Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Computer Science Fundamentals for Self-Taught P...
Search
PyCon 2014
April 11, 2014
Programming
4
1.9k
Computer Science Fundamentals for Self-Taught Programmers by Justin Abrahms
PyCon 2014
April 11, 2014
Tweet
Share
More Decks by PyCon 2014
See All by PyCon 2014
Postgres Performance for Humans by Craig Kerstiens
pycon2014
29
3.7k
Technical Onboarding, Training, and Mentoring by Kate Heddleston and Nicole Zuckerman
pycon2014
1
2.4k
"My big gay adventure. Making, releasing and selling an indie game made in python." by Luke Miller
pycon2014
2
1.6k
Farewell and Welcome Home, Python in Two Genders by Naomi_Ceder
pycon2014
1
760
Deliver Your Software in an Envelope by Augie Fackler and Nathaniel Manista
pycon2014
1
580
Hitchhikers Guide to Free and Open Source Participation by Elena Williams
pycon2014
6
1.2k
Localization Revisted (aka. Translations Evolved) by Ruchi Varshney
pycon2014
0
720
Smart Dumpster by Bradley E. Angell
pycon2014
0
550
Software Engineering for Hackers: Bridging the Two Solitudes by Tavish Armstrong
pycon2014
0
760
Other Decks in Programming
See All in Programming
新卒エンジニアのプルリクエスト with AI駆動
fukunaga2025
0
220
実はマルチモーダルだった。ブラウザの組み込みAI🧠でWebの未来を感じてみよう #jsfes #gemini
n0bisuke2
2
1k
WebRTC と Rust と8K 60fps
tnoho
2
2k
Building AI Agents with TypeScript #TSKaigiHokuriku
izumin5210
6
1.3k
【CA.ai #3】ワークフローから見直すAIエージェント — 必要な場面と“選ばない”判断
satoaoaka
0
240
なあ兄弟、 余白の意味を考えてから UI実装してくれ!
ktcryomm
11
11k
ViewファーストなRailsアプリ開発のたのしさ
sugiwe
0
460
俺流レスポンシブコーディング 2025
tak_dcxi
14
8.7k
Socio-Technical Evolution: Growing an Architecture and Its Organization for Fast Flow
cer
PRO
0
330
認証・認可の基本を学ぼう前編
kouyuume
0
200
AIコードレビューがチームの"文脈"を 読めるようになるまで
marutaku
0
350
AIエンジニアリングのご紹介 / Introduction to AI Engineering
rkaga
6
2.1k
Featured
See All Featured
Done Done
chrislema
186
16k
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
1
100
How to train your dragon (web standard)
notwaldorf
97
6.4k
Automating Front-end Workflow
addyosmani
1371
200k
How to Ace a Technical Interview
jacobian
280
24k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.6k
Thoughts on Productivity
jonyablonski
73
5k
Rebuilding a faster, lazier Slack
samanthasiow
84
9.3k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
17k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.8k
Mobile First: as difficult as doing things right
swwweet
225
10k
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
Transcript
Justin Abrahms Computer Science for the self taught programmer http://bit.ly/1gfszix
Who am I? • Justin Abrahms • Director of Product
Engineering at Quick Left • Author of Imhotep • @justinabrahms or github://justinabrahms
Overview • How I learn about Big O? • What
is Big O? • How is Big O done? • Resources and learned wisdom
None
A sane data model
Our data model
Our ACTUAL data model
What does N+1 Selects look like? entries = get_post_ids() final_list
= [] for entry_id in entries: entry = get_entry(entry_id) final_list.append(entry)
Questions • How did I miss this? • How did
this guy know about it and I didn’t? • How can I make sure this never happens again.
–Wikipedia (aka Inducer of Impostor Syndrome) In mathematics, big O
notation describes the limiting behavior of a function when the argument tends towards a particular value or infinity, usually in terms of simpler functions.
–Me Big O is how programmers talk about the relation
of how much stuff is being done when comparing two pieces of code.
Google Study List Studied: • Data Structures • Algorithms •
System Design • Java Internals • Concurrency Issues
Google Study List Studied: • Data Structures! • Algorithms! •
System Design • Java Internals • Concurrency Issues These are Big O things
–Wikipedia A data structure is a particular way of storing
and organizing data in a computer so that it can be used efficiently.
