Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Fast In-memory Analytics for Retail Data with C...
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
ernestoarbitrio
April 09, 2017
Technology
0
73
Fast In-memory Analytics for Retail Data with Columnar Databases
ernestoarbitrio
April 09, 2017
Tweet
Share
More Decks by ernestoarbitrio
See All by ernestoarbitrio
Enable effective Observability with Python
pamaron
0
140
PyConZA 2022 Best practices for good(ish) and clean(ish) code
pamaron
0
110
PyCon Italia 2022 Best practices for good(ish) and clean(ish) code
pamaron
0
260
Bokeh: Using python for interactive data visualization
pamaron
1
170
Keystroke Behavioural Analysis For Fraud Detection: Deep Learning as-a-service Infrastructure
pamaron
0
63
Indexing and search tons of data with ElasticSearch and Django
pamaron
0
410
Interactive plot with django and highchart JS (without JS)
pamaron
0
370
Other Decks in Technology
See All in Technology
Data Hubグループ 紹介資料
sansan33
PRO
0
2.7k
SREのプラクティスを用いた3領域同時 マネジメントへの挑戦 〜SRE・情シス・セキュリティを統合した チーム運営術〜
coconala_engineer
2
660
AIエージェントを開発しよう!-AgentCore活用の勘所-
yukiogawa
0
170
【Oracle Cloud ウェビナー】[Oracle AI Database + AWS] Oracle Database@AWSで広がるクラウドの新たな選択肢とAI時代のデータ戦略
oracle4engineer
PRO
2
160
ブロックテーマでサイトをリニューアルした話 / 2026-01-31 Kansai WordPress Meetup
torounit
0
470
Digitization部 紹介資料
sansan33
PRO
1
6.8k
Bill One 開発エンジニア 紹介資料
sansan33
PRO
5
17k
学生・新卒・ジュニアから目指すSRE
hiroyaonoe
2
630
Introduction to Sansan, inc / Sansan Global Development Center, Inc.
sansan33
PRO
0
3k
セキュリティについて学ぶ会 / 2026 01 25 Takamatsu WordPress Meetup
rocketmartue
1
300
Amazon Bedrock Knowledge Basesチャンキング解説!
aoinoguchi
0
150
Oracle Base Database Service 技術詳細
oracle4engineer
PRO
15
93k
Featured
See All Featured
How to build an LLM SEO readiness audit: a practical framework
nmsamuel
1
640
Leveraging Curiosity to Care for An Aging Population
cassininazir
1
160
Designing Experiences People Love
moore
144
24k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
196
71k
Docker and Python
trallard
47
3.7k
Everyday Curiosity
cassininazir
0
130
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
Self-Hosted WebAssembly Runtime for Runtime-Neutral Checkpoint/Restore in Edge–Cloud Continuum
chikuwait
0
330
Color Theory Basics | Prateek | Gurzu
gurzu
0
200
Prompt Engineering for Job Search
mfonobong
0
160
Understanding Cognitive Biases in Performance Measurement
bluesmoon
32
2.8k
AI: The stuff that nobody shows you
jnunemaker
PRO
2
260
Transcript
Fast In-memory Analytics for Retail Data with Columnar Databases Ernesto
Arbitrio - Valerio Maggio arbitrio |
[email protected]
Florence April 6, 2017
Retail Data • Overview of data we have • granularity
• refresh/update rate • Quantity and storage required (space) • services developed around these data
“Materialized Views” • Description of what they are (non-technical) •
Some examples of Analytics we do on this data
The Problem! ~1 TByte Data We need OLAP Performance: 75M
rows -> 5hours
The Solution! Use a Column-oriented Database (i.e. Just swap Rows
with Columns) Chuck Norris Test Passed!
None
Query
None
Thank you get in touch @__pamaron__ @leriomaggio