイトデータコンペの魅力: 関わる全員が楽しいコンペ設計のための取り組み
nyk510
3
5.5k
Other Decks in Technology
See All in Technology
Rustから学ぶ 非同期処理の仕組み
skanehira
1
150
機械学習を扱うプラットフォーム開発と運用事例
lycorptech_jp
PRO
0
620
「どこから読む?」コードとカルチャーに最速で馴染むための実践ガイド
zozotech
PRO
0
560
2025/09/16 仕様駆動開発とAI-DLCが導くAI駆動開発の新フェーズ
masahiro_okamura
0
130
JTCにおける内製×スクラム開発への挑戦〜内製化率95%達成の舞台裏/JTC's challenge of in-house development with Scrum
aeonpeople
0
260
COVESA VSSによる車両データモデルの標準化とAWS IoT FleetWiseの活用
osawa
1
390
開発者を支える Internal Developer Portal のイマとコレカラ / To-day and To-morrow of Internal Developer Portals: Supporting Developers
aoto
PRO
1
480
テストを軸にした生き残り術
kworkdev
PRO
0
210
いま注目のAIエージェントを作ってみよう
supermarimobros
0
350
下手な強制、ダメ!絶対! 「ガードレール」を「檻」にさせない"ガバナンス"の取り方とは?
tsukaman
2
460
IoT x エッジAI - リアルタイ ムAI活用のPoCを今すぐ始め る方法 -
niizawat
0
120
共有と分離 - Compose Multiplatform "本番導入" の設計指針
error96num
2
1.1k
Featured
See All Featured
Typedesign – Prime Four
hannesfritz
42
2.8k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.1k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.4k
Bash Introduction
62gerente
615
210k
Practical Orchestrator
shlominoach
190
11k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
Making the Leap to Tech Lead
cromwellryan
135
9.5k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
34
6k
A designer walks into a library…
pauljervisheath
207
24k
For a Future-Friendly Web
brad_frost
180
9.9k
Code Review Best Practice
trishagee
71
19k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
31
2.2k
Transcript
3分でMLアプリを作る 〜 推論コードにちょっとのStreamlitを添えて 〜 atma株式会社 山口貴大@nyk510
自己紹介 山口貴大 atma(アートマ)株式会社 取締役 学生時代に数理最適化の応用としての機械学習に興味をもち 新卒でatma入社。データ分析領域から、エンジニアとして フロントエンド・バックエンドの開発を行っています。 twitter: @nyker_goto
突然ですが、こんなことは無いですか? • 画像認識のモデルを作った! • 次はノンエンジニアに推論結果を共有したい!
意外とめんどくさい .py だと、推論できる人が実装者に限られる • 画像渡すので推論して!の要望に都度答える必要がある • 依頼が何度も来ると大変
めんどくさいなら WEBアプリにして 直接使ってもらえばよいのでは!
でも作るのは大変じゃない? • バックエンドわからん • フロントエンドわからん
わからんくても3分でできるよ!
3分は言い過ぎでは? → 基本の推論コードがあったら すぐできます
前提条件 推論用のコードは書いている • 画像を受け取ってモデルに入れてその予測値を返すコードがある。 Streamlit が install 済み • python
のパッケージ。 • 必要最小限の記述量でサーバーと入力・出力ができる
💡 利用のステップ • 普通に推論のコードを書く • 入出力部分を streamlit に直す • streamlit
server を立ち上げる > 紹介するコードは https://github.com/nyk510/3-min-ml-app にあります
推論用のコードを書く よくある推論コードです。 • 学習済みのモデルを読み込んで • 推論したい画像を読み込み • 推論して結果を保存 (今回は pytorch
を利用しています) 基本はこれで完成している。
入出力部分を Streamlit に直す 予測結果の出力 (st.pyploy/dataframe) 画像の受け取り (st.file_upload) Streamlit を10行ほど添えます。 先程の推論コード違うのは次の2点
• 画像の受け取り • 予測結果の出力 上記2つを Streamlit の関数で記述すると ブラウザのUI上で画像の選択 結果の可視化が行えるようになります。
Streamlit server を立ち上げる https://github.com/nyk510/3-min-ml-app `streamlit run your/application/path.py` を実行します。
アプリを公開する Streamlit が提供しているクラウド https://streamlit.io/cloud を使うとそ のまま公開することもできます! (時間がないので割愛…) もちろん自分でマシンを借りて起動して もOK!
もちろんこれで全部OKとなることは少ない… より強い要求が来ると大変😣 • ログイン認証つけたい ◦ 認証系の処理を追加する必要がある • 細かいデザインのカスタマイズをしたい ◦ 場合によっては
streamlit でなく自前で実装したほうが楽 ◦ フロントエンドの知識が必要がある • 推論の処理は別のサーバーに用意したい (たくさん推論する場合でも動かしたい) ◦ 推論サーバを実装する必要がある ◦ バックエンドの知識が必要 とはいえ、手軽にできる技があると何かと便利です。
まとめ • Streamlitを使うとサクッとMLアプリを作ることができます。 • 3分は盛りすぎてるかもしれませんが一度やったことがあれば短時 間でアプリ化できます。 • ささっとデモを試してもらうには十分な機能があるのでとても便利 です! 技としてとても優秀。