Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
やさしくわかるPyTorch入門 / Easy to Learn PyTorch
Search
payanotty
October 28, 2021
Programming
1
1.1k
やさしくわかるPyTorch入門 / Easy to Learn PyTorch
connpassで実施したセミナーの資料になります。
https://studyco.connpass.com/event/227486/
payanotty
October 28, 2021
Tweet
Share
More Decks by payanotty
See All by payanotty
トークナイザー入門
payanotty
2
1.6k
LLM_Prompt_Recovery
payanotty
3
930
Embeddingモデルを使ったベクトル化のしくみ、fine-tuning手法を解説
payanotty
14
5.3k
Transformerによるテキストベクトル化を解説
payanotty
4
3.2k
Kaggle_LLMコンペの攻略法を解説.pdf
payanotty
1
1.4k
ManimMLでイケてるアニメーションを作ろう
payanotty
0
720
Lets Finetune LLM
payanotty
3
1.3k
Stable Diffusion Web UI, Let Your Fave Eat Ramen
payanotty
1
1.1k
Lets Finetune Stable Diffusion
payanotty
0
1.2k
Other Decks in Programming
See All in Programming
Blueskyのプラグインを作ってみた
hakkadaikon
1
270
マテリアルって何者?RealityKitで扱うマテリアル入門
nao_randd
0
140
TSConfigからTypeScriptの世界を覗く
planck16
2
1.3k
生成AI時代のフルスタック開発
kenn
10
2.7k
バランスを見極めよう!実装の意味を明示するための型定義 TSKaigi 2025 Day2 (5/24)
whatasoda
2
770
SpringBootにおけるオブザーバビリティのなにか
irof
1
880
Language Server と喋ろう – TSKaigi 2025
pizzacat83
2
660
💎 My RubyKaigi Effect in 2025: Top Ruby Companies 🌐
yasulab
PRO
1
130
がんばりすぎないコーディングルール運用術
tsukakei
1
180
RubyKaigi Hack Space in Tokyo & 函館最速 "予習" 会 / RubyKaigi Hack Space in Tokyo & The Fastest Briefing of RubyKaigi 2026 in Hakodate
moznion
1
120
TypeScript を活かしてデザインシステム MCP を作る / #tskaigi_after_night
izumin5210
4
470
衛星の軌道をWeb地図上に表示する
sankichi92
0
250
Featured
See All Featured
The Cult of Friendly URLs
andyhume
78
6.4k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
Writing Fast Ruby
sferik
628
61k
Code Review Best Practice
trishagee
68
18k
Designing Experiences People Love
moore
142
24k
How to Ace a Technical Interview
jacobian
276
23k
Designing for Performance
lara
608
69k
Fireside Chat
paigeccino
37
3.5k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
129
19k
Scaling GitHub
holman
459
140k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
48
5.4k
Transcript
やさしくわかる PyTorch入門
• 名前: 早野 康太 • お仕事: ◦ 深層学習エンジニア • 好きなこと:
◦ 音ゲー ◦ アニメ ◦ ウマ娘 ◦ 犬とか猫 発表者紹介
• Facebook AI Research (FAIR)により 開発された深層学習ライブラリ • Pythonで深層学習するなら TeonsorFlowとの2択 •
モデルの構造や学習の過程を 直感的に記述することができる PyTorchについて
