Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Fast In-memory Analytics for Retail Data with C...
Search
ernestoarbitrio
April 09, 2017
Technology
0
67
Fast In-memory Analytics for Retail Data with Columnar Databases
ernestoarbitrio
April 09, 2017
Tweet
Share
More Decks by ernestoarbitrio
See All by ernestoarbitrio
Enable effective Observability with Python
pamaron
0
120
PyConZA 2022 Best practices for good(ish) and clean(ish) code
pamaron
0
93
PyCon Italia 2022 Best practices for good(ish) and clean(ish) code
pamaron
0
230
Bokeh: Using python for interactive data visualization
pamaron
1
150
Keystroke Behavioural Analysis For Fraud Detection: Deep Learning as-a-service Infrastructure
pamaron
0
57
Indexing and search tons of data with ElasticSearch and Django
pamaron
0
380
Interactive plot with django and highchart JS (without JS)
pamaron
0
330
Other Decks in Technology
See All in Technology
Perl歴約10年のエンジニアがフルスタックTypeScriptに出会ってみた
papix
1
250
30代からでも遅くない! 内製開発の世界に飛び込み、最前線で戦うLLMアプリ開発エンジニアになろう
minorun365
PRO
16
5k
Mastraに入門してみた ~AWS CDKを添えて~
tsukuboshi
0
370
AIと共に乗り越える、 入社後2ヶ月の苦労と学習の軌跡
sai_kaneko
0
180
SnowflakeとDatabricks両方でRAGを構築してみた
kameitomohiro
1
550
MySQL Indexes and Histograms – How they really speed up your queries
lefred
0
140
Porting PicoRuby to Another Microcontroller: ESP32
yuuu
4
520
グループ ポリシー再確認 (2)
murachiakira
0
200
Microsoft Fabric vs Databricks vs (Snowflake) -若手エンジニアがそれぞれの強みと違いを比較してみた- "A Young Engineer's Comparison of Their Strengths and Differences"
reireireijinjin6
1
120
コードや知識を組み込む / Incorporating Codes and Knowledge
ks91
PRO
0
150
新卒エンジニアがCICDをモダナイズしてみた話
akashi_sn
2
280
バクラクの認証基盤の成長と現在地 / bakuraku-authn-platform
convto
4
870
Featured
See All Featured
Stop Working from a Prison Cell
hatefulcrawdad
268
20k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Thoughts on Productivity
jonyablonski
69
4.6k
The Pragmatic Product Professional
lauravandoore
33
6.6k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
19
1.2k
Typedesign – Prime Four
hannesfritz
41
2.6k
YesSQL, Process and Tooling at Scale
rocio
172
14k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
227
22k
Code Review Best Practice
trishagee
67
18k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.8k
For a Future-Friendly Web
brad_frost
177
9.7k
Transcript
Fast In-memory Analytics for Retail Data with Columnar Databases Ernesto
Arbitrio - Valerio Maggio arbitrio | vmaggio@fbk.eu Florence April 6, 2017
Retail Data • Overview of data we have • granularity
• refresh/update rate • Quantity and storage required (space) • services developed around these data
“Materialized Views” • Description of what they are (non-technical) •
Some examples of Analytics we do on this data
The Problem! ~1 TByte Data We need OLAP Performance: 75M
rows -> 5hours
The Solution! Use a Column-oriented Database (i.e. Just swap Rows
with Columns) Chuck Norris Test Passed!
None
Query
None
Thank you get in touch @__pamaron__ @leriomaggio