Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Fast In-memory Analytics for Retail Data with C...
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
ernestoarbitrio
April 09, 2017
Technology
0
73
Fast In-memory Analytics for Retail Data with Columnar Databases
ernestoarbitrio
April 09, 2017
Tweet
Share
More Decks by ernestoarbitrio
See All by ernestoarbitrio
Enable effective Observability with Python
pamaron
0
140
PyConZA 2022 Best practices for good(ish) and clean(ish) code
pamaron
0
110
PyCon Italia 2022 Best practices for good(ish) and clean(ish) code
pamaron
0
260
Bokeh: Using python for interactive data visualization
pamaron
1
170
Keystroke Behavioural Analysis For Fraud Detection: Deep Learning as-a-service Infrastructure
pamaron
0
63
Indexing and search tons of data with ElasticSearch and Django
pamaron
0
410
Interactive plot with django and highchart JS (without JS)
pamaron
0
370
Other Decks in Technology
See All in Technology
Data Hubグループ 紹介資料
sansan33
PRO
0
2.7k
[CV勉強会@関東 World Model 読み会] Orbis: Overcoming Challenges of Long-Horizon Prediction in Driving World Models (Mousakhan+, NeurIPS 2025)
abemii
0
140
超初心者からでも大丈夫!オープンソース半導体の楽しみ方〜今こそ!オレオレチップをつくろう〜
keropiyo
0
110
データの整合性を保ちたいだけなんだ
shoheimitani
8
3.1k
AIエージェントを開発しよう!-AgentCore活用の勘所-
yukiogawa
0
170
20260208_第66回 コンピュータビジョン勉強会
keiichiito1978
0
150
All About Sansan – for New Global Engineers
sansan33
PRO
1
1.4k
広告の効果検証を題材にした因果推論の精度検証について
zozotech
PRO
0
190
SRE Enabling戦記 - 急成長する組織にSREを浸透させる戦いの歴史
markie1009
0
120
10Xにおける品質保証活動の全体像と改善 #no_more_wait_for_test
nihonbuson
PRO
2
300
コスト削減から「セキュリティと利便性」を担うプラットフォームへ
sansantech
PRO
3
1.5k
ZOZOにおけるAI活用の現在 ~開発組織全体での取り組みと試行錯誤~
zozotech
PRO
5
5.7k
Featured
See All Featured
Un-Boring Meetings
codingconduct
0
200
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
コードの90%をAIが書く世界で何が待っているのか / What awaits us in a world where 90% of the code is written by AI
rkaga
60
42k
Building AI with AI
inesmontani
PRO
1
700
Kristin Tynski - Automating Marketing Tasks With AI
techseoconnect
PRO
0
140
The Pragmatic Product Professional
lauravandoore
37
7.1k
RailsConf 2023
tenderlove
30
1.3k
So, you think you're a good person
axbom
PRO
2
1.9k
Learning to Love Humans: Emotional Interface Design
aarron
275
41k
[SF Ruby Conf 2025] Rails X
palkan
1
760
Beyond borders and beyond the search box: How to win the global "messy middle" with AI-driven SEO
davidcarrasco
1
53
The Straight Up "How To Draw Better" Workshop
denniskardys
239
140k
Transcript
Fast In-memory Analytics for Retail Data with Columnar Databases Ernesto
Arbitrio - Valerio Maggio arbitrio |
[email protected]
Florence April 6, 2017
Retail Data • Overview of data we have • granularity
• refresh/update rate • Quantity and storage required (space) • services developed around these data
“Materialized Views” • Description of what they are (non-technical) •
Some examples of Analytics we do on this data
The Problem! ~1 TByte Data We need OLAP Performance: 75M
rows -> 5hours
The Solution! Use a Column-oriented Database (i.e. Just swap Rows
with Columns) Chuck Norris Test Passed!
None
Query
None
Thank you get in touch @__pamaron__ @leriomaggio