–Wikipedia An algorithm is a step-by-step procedure for calculations
O(n)
What sorts of Big O are there? • O(1) —
Constant Time • O(log n) — Logarithmic Time • O(n) — Linear Time • O(n²) — Quadratic Time • O(n!) — Factorial Time
Intentionally left blank for people in the back
def get_from_list(idx, lst): return lst[idx] O(1)
def item_in_list(item, lst): for entry in lst: if entry ==
item: return True return False O(n)
Wait a second…
def item_in_list(item, lst): for entry in lst: if entry ==
item: return True return False O(n) — Broken Down
def item_in_list(item, lst): for entry in lst: O(n) if entry
== item: return True return False O(n) — Broken Down
def item_in_list(item, lst): for entry in lst: O(n) if entry
== item: O(1) return True return False O(n) — Broken Down
def item_in_list(item, lst): for entry in lst: O(n) if entry
== item: O(1) return True O(1) return False O(1) O(n) — Broken Down
def item_in_list(item, lst): for entry in lst: O(n) if entry
== item: O(1) return True O(1) return False O(1) O(n) — Broken Down =O(n) * O(1) + O(1)
Why don’t we say Big O of O(n) * O(1)
+ O(1)?
In non-“math-y” terms • If we plot our function, we
can also plot M * the big O and end up with a line that our function never crosses (for certain values of X)
Example O(n) * O(1) + O(1) Big O: To Plot:
?
Example O(n) * O(1) + O(1) Big O: To Plot:
x * ? O(n) always means x
Example O(n) * O(1) + O(1) Big O: To Plot:
x * 5 + 9 O(1) means pick any constant number
Example To Plot: x * 5 + 9
Example To Plot: x * 5 + 9
Example To Plot: x * 5 + 9
Is it O(1)? To Plot: x * 5 + 9
Is it O(n²)? To Plot: x * 5 + 9
Big O is an approximation of algorithmic complexity
def item_in_list(item, lst): for entry in lst: if entry ==
item: return True return False O(n)
What if the list is empty?
def item_in_list(item, lst): for entry in lst: if entry ==
item: return True return False O(n)
O(log n) The best example of O(log n) is binary
search.
O(log n) 1 2 3 4 5 6 7 8
9 10
O(log n) 1 2 3 4 5 6 7 8
9 10 4
O(log n) 1 2 3 4 5 6 7 8
9 10 4
O(log n) 1 2 3 4 5 6 7 8
9 10 4 == 6?
O(log n) 1 2 3 4 5 6 7 8
9 10 4 == 6? Nope.
O(log n) 1 2 3 4 5 6 7 8
9 10 4
O(log n) 1 2 3 4 5 6 7 8
9 10 4
O(log n) 1 2 3 4 5 6 7 8
9 10 4 == 3?
O(log n) 1 2 3 4 5 6 7 8
9 10 4 == 3? Nope.
O(log n) 1 2 3 4 5 6 7 8
9 10 4
O(log n) 1 2 3 4 5 6 7 8
9 10 4
O(log n) 1 2 3 4 5 6 7 8
9 10 4 == 4?
O(log n) 1 2 3 4 5 6 7 8
9 10 4 == 4? Yes!
def get_pairs(lst): pair_list = [] for i1 in lst: for
i2 in lst: pair_list.append([i1, i2]) return pair_list ! O(n²)
def get_pairs(lst): pair_list = [] O(1) for i1 in lst:
O(N) for i2 in lst: O(N) pair_list.append([i1, i2]) O(1) return pair_list O(1) ! O(n²)
def get_pairs(lst): pair_list = [] O(1) for i1 in lst:
O(N) for i2 in lst: O(N) pair_list.append([i1, i2]) O(1) return pair_list O(1) ! O(n²) = O(1) + O(n) * O(n) * O(1) + O(1)
O(n²) = O(1) + O(n) * O(n) * O(1) +
O(1)
O(n²) = O(1) + O(n) * O(n) * O(1) +
O(1)
O(n²) = O(1) + O(n) * O(n) * O(1) +
O(1) = O(n) * O(n) * O(1) + O(1) + O(1)
O(n²) = O(1) + O(n) * O(n) * O(1) +
O(1) = O(n) * O(n) * O(1) + O(1) + O(1) = x * x + 7 + 9 + 13
O(n²) = O(1) + O(n) * O(n) * O(1) +
O(1) = O(n) * O(n) * O(1) + O(1) + O(1) = x * x + 7 + 9 + 13 = x² + 29
O(n²) = x² + 29
O(n²) = x² + 29
O(n²) = x² + 29
O(n²) = x² + 29
Gotchas
The Big O of a function might not matter
Theoretical speed is different than practical speed.
This is probably not going to make your app faster.
Resources
Resources http://algorist.com/
Resources https://www.coursera.org/course/algo
Resources https://leanpub.com/computer-science-for-self-taught-programmers/
How do I write my code differently now?
Knowing Big-O doesn’t make you write your code differently.
Big O is… • useful in communicating about complexity of
code • basic arithmetic and algebra • used in talking about algorithms and data structures • not as hard as it originally sounds
Thanks •
[email protected]
• @justinabrahms • github.com/justinabrahms Credits: ! NYC
slide photo via flickr://Andos_pics