Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Fast In-memory Analytics for Retail Data with C...
Search
ernestoarbitrio
April 09, 2017
Technology
0
69
Fast In-memory Analytics for Retail Data with Columnar Databases
ernestoarbitrio
April 09, 2017
Tweet
Share
More Decks by ernestoarbitrio
See All by ernestoarbitrio
Enable effective Observability with Python
pamaron
0
130
PyConZA 2022 Best practices for good(ish) and clean(ish) code
pamaron
0
100
PyCon Italia 2022 Best practices for good(ish) and clean(ish) code
pamaron
0
240
Bokeh: Using python for interactive data visualization
pamaron
1
160
Keystroke Behavioural Analysis For Fraud Detection: Deep Learning as-a-service Infrastructure
pamaron
0
59
Indexing and search tons of data with ElasticSearch and Django
pamaron
0
400
Interactive plot with django and highchart JS (without JS)
pamaron
0
360
Other Decks in Technology
See All in Technology
AWS IAM Identity Centerによる権限設定をグラフ構造で可視化+グラフRAGへの挑戦
ykimi
2
540
InsightX 会社説明資料/ Company deck
insightx
0
220
re:Inventに行きたい いつか行きたい 行けるようにできることは?
yama3133
0
110
今から間に合う re:Invent 準備グッズと現地の地図、その他ラスベガスを周る際の Tips/reinvent-preparation-guide
emiki
1
340
Master Dataグループ紹介資料
sansan33
PRO
1
3.9k
AI-ready"のための"データ基盤 〜 LLMOpsで事業貢献するための基盤づくり
ismk
0
130
今のコンピュータ、AI にも Web にも 向いていないので 作り直そう!!
piacerex
0
720
CloudComposerによる大規模ETL 「制御と実行の分離」の実践
leveragestech
0
200
20251102 WordCamp Kansai 2025
chiilog
1
700
Spec Driven Development入門/spec_driven_development_for_learners
hanhan1978
1
980
設計に疎いエンジニアでも始めやすいアーキテクチャドキュメント
phaya72
30
20k
技術の総合格闘技!?AIインフラの現在と未来。
ebiken
PRO
0
190
Featured
See All Featured
The Art of Programming - Codeland 2020
erikaheidi
56
14k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.7k
Optimising Largest Contentful Paint
csswizardry
37
3.5k
The Power of CSS Pseudo Elements
geoffreycrofte
80
6k
Being A Developer After 40
akosma
91
590k
Navigating Team Friction
lara
190
15k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.1k
The Straight Up "How To Draw Better" Workshop
denniskardys
239
140k
[RailsConf 2023] Rails as a piece of cake
palkan
57
6k
Making the Leap to Tech Lead
cromwellryan
135
9.6k
Transcript
Fast In-memory Analytics for Retail Data with Columnar Databases Ernesto
Arbitrio - Valerio Maggio arbitrio |
[email protected]
Florence April 6, 2017
Retail Data • Overview of data we have • granularity
• refresh/update rate • Quantity and storage required (space) • services developed around these data
“Materialized Views” • Description of what they are (non-technical) •
Some examples of Analytics we do on this data
The Problem! ~1 TByte Data We need OLAP Performance: 75M
rows -> 5hours
The Solution! Use a Column-oriented Database (i.e. Just swap Rows
with Columns) Chuck Norris Test Passed!
None
Query
None
Thank you get in touch @__pamaron__ @leriomaggio