Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
InfluxDB - a distributed events and time series...
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Paul Dix
April 27, 2014
Technology
1
2k
InfluxDB - a distributed events and time series database
Slides from my lightning talk at the GopherCon pre-party.
Paul Dix
April 27, 2014
Tweet
Share
More Decks by Paul Dix
See All by Paul Dix
InfluxDB IOx Project Update - 2021-02-10
pauldix
0
260
InfluxDB IOx data lifecycle and object store persistence
pauldix
1
660
InfluxDB 2.0 and Flux
pauldix
1
760
Flux and InfluxDB 2.0
pauldix
1
1.5k
Querying Prometheus with Flux
pauldix
1
960
Flux (#fluxlang): a new (time series) data scripting language
pauldix
7
5.3k
At Scale, Everything is Hard
pauldix
2
740
IFQL and the future of InfluxData
pauldix
2
1.4k
Time series & monitoring with InfluxDB and the TICK stack
pauldix
0
490
Other Decks in Technology
See All in Technology
Agile Leadership Summit Keynote 2026
m_seki
1
640
2026年、サーバーレスの現在地 -「制約と戦う技術」から「当たり前の実行基盤」へ- /serverless2026
slsops
2
260
レガシー共有バッチ基盤への挑戦 - SREドリブンなリアーキテクチャリングの取り組み
tatsukoni
0
220
SREチームをどう作り、どう育てるか ― Findy横断SREのマネジメント
rvirus0817
0
310
【Ubie】AIを活用した広告アセット「爆速」生成事例 | AI_Ops_Community_Vol.2
yoshiki_0316
1
110
22nd ACRi Webinar - NTT Kawahara-san's slide
nao_sumikawa
0
100
Claude_CodeでSEOを最適化する_AI_Ops_Community_Vol.2__マーケティングx_AIはここまで進化した.pdf
riku_423
2
600
10Xにおける品質保証活動の全体像と改善 #no_more_wait_for_test
nihonbuson
PRO
2
320
外部キー制約の知っておいて欲しいこと - RDBMSを正しく使うために必要なこと / FOREIGN KEY Night
soudai
PRO
12
5.6k
ブロックテーマ、WordPress でウェブサイトをつくるということ / 2026.02.07 Gifu WordPress Meetup
torounit
0
190
StrandsとNeptuneを使ってナレッジグラフを構築する
yakumo
1
120
広告の効果検証を題材にした因果推論の精度検証について
zozotech
PRO
0
190
Featured
See All Featured
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Why Mistakes Are the Best Teachers: Turning Failure into a Pathway for Growth
auna
0
54
Future Trends and Review - Lecture 12 - Web Technologies (1019888BNR)
signer
PRO
0
3.2k
Navigating Algorithm Shifts & AI Overviews - #SMXNext
aleyda
0
1.1k
Balancing Empowerment & Direction
lara
5
890
JAMstack: Web Apps at Ludicrous Speed - All Things Open 2022
reverentgeek
1
350
Kristin Tynski - Automating Marketing Tasks With AI
techseoconnect
PRO
0
150
<Decoding/> the Language of Devs - We Love SEO 2024
nikkihalliwell
1
130
How to build an LLM SEO readiness audit: a practical framework
nmsamuel
1
650
Dominate Local Search Results - an insider guide to GBP, reviews, and Local SEO
greggifford
PRO
0
78
Practical Orchestrator
shlominoach
191
11k
Navigating Team Friction
lara
192
16k
Transcript
InfluxDB - a distributed time series, metrics, and events database
Paul Dix paul@influxdb.com @pauldix @influxdb
YC (W13), 3 people full time: Todd Persen John Shahid
Paul Dix (me)
What it’s for…
Metrics
Time Series
Analytics
Events
Can’t you just use a regular DB?
order by time?
Doesn’t Scale
Example from metrics: ! 100 measurements per host * 10
hosts * 8640 per day (once every 10s) * 365 days ! = 3,153,600,000 records per year
Have fun with that table…
But wait, we’ll just keep the summaries!
1h averages = ! 8,760,000 per year
Lose Detail and AdHoc Queryability
So let’s use Cassandra, HBase, or Scaleasaurus!
Too much application code and complexity
Application logic and scripts to compute summaries
Application level logic for balancing
No data locality for AdHoc queries
And then there’s more…
Web services
Libraries for web services
Data collection
Visualization
–Paul Dix “Building an application with an analytics component today
is like building a web application in 1998. You spend months building infrastructure before getting to the actual thing you want to build.”
Analytics should be about analyzing and interpreting data, not the
infrastructure to store and process it.
None
HTTP API Web services built in
HTTP API (writes) curl -X POST \ 'http://localhost:8086/db/mydb/series?u=paul&p=pass' \ -d
'[{"name":"foo", "columns":["val"], "points": [[3]]}]'
Data (with timestamp) [ { "name": "cpu", "columns": ["time", "value",
"host"], "points": [ [1395168540, 56.7, "foo.influxdb.com"], [1395168540, 43.9, "bar.influxdb.com"] ] } ]
HTTP API (queries) curl 'http://localhost:8086/db/mydb/series?u=paul&p=pass&q=.'
SQL-ish select * from events where time > now() -
1h
SQL-ish select * from “series with weird chars ()*@#0982#$” where
time > now() - 1h
Where Regex select line from application_logs where line =~ /.*ERROR.*/
and time > "2014-03-01" and time < "2014-03-03"
Only scans the time range Series and time are the
primary index
Work with many series…
Select from Regex select * from /stats\.cpu\..*/ limit 1
Downsampling on the fly…
Aggregates select percentile(90, value) from response_times group by time(10m) where
time > now() - 1d
Continuous Downsampling…
Continuous queries (summaries) select count(page_id) from events group by time(1h),
page_id into events.[page_id]
Series per page id select count from events.67 where time
> now() - 7d
Continuous queries (regex downsampling) select percentile(value, 90) as value from
/stats\.*/ group by time(5m) into percentile.90.:series_name
Percentile series per host select value from percentile.90.stats.cpu.host1 where time
> now() - 4h
Denormalization for performance
Range scans all user events for last hour select *
from events where user_id = 3 and time > now() - 1h
Continuous queries (fan out) select * from events into events.[user_id]
Series per user id select * from events.3 where time
> now() - 1h
Distributed Scale out, data locality, high availability
Raft for metadata We owe Ben Johnson a beer or
three…
Protobuf + TCP for queries, writes
Scalable Have billions of points in 1 series* or a
million different series
Libraries Go, Ruby, Javascript, Python, Node.js, Clojure, Java, Perl, Haskell,
R, Scala, CLI (ruby and node)
Visualization
Built-in UI
Grafana
Javascript library + D3, HighCharts, Rickshaw, NVD3, etc. Definitely more
to do here!
Data Collection CollectD Proxy, StatsD backend, Carbon ingestion, OpenTSDB (soon)
Coming Soon
ugh, Documentation
Series Metadata
Binary Protocol
Pubsub select * from some_series where host = “serverA” into
subscription() select percentile(90, value) from some_series group by time(1m) into subscription()
Custom Functions select myFunc(value) from some_series
Rack aware sharding and querying
Multi-datacenter replication Push and bi-directional
Indexes?
Ponies? Tell @jvshahid that you want your pony ;)
But it’s ready to go now. Production deployments already running.
Need help? support@influxdb.com Thanks! paul@influxdb.com @pauldix