Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Computer Science Fundamentals for Self-Taught P...
Search
PyCon 2014
April 11, 2014
Programming
4
1.9k
Computer Science Fundamentals for Self-Taught Programmers by Justin Abrahms
PyCon 2014
April 11, 2014
Tweet
Share
More Decks by PyCon 2014
See All by PyCon 2014
Postgres Performance for Humans by Craig Kerstiens
pycon2014
29
3.7k
Technical Onboarding, Training, and Mentoring by Kate Heddleston and Nicole Zuckerman
pycon2014
1
2.4k
"My big gay adventure. Making, releasing and selling an indie game made in python." by Luke Miller
pycon2014
2
1.6k
Farewell and Welcome Home, Python in Two Genders by Naomi_Ceder
pycon2014
1
750
Deliver Your Software in an Envelope by Augie Fackler and Nathaniel Manista
pycon2014
1
560
Hitchhikers Guide to Free and Open Source Participation by Elena Williams
pycon2014
6
1.2k
Localization Revisted (aka. Translations Evolved) by Ruchi Varshney
pycon2014
0
710
Smart Dumpster by Bradley E. Angell
pycon2014
0
540
Software Engineering for Hackers: Bridging the Two Solitudes by Tavish Armstrong
pycon2014
0
750
Other Decks in Programming
See All in Programming
ИИ-Агенты в каждый дом – Алексей Порядин, PythoNN
sobolevn
0
150
CSC509 Lecture 03
javiergs
PRO
0
320
パフォーマンスチューニングで Web 技術を深掘り直す
progfay
18
4.9k
麻雀点数計算問題生成タスクから学ぶ Single Agentの限界と Agentic Workflowの底力
po3rin
5
2.1k
ててべんす独演会〜Flowの全てを語ります〜
tbsten
1
220
Model Pollution
hschwentner
1
180
Back to the Future: Let me tell you about the ACP protocol
terhechte
0
120
Web技術を最大限活用してRAW画像を現像する / Developing RAW Images on the Web
ssssota
2
1.1k
CSC305 Lecture 01
javiergs
PRO
1
380
育てるアーキテクチャ:戦い抜くPythonマイクロサービスの設計と進化戦略
fujidomoe
1
150
AIエージェント時代における TypeScriptスキーマ駆動開発の新たな役割
bicstone
4
1.5k
開発者への寄付をアプリ内課金として実装する時の気の使いどころ
ski
0
340
Featured
See All Featured
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
252
21k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
30
2.9k
Done Done
chrislema
185
16k
Documentation Writing (for coders)
carmenintech
75
5k
Why You Should Never Use an ORM
jnunemaker
PRO
59
9.5k
Why Our Code Smells
bkeepers
PRO
339
57k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.6k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
54
3k
Building Better People: How to give real-time feedback that sticks.
wjessup
368
20k
Learning to Love Humans: Emotional Interface Design
aarron
274
40k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
657
61k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
15
1.7k
Transcript
Justin Abrahms Computer Science for the self taught programmer http://bit.ly/1gfszix
Who am I? • Justin Abrahms • Director of Product
Engineering at Quick Left • Author of Imhotep • @justinabrahms or github://justinabrahms
Overview • How I learn about Big O? • What
is Big O? • How is Big O done? • Resources and learned wisdom
None
A sane data model
Our data model
Our ACTUAL data model
What does N+1 Selects look like? entries = get_post_ids() final_list
= [] for entry_id in entries: entry = get_entry(entry_id) final_list.append(entry)
Questions • How did I miss this? • How did
this guy know about it and I didn’t? • How can I make sure this never happens again.
–Wikipedia (aka Inducer of Impostor Syndrome) In mathematics, big O
notation describes the limiting behavior of a function when the argument tends towards a particular value or infinity, usually in terms of simpler functions.
–Me Big O is how programmers talk about the relation
of how much stuff is being done when comparing two pieces of code.
Google Study List Studied: • Data Structures • Algorithms •
System Design • Java Internals • Concurrency Issues
Google Study List Studied: • Data Structures! • Algorithms! •
System Design • Java Internals • Concurrency Issues These are Big O things
–Wikipedia A data structure is a particular way of storing
and organizing data in a computer so that it can be used efficiently.
