Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
やさしくわかるPyTorch入門 / Easy to Learn PyTorch
Search
payanotty
October 28, 2021
Programming
1
950
やさしくわかるPyTorch入門 / Easy to Learn PyTorch
connpassで実施したセミナーの資料になります。
https://studyco.connpass.com/event/227486/
payanotty
October 28, 2021
Tweet
Share
More Decks by payanotty
See All by payanotty
トークナイザー入門
payanotty
2
1.2k
LLM_Prompt_Recovery
payanotty
3
810
Embeddingモデルを使ったベクトル化のしくみ、fine-tuning手法を解説
payanotty
14
4k
Transformerによるテキストベクトル化を解説
payanotty
4
2.1k
Kaggle_LLMコンペの攻略法を解説.pdf
payanotty
1
1.2k
ManimMLでイケてるアニメーションを作ろう
payanotty
0
630
Lets Finetune LLM
payanotty
3
1.2k
Stable Diffusion Web UI, Let Your Fave Eat Ramen
payanotty
1
960
Lets Finetune Stable Diffusion
payanotty
0
1.2k
Other Decks in Programming
See All in Programming
AWS Lambdaから始まった Serverlessの「熱」とキャリアパス / It started with AWS Lambda Serverless “fever” and career path
seike460
PRO
1
260
ActiveSupport::Notifications supporting instrumentation of Rails apps with OpenTelemetry
ymtdzzz
1
230
3rd party scriptでもReactを使いたい! Preact + Reactのハイブリッド開発
righttouch
PRO
1
600
Realtime API 入門
riofujimon
0
150
[Do iOS '24] Ship your app on a Friday...and enjoy your weekend!
polpielladev
0
100
よくできたテンプレート言語として TypeScript + JSX を利用する試み / Using TypeScript + JSX outside of Web Frontend #TSKaigiKansai
izumin5210
6
1.7k
Compose 1.7のTextFieldはPOBox Plusで日本語変換できない
tomoya0x00
0
190
3 Effective Rules for Using Signals in Angular
manfredsteyer
PRO
0
110
Amazon Bedrock Agentsを用いてアプリ開発してみた!
har1101
0
330
Creating a Free Video Ad Network on the Edge
mizoguchicoji
0
120
ヤプリ新卒SREの オンボーディング
masaki12
0
130
TypeScriptでライブラリとの依存を限定的にする方法
tutinoko
2
670
Featured
See All Featured
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.3k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
42
9.2k
Building an army of robots
kneath
302
43k
The Cult of Friendly URLs
andyhume
78
6k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
131
33k
How to Ace a Technical Interview
jacobian
276
23k
Fireside Chat
paigeccino
34
3k
Into the Great Unknown - MozCon
thekraken
32
1.5k
Bash Introduction
62gerente
608
210k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
665
120k
Typedesign – Prime Four
hannesfritz
40
2.4k
Making the Leap to Tech Lead
cromwellryan
133
8.9k
Transcript
やさしくわかる PyTorch入門
• 名前: 早野 康太 • お仕事: ◦ 深層学習エンジニア • 好きなこと:
