Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Fast In-memory Analytics for Retail Data with C...
Search
ernestoarbitrio
April 09, 2017
Technology
0
69
Fast In-memory Analytics for Retail Data with Columnar Databases
ernestoarbitrio
April 09, 2017
Tweet
Share
More Decks by ernestoarbitrio
See All by ernestoarbitrio
Enable effective Observability with Python
pamaron
0
130
PyConZA 2022 Best practices for good(ish) and clean(ish) code
pamaron
0
98
PyCon Italia 2022 Best practices for good(ish) and clean(ish) code
pamaron
0
230
Bokeh: Using python for interactive data visualization
pamaron
1
160
Keystroke Behavioural Analysis For Fraud Detection: Deep Learning as-a-service Infrastructure
pamaron
0
59
Indexing and search tons of data with ElasticSearch and Django
pamaron
0
400
Interactive plot with django and highchart JS (without JS)
pamaron
0
340
Other Decks in Technology
See All in Technology
【CEDEC2025】現場を理解して実現!ゲーム開発を効率化するWebサービスの開発と、利用促進のための継続的な改善
cygames
PRO
0
370
東京海上日動におけるセキュアな開発プロセスの取り組み
miyabit
0
200
Turn Your Community into a Fundraising Catalyst for Black Philanthropy Month
auctria
PRO
0
200
Ktor + Google Cloud Tasks/PubSub におけるOTel Messaging計装の実践
sansantech
PRO
1
330
私とAWSとの関わりの歩み~意志あるところに道は開けるかも?~
nagisa53
1
130
The Madness of Multiple Gemini CLIs Developing Simultaneously with Jujutsu
gunta
1
2.8k
AIに全任せしないコーディングとマネジメント思考
kikuchikakeru
0
280
ユーザー理解の爆速化とPdMの価値
kakehashi
PRO
1
110
増え続ける脆弱性に立ち向かう: 事前対策と優先度づけによる 持続可能な脆弱性管理 / Confronting the Rise of Vulnerabilities: Sustainable Management Through Proactive Measures and Prioritization
nttcom
1
210
Step Functions First - サーバーレスアーキテクチャの新しいパラダイム
taikis
1
280
株式会社島津製作所_研究開発(集団協業と知的生産)の現場を支える、OSS知識基盤システムの導入
akahane92
1
1.3k
AI時代の知識創造 ─GeminiとSECIモデルで読み解く “暗黙知”と創造の境界線
nyagasan
0
160
Featured
See All Featured
Documentation Writing (for coders)
carmenintech
72
4.9k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
138
34k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Art, The Web, and Tiny UX
lynnandtonic
301
21k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
126
53k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
Large-scale JavaScript Application Architecture
addyosmani
512
110k
Six Lessons from altMBA
skipperchong
28
3.9k
It's Worth the Effort
3n
185
28k
Building Applications with DynamoDB
mza
95
6.5k
Build The Right Thing And Hit Your Dates
maggiecrowley
37
2.8k
Visualization
eitanlees
146
16k
Transcript
Fast In-memory Analytics for Retail Data with Columnar Databases Ernesto
Arbitrio - Valerio Maggio arbitrio |
[email protected]
Florence April 6, 2017
Retail Data • Overview of data we have • granularity
• refresh/update rate • Quantity and storage required (space) • services developed around these data
“Materialized Views” • Description of what they are (non-technical) •
Some examples of Analytics we do on this data
The Problem! ~1 TByte Data We need OLAP Performance: 75M
rows -> 5hours
The Solution! Use a Column-oriented Database (i.e. Just swap Rows
with Columns) Chuck Norris Test Passed!
None
Query
None
Thank you get in touch @__pamaron__ @leriomaggio