Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
InfluxDB - a distributed events and time series...
Search
Paul Dix
April 27, 2014
Technology
1
2k
InfluxDB - a distributed events and time series database
Slides from my lightning talk at the GopherCon pre-party.
Paul Dix
April 27, 2014
Tweet
Share
More Decks by Paul Dix
See All by Paul Dix
InfluxDB IOx Project Update - 2021-02-10
pauldix
0
240
InfluxDB IOx data lifecycle and object store persistence
pauldix
1
640
InfluxDB 2.0 and Flux
pauldix
1
740
Flux and InfluxDB 2.0
pauldix
1
1.4k
Querying Prometheus with Flux
pauldix
1
940
Flux (#fluxlang): a new (time series) data scripting language
pauldix
7
5.2k
At Scale, Everything is Hard
pauldix
2
720
IFQL and the future of InfluxData
pauldix
2
1.4k
Time series & monitoring with InfluxDB and the TICK stack
pauldix
0
480
Other Decks in Technology
See All in Technology
20251027_マルチエージェントとは
almondo_event
1
480
スタートアップの現場で実践しているテストマネジメント #jasst_kyushu
makky_tyuyan
0
140
OpenCensusと歩んだ7年間
bgpat
0
230
20251029_Cursor Meetup Tokyo #02_MK_「あなたのAI、私のシェル」 - プロンプトインジェクションによるエージェントのハイジャック
mk0721
PRO
5
2k
Behind Postgres 18: The People, the Code, & the Invisible Work | Claire Giordano | PGConfEU 2025
clairegiordano
0
150
入院医療費算定業務をAIで支援する:包括医療費支払い制度とDPCコーディング (公開版)
hagino3000
0
120
AIを使ってテストを楽にする
kworkdev
PRO
0
280
Oracle Database@Google Cloud:サービス概要のご紹介
oracle4engineer
PRO
0
390
Amazon Athena で JSON・Parquet・Iceberg のデータを検索し、性能を比較してみた
shigeruoda
1
230
Azure Well-Architected Framework入門
tomokusaba
1
140
生成AI時代のPythonセキュリティとガバナンス
abenben
0
150
SREのキャリアから経営に近づく - Enterprise Risk Managementを基に -
shonansurvivors
1
380
Featured
See All Featured
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.7k
RailsConf 2023
tenderlove
30
1.3k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
Speed Design
sergeychernyshev
32
1.2k
BBQ
matthewcrist
89
9.9k
How to train your dragon (web standard)
notwaldorf
97
6.3k
Reflections from 52 weeks, 52 projects
jeffersonlam
355
21k
Become a Pro
speakerdeck
PRO
29
5.6k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
132
19k
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
130k
Code Review Best Practice
trishagee
72
19k
Transcript
InfluxDB - a distributed time series, metrics, and events database
Paul Dix paul@influxdb.com @pauldix @influxdb
YC (W13), 3 people full time: Todd Persen John Shahid
Paul Dix (me)
What it’s for…
Metrics
Time Series
Analytics
Events
Can’t you just use a regular DB?
order by time?
Doesn’t Scale
Example from metrics: ! 100 measurements per host * 10
hosts * 8640 per day (once every 10s) * 365 days ! = 3,153,600,000 records per year
Have fun with that table…
But wait, we’ll just keep the summaries!
1h averages = ! 8,760,000 per year
Lose Detail and AdHoc Queryability
So let’s use Cassandra, HBase, or Scaleasaurus!
Too much application code and complexity
Application logic and scripts to compute summaries
Application level logic for balancing
No data locality for AdHoc queries
And then there’s more…
Web services
Libraries for web services
Data collection
Visualization
–Paul Dix “Building an application with an analytics component today
is like building a web application in 1998. You spend months building infrastructure before getting to the actual thing you want to build.”
Analytics should be about analyzing and interpreting data, not the
infrastructure to store and process it.
None
HTTP API Web services built in
HTTP API (writes) curl -X POST \ 'http://localhost:8086/db/mydb/series?u=paul&p=pass' \ -d
'[{"name":"foo", "columns":["val"], "points": [[3]]}]'
Data (with timestamp) [ { "name": "cpu", "columns": ["time", "value",
"host"], "points": [ [1395168540, 56.7, "foo.influxdb.com"], [1395168540, 43.9, "bar.influxdb.com"] ] } ]
HTTP API (queries) curl 'http://localhost:8086/db/mydb/series?u=paul&p=pass&q=.'
SQL-ish select * from events where time > now() -
1h
SQL-ish select * from “series with weird chars ()*@#0982#$” where
time > now() - 1h
Where Regex select line from application_logs where line =~ /.*ERROR.*/
and time > "2014-03-01" and time < "2014-03-03"
Only scans the time range Series and time are the
primary index
Work with many series…
Select from Regex select * from /stats\.cpu\..*/ limit 1
Downsampling on the fly…
Aggregates select percentile(90, value) from response_times group by time(10m) where
time > now() - 1d
Continuous Downsampling…
Continuous queries (summaries) select count(page_id) from events group by time(1h),
page_id into events.[page_id]
Series per page id select count from events.67 where time
> now() - 7d
Continuous queries (regex downsampling) select percentile(value, 90) as value from
/stats\.*/ group by time(5m) into percentile.90.:series_name
Percentile series per host select value from percentile.90.stats.cpu.host1 where time
> now() - 4h
Denormalization for performance
Range scans all user events for last hour select *
from events where user_id = 3 and time > now() - 1h
Continuous queries (fan out) select * from events into events.[user_id]
Series per user id select * from events.3 where time
> now() - 1h
Distributed Scale out, data locality, high availability
Raft for metadata We owe Ben Johnson a beer or
three…
Protobuf + TCP for queries, writes
Scalable Have billions of points in 1 series* or a
million different series
Libraries Go, Ruby, Javascript, Python, Node.js, Clojure, Java, Perl, Haskell,
R, Scala, CLI (ruby and node)
Visualization
Built-in UI
Grafana
Javascript library + D3, HighCharts, Rickshaw, NVD3, etc. Definitely more
to do here!
Data Collection CollectD Proxy, StatsD backend, Carbon ingestion, OpenTSDB (soon)
Coming Soon
ugh, Documentation
Series Metadata
Binary Protocol
Pubsub select * from some_series where host = “serverA” into
subscription() select percentile(90, value) from some_series group by time(1m) into subscription()
Custom Functions select myFunc(value) from some_series
Rack aware sharding and querying
Multi-datacenter replication Push and bi-directional
Indexes?
Ponies? Tell @jvshahid that you want your pony ;)
But it’s ready to go now. Production deployments already running.
Need help? support@influxdb.com Thanks! paul@influxdb.com @pauldix