◦ 音ゲー ◦ アニメ ◦ ウマ娘 ◦ 犬とか猫 発表者紹介
• Facebook AI Research (FAIR)により 開発された深層学習ライブラリ • Pythonで深層学習するなら TeonsorFlowとの2択 •
モデルの構造や学習の過程を 直感的に記述することができる PyTorchについて
• Tensor ◦ numpyとほとんど同じ感覚で使える ◦ 勾配 (偏微分) に関する 情報を持っている ◦
GPU上での行列計算が可能 • nn.Module ◦ 全てのモデルのベースとなる型 ◦ 新しいモデルを定義するときは これを継承する Tensor型とModule型
• Tensor ◦ numpyとほとんど同じ感覚で使える ◦ 勾配 (偏微分) に関する 情報を持っている ◦
GPU上での行列計算が可能 • nn.Module ◦ 全てのモデルのベースとなる型 ◦ 新しいモデルを定義するときは これを継承する Tensor型とModule型
• nn.Module ◦ パラメータをstate_dictの形式で 書き出せる ▪ {‘layer1’: Tensor()...} みたいな感じ Tensor型とModule型
• nn.Module ◦ パラメータをstate_dictの形式で 書き出せる ▪ {‘layer1’: Tensor()...} みたいな感じ ◦
forward ▪ 入力側から変数を流す ▪ モデルに合わせて自分で定義 Tensor型とModule型 forward
• nn.Module ◦ パラメータをstate_dictの形式で 書き出せる ▪ {‘layer1’: Tensor()...} みたいな感じ ◦
forward ▪ 入力側から変数を流す ▪ モデルに合わせて自分で定義 ◦ backward ▪ モデルの出力テンソルに対して 実行する ▪ 誤差逆伝播法で勾配を計算する Tensor型とModule型 backward forward
• nn.Module ◦ パラメータをstate_dictの形式で 書き出せる ▪ {‘layer1’: Tensor()...} みたいな感じ ◦
forward ▪ 入力側から変数を流す ▪ モデルに合わせて自分で定義 ◦ backward ▪ モデルの出力テンソルに対して 実行する ▪ 誤差逆伝播法で勾配を計算する Tensor型とModule型 backward forward
• 出力側から入力側に向かって 誤差信号を伝播させていく • 誤差信号 = 偏微分の値 ◦ (正確ではないが) ∂z/∂yとか∂y/∂xが伝播するイメージ
誤差逆伝播法 x y z backward forward
• PyTorchではTensor型同士の 計算が行われる際、 計算結果の中に勾配計算に 必要な情報が保持される • 計算結果にbackwardメソッドを 実行することで 誤差逆伝播法によって 勾配が計算される
自動微分
• y = x2, z = Σx ij 自動微分 x
y z
• y = x2, z = Σx ij • z.backward()
自動微分 x y z dz/dy dy/dx
• y = x2, z = Σx ij • z.backward()
• backward()を実行するとgrad内に勾配値が記録される ◦ y.grad = dz/dy ◦ x.grad = dz/dy * dy/dx 自動微分 x y z dz/dy dy/dx
• 勾配の分だけパラメータを更新する 微分→パラメータ更新 Loss Weight 勾配
• 勾配の分だけパラメータを更新する 微分→パラメータ更新 Loss Weight
• 勾配の分だけパラメータを更新する 微分→パラメータ更新 Loss Weight
• 勾配の分だけパラメータを更新する ◦ 実際はもう少し工夫があって アルゴリズムによっていろんな 更新の仕方がある • 勾配更新のアルゴリズム ◦ SGD
◦ Adam ← 大体これ使とけば間違いない ◦ AdaBeliaf 微分→パラメータ更新 Loss Weight
• forward ◦ モデルに入力を流仕込む ◦ モデルの出力と正解との誤差を計算する PyTorchでの深層学習の3つのステップ
• forward ◦ モデルに入力を流仕込む ◦ モデルの出力と正解との誤差を計算する • backward ◦ 誤差逆伝播で勾配を計算する
PyTorchでの深層学習の3つのステップ
• forward ◦ モデルに入力を流仕込む ◦ モデルの出力と正解との誤差を計算する • backward ◦ 誤差逆伝播で勾配を計算する
• step ◦ 勾配の分だけパラメータを更新する PyTorchでの深層学習の3つのステップ
• 手書き文字画像データ(MNIST)の分類に PyTorchでチャレンジしてみます ◦ Google Colabのノートブック PyTorch実践 ラベル = 5
• PyTorchの特徴 ◦ 自動微分の機能により forward → backwardの流れを直感的に記述することができる ◦ (今回は触れなかったが) ▪
GPU上での計算を高速化する手法に対応している ▪ モデルのレイヤーごとに学習率をいじれるなど 柔軟性の高いモデル設計が可能 • Google Colaboratoryで結構カンタンに試せちゃうので 興味ある方はぜひ触ってみてください さいごに