–Wikipedia An algorithm is a step-by-step procedure for calculations
O(n)
What sorts of Big O are there? • O(1) —
Constant Time • O(log n) — Logarithmic Time • O(n) — Linear Time • O(n²) — Quadratic Time • O(n!) — Factorial Time
Intentionally left blank for people in the back
def get_from_list(idx, lst): return lst[idx] O(1)
def item_in_list(item, lst): for entry in lst: if entry ==
item: return True return False O(n)
Wait a second…
def item_in_list(item, lst): for entry in lst: if entry ==
item: return True return False O(n) — Broken Down
def item_in_list(item, lst): for entry in lst: O(n) if entry
== item: return True return False O(n) — Broken Down
def item_in_list(item, lst): for entry in lst: O(n) if entry
== item: O(1) return True return False O(n) — Broken Down
def item_in_list(item, lst): for entry in lst: O(n) if entry
== item: O(1) return True O(1) return False O(1) O(n) — Broken Down
def item_in_list(item, lst): for entry in lst: O(n) if entry
== item: O(1) return True O(1) return False O(1) O(n) — Broken Down =O(n) * O(1) + O(1)
Why don’t we say Big O of O(n) * O(1)
+ O(1)?
In non-“math-y” terms • If we plot our function, we
can also plot M * the big O and end up with a line that our function never crosses (for certain values of X)
Example O(n) * O(1) + O(1) Big O: To Plot:
?
Example O(n) * O(1) + O(1) Big O: To Plot:
x * ? O(n) always means x
Example O(n) * O(1) + O(1) Big O: To Plot:
x * 5 + 9 O(1) means pick any constant number
Example To Plot: x * 5 + 9
Example To Plot: x * 5 + 9
Example To Plot: x * 5 + 9
Is it O(1)? To Plot: x * 5 + 9
Is it O(n²)? To Plot: x * 5 + 9
Big O is an approximation of algorithmic complexity
def item_in_list(item, lst): for entry in lst: if entry ==
item: return True return False O(n)
What if the list is empty?
def item_in_list(item, lst): for entry in lst: if entry ==
item: return True return False O(n)
O(log n) The best example of O(log n) is binary
search.
O(log n) 1 2 3 4 5 6 7 8
9 10
O(log n) 1 2 3 4 5 6 7 8
9 10 4
O(log n) 1 2 3 4 5 6 7 8
9 10 4
O(log n) 1 2 3 4 5 6 7 8
9 10 4 == 6?
O(log n) 1 2 3 4 5 6 7 8
9 10 4 == 6? Nope.
O(log n) 1 2 3 4 5 6 7 8
9 10 4
O(log n) 1 2 3 4 5 6 7 8
9 10 4
O(log n) 1 2 3 4 5 6 7 8
9 10 4 == 3?
O(log n) 1 2 3 4 5 6 7 8
9 10 4 == 3? Nope.
O(log n) 1 2 3 4 5 6 7 8
9 10 4
O(log n) 1 2 3 4 5 6 7 8
9 10 4
O(log n) 1 2 3 4 5 6 7 8
9 10 4 == 4?
O(log n) 1 2 3 4 5 6 7 8
9 10 4 == 4? Yes!
def get_pairs(lst): pair_list = [] for i1 in lst: for
i2 in lst: pair_list.append([i1, i2]) return pair_list ! O(n²)
def get_pairs(lst): pair_list = [] O(1) for i1 in lst:
O(N) for i2 in lst: O(N) pair_list.append([i1, i2]) O(1) return pair_list O(1) ! O(n²)
def get_pairs(lst): pair_list = [] O(1) for i1 in lst:
O(N) for i2 in lst: O(N) pair_list.append([i1, i2]) O(1) return pair_list O(1) ! O(n²) = O(1) + O(n) * O(n) * O(1) + O(1)
O(n²) = O(1) + O(n) * O(n) * O(1) +
O(1)
O(n²) = O(1) + O(n) * O(n) * O(1) +
O(1)
O(n²) = O(1) + O(n) * O(n) * O(1) +
O(1) = O(n) * O(n) * O(1) + O(1) + O(1)
O(n²) = O(1) + O(n) * O(n) * O(1) +
O(1) = O(n) * O(n) * O(1) + O(1) + O(1) = x * x + 7 + 9 + 13
O(n²) = O(1) + O(n) * O(n) * O(1) +
O(1) = O(n) * O(n) * O(1) + O(1) + O(1) = x * x + 7 + 9 + 13 = x² + 29
O(n²) = x² + 29
O(n²) = x² + 29
O(n²) = x² + 29
O(n²) = x² + 29
Gotchas
The Big O of a function might not matter
Theoretical speed is different than practical speed.
This is probably not going to make your app faster.
Resources
Resources http://algorist.com/
Resources https://www.coursera.org/course/algo
Resources https://leanpub.com/computer-science-for-self-taught-programmers/
How do I write my code differently now?
Knowing Big-O doesn’t make you write your code differently.
Big O is… • useful in communicating about complexity of
code • basic arithmetic and algebra • used in talking about algorithms and data structures • not as hard as it originally sounds
Thanks •
[email protected]
• @justinabrahms • github.com/justinabrahms Credits: ! NYC
slide photo via flickr://Andos_pics