Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
3分でMLアプリを作る 〜推論コードにちょっとのStreamlitを添えて〜
Search
Yamaguchi Takahiro
April 14, 2022
Technology
1
1.1k
3分でMLアプリを作る 〜推論コードにちょっとのStreamlitを添えて〜
3分クッキング的にMLアプリを作れるよという話です。
Yamaguchi Takahiro
April 14, 2022
Tweet
Share
More Decks by Yamaguchi Takahiro
See All by Yamaguchi Takahiro
コンペを気楽に開催しよーぜ!@関西Kaggler会
nyk510
0
1.3k
Django のセキュリティリリースを見る
nyk510
0
110
硬派で真面目なグラフを描く
nyk510
0
540
CORSをちゃんと理解する atmaバックエンド勉強会#4
nyk510
0
430
pythonで気軽にパッケージを作るのは良いという話。
nyk510
14
9.8k
RestAPIのページネーション atma バックエンド勉強会 #3
nyk510
1
1k
AWS CPU Credit を完全に理解する
nyk510
0
470
atmaCup#8 Opening
nyk510
0
290
オンサイトデータコンペの魅力: 関わる全員が楽しいコンペ設計のための取り組み
nyk510
3
5.5k
Other Decks in Technology
See All in Technology
普段使ってるClaude Skillsの紹介(by Notebooklm)
zerebom
8
2.2k
20251222_サンフランシスコサバイバル術
ponponmikankan
2
140
ペアーズにおけるAIエージェント 基盤とText to SQLツールの紹介
hisamouna
2
1.7k
Amazon Bedrock Knowledge Bases × メタデータ活用で実現する検証可能な RAG 設計
tomoaki25
6
2.4k
Oracle Database@Azure:サービス概要のご紹介
oracle4engineer
PRO
2
200
会社紹介資料 / Sansan Company Profile
sansan33
PRO
11
390k
Strands Agents × インタリーブ思考 で変わるAIエージェント設計 / Strands Agents x Interleaved Thinking AI Agents
takanorig
5
2.1k
『君の名は』と聞く君の名は。 / Your name, you who asks for mine.
nttcom
1
120
アプリにAIを正しく組み込むための アーキテクチャ── 国産LLMの現実と実践
kohju
0
220
AR Guitar: Expanding Guitar Performance from a Live House to Urban Space
ekito_station
0
230
AWS運用を効率化する!AWS Organizationsを軸にした一元管理の実践/nikkei-tech-talk-202512
nikkei_engineer_recruiting
0
170
AWSインフルエンサーへの道 / load of AWS Influencer
whisaiyo
0
220
Featured
See All Featured
Utilizing Notion as your number one productivity tool
mfonobong
2
190
Why Mistakes Are the Best Teachers: Turning Failure into a Pathway for Growth
auna
0
28
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
286
14k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
[RailsConf 2023] Rails as a piece of cake
palkan
58
6.2k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.4k
Noah Learner - AI + Me: how we built a GSC Bulk Export data pipeline
techseoconnect
PRO
0
74
Navigating Weather and Climate Data
rabernat
0
53
Ethics towards AI in product and experience design
skipperchong
1
140
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
2
120
Claude Code どこまでも/ Claude Code Everywhere
nwiizo
61
49k
Building Applications with DynamoDB
mza
96
6.8k
Transcript
3分でMLアプリを作る 〜 推論コードにちょっとのStreamlitを添えて 〜 atma株式会社 山口貴大@nyk510
自己紹介 山口貴大 atma(アートマ)株式会社 取締役 学生時代に数理最適化の応用としての機械学習に興味をもち 新卒でatma入社。データ分析領域から、エンジニアとして フロントエンド・バックエンドの開発を行っています。 twitter: @nyker_goto
突然ですが、こんなことは無いですか? • 画像認識のモデルを作った! • 次はノンエンジニアに推論結果を共有したい!
意外とめんどくさい .py だと、推論できる人が実装者に限られる • 画像渡すので推論して!の要望に都度答える必要がある • 依頼が何度も来ると大変
めんどくさいなら WEBアプリにして 直接使ってもらえばよいのでは!
でも作るのは大変じゃない? • バックエンドわからん • フロントエンドわからん
わからんくても3分でできるよ!
3分は言い過ぎでは? → 基本の推論コードがあったら すぐできます
前提条件 推論用のコードは書いている • 画像を受け取ってモデルに入れてその予測値を返すコードがある。 Streamlit が install 済み • python
のパッケージ。 • 必要最小限の記述量でサーバーと入力・出力ができる
💡 利用のステップ • 普通に推論のコードを書く • 入出力部分を streamlit に直す • streamlit
server を立ち上げる > 紹介するコードは https://github.com/nyk510/3-min-ml-app にあります
推論用のコードを書く よくある推論コードです。 • 学習済みのモデルを読み込んで • 推論したい画像を読み込み • 推論して結果を保存 (今回は pytorch
を利用しています) 基本はこれで完成している。
入出力部分を Streamlit に直す 予測結果の出力 (st.pyploy/dataframe) 画像の受け取り (st.file_upload) Streamlit を10行ほど添えます。 先程の推論コード違うのは次の2点
• 画像の受け取り • 予測結果の出力 上記2つを Streamlit の関数で記述すると ブラウザのUI上で画像の選択 結果の可視化が行えるようになります。
Streamlit server を立ち上げる https://github.com/nyk510/3-min-ml-app `streamlit run your/application/path.py` を実行します。
アプリを公開する Streamlit が提供しているクラウド https://streamlit.io/cloud を使うとそ のまま公開することもできます! (時間がないので割愛…) もちろん自分でマシンを借りて起動して もOK!
もちろんこれで全部OKとなることは少ない… より強い要求が来ると大変😣 • ログイン認証つけたい ◦ 認証系の処理を追加する必要がある • 細かいデザインのカスタマイズをしたい ◦ 場合によっては
streamlit でなく自前で実装したほうが楽 ◦ フロントエンドの知識が必要がある • 推論の処理は別のサーバーに用意したい (たくさん推論する場合でも動かしたい) ◦ 推論サーバを実装する必要がある ◦ バックエンドの知識が必要 とはいえ、手軽にできる技があると何かと便利です。
まとめ • Streamlitを使うとサクッとMLアプリを作ることができます。 • 3分は盛りすぎてるかもしれませんが一度やったことがあれば短時 間でアプリ化できます。 • ささっとデモを試してもらうには十分な機能があるのでとても便利 です! 技としてとても優秀。