Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Fast In-memory Analytics for Retail Data with C...
Search
ernestoarbitrio
April 09, 2017
Technology
0
69
Fast In-memory Analytics for Retail Data with Columnar Databases
ernestoarbitrio
April 09, 2017
Tweet
Share
More Decks by ernestoarbitrio
See All by ernestoarbitrio
Enable effective Observability with Python
pamaron
0
130
PyConZA 2022 Best practices for good(ish) and clean(ish) code
pamaron
0
100
PyCon Italia 2022 Best practices for good(ish) and clean(ish) code
pamaron
0
240
Bokeh: Using python for interactive data visualization
pamaron
1
160
Keystroke Behavioural Analysis For Fraud Detection: Deep Learning as-a-service Infrastructure
pamaron
0
59
Indexing and search tons of data with ElasticSearch and Django
pamaron
0
400
Interactive plot with django and highchart JS (without JS)
pamaron
0
350
Other Decks in Technology
See All in Technology
Android Audio: Beyond Winning On It
atsushieno
0
880
初めてAWSを使うときのセキュリティ覚書〜初心者支部編〜
cmusudakeisuke
1
260
AWSを利用する上で知っておきたい名前解決のはなし(10分版)
nagisa53
10
3.2k
株式会社ログラス - 会社説明資料【エンジニア】/ Loglass Engineer
loglass2019
4
64k
複数サービスを支えるマルチテナント型Batch MLプラットフォーム
lycorptech_jp
PRO
1
440
まずはマネコンでちゃちゃっと作ってから、それをCDKにしてみよか。
yamada_r
2
110
AI時代を生き抜くエンジニアキャリアの築き方 (AI-Native 時代、エンジニアという道は 「最大の挑戦の場」となる) / Building an Engineering Career to Thrive in the Age of AI (In the AI-Native Era, the Path of Engineering Becomes the Ultimate Arena of Challenge)
jeongjaesoon
0
180
[ JAWS-UG 東京 CommunityBuilders Night #2 ]SlackとAmazon Q Developerで 運用効率化を模索する
sh_fk2
3
440
実践!カスタムインストラクション&スラッシュコマンド
puku0x
0
440
これでもう迷わない!Jetpack Composeの書き方実践ガイド
zozotech
PRO
0
900
Agile PBL at New Grads Trainings
kawaguti
PRO
1
440
新アイテムをどう使っていくか?みんなであーだこーだ言ってみよう / 20250911-rpi-jam-tokyo
akkiesoft
0
290
Featured
See All Featured
GraphQLとの向き合い方2022年版
quramy
49
14k
RailsConf 2023
tenderlove
30
1.2k
The Pragmatic Product Professional
lauravandoore
36
6.9k
Build The Right Thing And Hit Your Dates
maggiecrowley
37
2.9k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
Git: the NoSQL Database
bkeepers
PRO
431
66k
The Art of Programming - Codeland 2020
erikaheidi
56
13k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
30
9.7k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
188
55k
It's Worth the Effort
3n
187
28k
Writing Fast Ruby
sferik
628
62k
Product Roadmaps are Hard
iamctodd
PRO
54
11k
Transcript
Fast In-memory Analytics for Retail Data with Columnar Databases Ernesto
Arbitrio - Valerio Maggio arbitrio |
[email protected]
Florence April 6, 2017
Retail Data • Overview of data we have • granularity
• refresh/update rate • Quantity and storage required (space) • services developed around these data
“Materialized Views” • Description of what they are (non-technical) •
Some examples of Analytics we do on this data
The Problem! ~1 TByte Data We need OLAP Performance: 75M
rows -> 5hours
The Solution! Use a Column-oriented Database (i.e. Just swap Rows
with Columns) Chuck Norris Test Passed!
None
Query
None
Thank you get in touch @__pamaron__ @leriomaggio