Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
InfluxDB - a distributed events and time series...
Search
Paul Dix
April 27, 2014
Technology
1
2k
InfluxDB - a distributed events and time series database
Slides from my lightning talk at the GopherCon pre-party.
Paul Dix
April 27, 2014
Tweet
Share
More Decks by Paul Dix
See All by Paul Dix
InfluxDB IOx Project Update - 2021-02-10
pauldix
0
230
InfluxDB IOx data lifecycle and object store persistence
pauldix
1
620
InfluxDB 2.0 and Flux
pauldix
1
730
Flux and InfluxDB 2.0
pauldix
1
1.3k
Querying Prometheus with Flux
pauldix
1
910
Flux (#fluxlang): a new (time series) data scripting language
pauldix
7
5.2k
At Scale, Everything is Hard
pauldix
2
710
IFQL and the future of InfluxData
pauldix
2
1.4k
Time series & monitoring with InfluxDB and the TICK stack
pauldix
0
470
Other Decks in Technology
See All in Technology
データグループにおけるフロントエンド開発
lycorptech_jp
PRO
1
100
ビズリーチにおけるリアーキテクティング実践事例 / JJUG CCC 2025 Spring
visional_engineering_and_design
1
120
LangSmith×Webhook連携で実現するプロンプトドリブンCI/CD
sergicalsix
1
230
【5分でわかる】セーフィー エンジニア向け会社紹介
safie_recruit
0
27k
20250707-AI活用の個人差を埋めるチームづくり
shnjtk
4
3.9k
OPENLOGI Company Profile
hr01
0
67k
敢えて生成AIを使わないマネジメント業務
kzkmaeda
2
450
さくらのIaaS基盤のモニタリングとOpenTelemetry/OSC Hokkaido 2025
fujiwara3
3
440
マネジメントって難しい、けどおもしろい / Management is tough, but fun! #em_findy
ar_tama
7
1.1k
Lufthansa ®️ USA Contact Numbers: Complete 2025 Support Guide
lufthanahelpsupport
0
200
高速なプロダクト開発を実現、創業期から掲げるエンタープライズアーキテクチャ
kawauso
2
9.4k
MUITにおける開発プロセスモダナイズの取り組みと開発生産性可視化の取り組みについて / Modernize the Development Process and Visualize Development Productivity at MUIT
muit
1
16k
Featured
See All Featured
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
181
54k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
26k
How to Think Like a Performance Engineer
csswizardry
25
1.7k
Automating Front-end Workflow
addyosmani
1370
200k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
281
13k
Large-scale JavaScript Application Architecture
addyosmani
512
110k
The Power of CSS Pseudo Elements
geoffreycrofte
77
5.9k
Facilitating Awesome Meetings
lara
54
6.4k
It's Worth the Effort
3n
185
28k
For a Future-Friendly Web
brad_frost
179
9.8k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
50
5.5k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
31
1.3k
Transcript
InfluxDB - a distributed time series, metrics, and events database
Paul Dix paul@influxdb.com @pauldix @influxdb
YC (W13), 3 people full time: Todd Persen John Shahid
Paul Dix (me)
What it’s for…
Metrics
Time Series
Analytics
Events
Can’t you just use a regular DB?
order by time?
Doesn’t Scale
Example from metrics: ! 100 measurements per host * 10
hosts * 8640 per day (once every 10s) * 365 days ! = 3,153,600,000 records per year
Have fun with that table…
But wait, we’ll just keep the summaries!
1h averages = ! 8,760,000 per year
Lose Detail and AdHoc Queryability
So let’s use Cassandra, HBase, or Scaleasaurus!
Too much application code and complexity
Application logic and scripts to compute summaries
Application level logic for balancing
No data locality for AdHoc queries
And then there’s more…
Web services
Libraries for web services
Data collection
Visualization
–Paul Dix “Building an application with an analytics component today
is like building a web application in 1998. You spend months building infrastructure before getting to the actual thing you want to build.”
Analytics should be about analyzing and interpreting data, not the
infrastructure to store and process it.
None
HTTP API Web services built in
HTTP API (writes) curl -X POST \ 'http://localhost:8086/db/mydb/series?u=paul&p=pass' \ -d
'[{"name":"foo", "columns":["val"], "points": [[3]]}]'
Data (with timestamp) [ { "name": "cpu", "columns": ["time", "value",
"host"], "points": [ [1395168540, 56.7, "foo.influxdb.com"], [1395168540, 43.9, "bar.influxdb.com"] ] } ]
HTTP API (queries) curl 'http://localhost:8086/db/mydb/series?u=paul&p=pass&q=.'
SQL-ish select * from events where time > now() -
1h
SQL-ish select * from “series with weird chars ()*@#0982#$” where
time > now() - 1h
Where Regex select line from application_logs where line =~ /.*ERROR.*/
and time > "2014-03-01" and time < "2014-03-03"
Only scans the time range Series and time are the
primary index
Work with many series…
Select from Regex select * from /stats\.cpu\..*/ limit 1
Downsampling on the fly…
Aggregates select percentile(90, value) from response_times group by time(10m) where
time > now() - 1d
Continuous Downsampling…
Continuous queries (summaries) select count(page_id) from events group by time(1h),
page_id into events.[page_id]
Series per page id select count from events.67 where time
> now() - 7d
Continuous queries (regex downsampling) select percentile(value, 90) as value from
/stats\.*/ group by time(5m) into percentile.90.:series_name
Percentile series per host select value from percentile.90.stats.cpu.host1 where time
> now() - 4h
Denormalization for performance
Range scans all user events for last hour select *
from events where user_id = 3 and time > now() - 1h
Continuous queries (fan out) select * from events into events.[user_id]
Series per user id select * from events.3 where time
> now() - 1h
Distributed Scale out, data locality, high availability
Raft for metadata We owe Ben Johnson a beer or
three…
Protobuf + TCP for queries, writes
Scalable Have billions of points in 1 series* or a
million different series
Libraries Go, Ruby, Javascript, Python, Node.js, Clojure, Java, Perl, Haskell,
R, Scala, CLI (ruby and node)
Visualization
Built-in UI
Grafana
Javascript library + D3, HighCharts, Rickshaw, NVD3, etc. Definitely more
to do here!
Data Collection CollectD Proxy, StatsD backend, Carbon ingestion, OpenTSDB (soon)
Coming Soon
ugh, Documentation
Series Metadata
Binary Protocol
Pubsub select * from some_series where host = “serverA” into
subscription() select percentile(90, value) from some_series group by time(1m) into subscription()
Custom Functions select myFunc(value) from some_series
Rack aware sharding and querying
Multi-datacenter replication Push and bi-directional
Indexes?
Ponies? Tell @jvshahid that you want your pony ;)
But it’s ready to go now. Production deployments already running.
Need help? support@influxdb.com Thanks! paul@influxdb.com @pauldix