Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Fast In-memory Analytics for Retail Data with C...
Search
ernestoarbitrio
April 09, 2017
Technology
0
71
Fast In-memory Analytics for Retail Data with Columnar Databases
ernestoarbitrio
April 09, 2017
Tweet
Share
More Decks by ernestoarbitrio
See All by ernestoarbitrio
Enable effective Observability with Python
pamaron
0
140
PyConZA 2022 Best practices for good(ish) and clean(ish) code
pamaron
0
110
PyCon Italia 2022 Best practices for good(ish) and clean(ish) code
pamaron
0
250
Bokeh: Using python for interactive data visualization
pamaron
1
170
Keystroke Behavioural Analysis For Fraud Detection: Deep Learning as-a-service Infrastructure
pamaron
0
61
Indexing and search tons of data with ElasticSearch and Django
pamaron
0
410
Interactive plot with django and highchart JS (without JS)
pamaron
0
370
Other Decks in Technology
See All in Technology
ESXi のAIOps だ!2025冬
unnowataru
0
470
Bill One 開発エンジニア 紹介資料
sansan33
PRO
4
17k
AI時代のアジャイルチームを目指して ー スクラムというコンフォートゾーンからの脱却 ー / Toward Agile Teams in the Age of AI
takaking22
9
3.1k
[PR] はじめてのデジタルアイデンティティという本を書きました
ritou
0
750
Agentic AIが変革するAWSの開発・運用・セキュリティ ~Frontier Agentsを試してみた~ / Agentic AI transforms AWS development, operations, and security I tried Frontier Agents
yuj1osm
0
200
202512_AIoT.pdf
iotcomjpadmin
0
180
Oracle Database@Azure:サービス概要のご紹介
oracle4engineer
PRO
3
260
小さく、早く、可能性を多産する。生成AIプロジェクト / prAIrie-dog
visional_engineering_and_design
0
320
Scrum Guide Expansion Pack が示す現代プロダクト開発への補完的視点
sonjin
0
310
純粋なイミュータブルモデルを設計してからイベントソーシングと組み合わせるDeciderの実践方法の紹介 /Introducing Decider Pattern with Event Sourcing
tomohisa
1
390
Oracle Database@AWS:サービス概要のご紹介
oracle4engineer
PRO
2
660
産業的変化も組織的変化も乗り越えられるチームへの成長 〜チームの変化から見出す明るい未来〜
kakehashi
PRO
1
250
Featured
See All Featured
Rails Girls Zürich Keynote
gr2m
95
14k
Utilizing Notion as your number one productivity tool
mfonobong
2
190
Discover your Explorer Soul
emna__ayadi
2
1k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
141
34k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.7k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
47
7.9k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
16k
Leadership Guide Workshop - DevTernity 2021
reverentgeek
1
180
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
1k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
Digital Projects Gone Horribly Wrong (And the UX Pros Who Still Save the Day) - Dean Schuster
uxyall
0
120
Building an army of robots
kneath
306
46k
Transcript
Fast In-memory Analytics for Retail Data with Columnar Databases Ernesto
Arbitrio - Valerio Maggio arbitrio |
[email protected]
Florence April 6, 2017
Retail Data • Overview of data we have • granularity
• refresh/update rate • Quantity and storage required (space) • services developed around these data
“Materialized Views” • Description of what they are (non-technical) •
Some examples of Analytics we do on this data
The Problem! ~1 TByte Data We need OLAP Performance: 75M
rows -> 5hours
The Solution! Use a Column-oriented Database (i.e. Just swap Rows
with Columns) Chuck Norris Test Passed!
None
Query
None
Thank you get in touch @__pamaron__ @leriomaggio