• Tensor ◦ numpyとほとんど同じ感覚で使える ◦ 勾配 (偏微分) に関する 情報を持っている ◦
GPU上での行列計算が可能 • nn.Module ◦ 全てのモデルのベースとなる型 ◦ 新しいモデルを定義するときは これを継承する Tensor型とModule型
• Tensor ◦ numpyとほとんど同じ感覚で使える ◦ 勾配 (偏微分) に関する 情報を持っている ◦
GPU上での行列計算が可能 • nn.Module ◦ 全てのモデルのベースとなる型 ◦ 新しいモデルを定義するときは これを継承する Tensor型とModule型
• nn.Module ◦ パラメータをstate_dictの形式で 書き出せる ▪ {‘layer1’: Tensor()...} みたいな感じ Tensor型とModule型
• nn.Module ◦ パラメータをstate_dictの形式で 書き出せる ▪ {‘layer1’: Tensor()...} みたいな感じ ◦
forward ▪ 入力側から変数を流す ▪ モデルに合わせて自分で定義 Tensor型とModule型 forward
• nn.Module ◦ パラメータをstate_dictの形式で 書き出せる ▪ {‘layer1’: Tensor()...} みたいな感じ ◦
forward ▪ 入力側から変数を流す ▪ モデルに合わせて自分で定義 ◦ backward ▪ モデルの出力テンソルに対して 実行する ▪ 誤差逆伝播法で勾配を計算する Tensor型とModule型 backward forward
• nn.Module ◦ パラメータをstate_dictの形式で 書き出せる ▪ {‘layer1’: Tensor()...} みたいな感じ ◦
forward ▪ 入力側から変数を流す ▪ モデルに合わせて自分で定義 ◦ backward ▪ モデルの出力テンソルに対して 実行する ▪ 誤差逆伝播法で勾配を計算する Tensor型とModule型 backward forward
• 出力側から入力側に向かって 誤差信号を伝播させていく • 誤差信号 = 偏微分の値 ◦ (正確ではないが) ∂z/∂yとか∂y/∂xが伝播するイメージ
誤差逆伝播法 x y z backward forward
• PyTorchではTensor型同士の 計算が行われる際、 計算結果の中に勾配計算に 必要な情報が保持される • 計算結果にbackwardメソッドを 実行することで 誤差逆伝播法によって 勾配が計算される
自動微分
• y = x2, z = Σx ij 自動微分 x
y z
• y = x2, z = Σx ij • z.backward()
自動微分 x y z dz/dy dy/dx
• y = x2, z = Σx ij • z.backward()
• backward()を実行するとgrad内に勾配値が記録される ◦ y.grad = dz/dy ◦ x.grad = dz/dy * dy/dx 自動微分 x y z dz/dy dy/dx
• 勾配の分だけパラメータを更新する 微分→パラメータ更新 Loss Weight 勾配
• 勾配の分だけパラメータを更新する 微分→パラメータ更新 Loss Weight
• 勾配の分だけパラメータを更新する 微分→パラメータ更新 Loss Weight
• 勾配の分だけパラメータを更新する ◦ 実際はもう少し工夫があって アルゴリズムによっていろんな 更新の仕方がある • 勾配更新のアルゴリズム ◦ SGD
◦ Adam ← 大体これ使とけば間違いない ◦ AdaBeliaf 微分→パラメータ更新 Loss Weight
• forward ◦ モデルに入力を流仕込む ◦ モデルの出力と正解との誤差を計算する PyTorchでの深層学習の3つのステップ
• forward ◦ モデルに入力を流仕込む ◦ モデルの出力と正解との誤差を計算する • backward ◦ 誤差逆伝播で勾配を計算する
PyTorchでの深層学習の3つのステップ
• forward ◦ モデルに入力を流仕込む ◦ モデルの出力と正解との誤差を計算する • backward ◦ 誤差逆伝播で勾配を計算する
• step ◦ 勾配の分だけパラメータを更新する PyTorchでの深層学習の3つのステップ
• 手書き文字画像データ(MNIST)の分類に PyTorchでチャレンジしてみます ◦ Google Colabのノートブック PyTorch実践 ラベル = 5
• PyTorchの特徴 ◦ 自動微分の機能により forward → backwardの流れを直感的に記述することができる ◦ (今回は触れなかったが) ▪
GPU上での計算を高速化する手法に対応している ▪ モデルのレイヤーごとに学習率をいじれるなど 柔軟性の高いモデル設計が可能 • Google Colaboratoryで結構カンタンに試せちゃうので 興味ある方はぜひ触ってみてください さいごに