Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Computer Science Fundamentals for Self-Taught P...
Search
PyCon 2014
April 11, 2014
Programming
4
1.9k
Computer Science Fundamentals for Self-Taught Programmers by Justin Abrahms
PyCon 2014
April 11, 2014
Tweet
Share
More Decks by PyCon 2014
See All by PyCon 2014
Postgres Performance for Humans by Craig Kerstiens
pycon2014
29
3.7k
Technical Onboarding, Training, and Mentoring by Kate Heddleston and Nicole Zuckerman
pycon2014
1
2.4k
"My big gay adventure. Making, releasing and selling an indie game made in python." by Luke Miller
pycon2014
2
1.7k
Farewell and Welcome Home, Python in Two Genders by Naomi_Ceder
pycon2014
1
770
Deliver Your Software in an Envelope by Augie Fackler and Nathaniel Manista
pycon2014
1
600
Hitchhikers Guide to Free and Open Source Participation by Elena Williams
pycon2014
6
1.2k
Localization Revisted (aka. Translations Evolved) by Ruchi Varshney
pycon2014
0
720
Smart Dumpster by Bradley E. Angell
pycon2014
0
550
Software Engineering for Hackers: Bridging the Two Solitudes by Tavish Armstrong
pycon2014
0
770
Other Decks in Programming
See All in Programming
AIフル活用時代だからこそ学んでおきたい働き方の心得
shinoyu
0
100
組織で育むオブザーバビリティ
ryota_hnk
0
150
そのAIレビュー、レビューしてますか? / Are you reviewing those AI reviews?
rkaga
5
4.2k
Fragmented Architectures
denyspoltorak
0
140
gunshi
kazupon
1
140
0→1 フロントエンド開発 Tips🚀 #レバテックMeetup
bengo4com
0
510
なぜSQLはAIぽく見えるのか/why does SQL look AI like
florets1
0
350
CSC307 Lecture 03
javiergs
PRO
1
480
AIエージェント、”どう作るか”で差は出るか? / AI Agents: Does the "How" Make a Difference?
rkaga
4
1.9k
Vibe codingでおすすめの言語と開発手法
uyuki234
0
200
KIKI_MBSD Cybersecurity Challenges 2025
ikema
0
1.2k
フロントエンド開発の勘所 -複数事業を経験して見えた判断軸の違い-
heimusu
7
2.7k
Featured
See All Featured
The Illustrated Guide to Node.js - THAT Conference 2024
reverentgeek
0
240
brightonSEO & MeasureFest 2025 - Christian Goodrich - Winning strategies for Black Friday CRO & PPC
cargoodrich
3
89
SEO for Brand Visibility & Recognition
aleyda
0
4.2k
What Being in a Rock Band Can Teach Us About Real World SEO
427marketing
0
170
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
49
9.8k
Winning Ecommerce Organic Search in an AI Era - #searchnstuff2025
aleyda
0
1.8k
Accessibility Awareness
sabderemane
0
42
Understanding Cognitive Biases in Performance Measurement
bluesmoon
32
2.8k
How to Talk to Developers About Accessibility
jct
1
110
The Power of CSS Pseudo Elements
geoffreycrofte
80
6.1k
How to build an LLM SEO readiness audit: a practical framework
nmsamuel
1
620
Agile Leadership in an Agile Organization
kimpetersen
PRO
0
74
Transcript
Justin Abrahms Computer Science for the self taught programmer http://bit.ly/1gfszix
Who am I? • Justin Abrahms • Director of Product
Engineering at Quick Left • Author of Imhotep • @justinabrahms or github://justinabrahms
Overview • How I learn about Big O? • What
is Big O? • How is Big O done? • Resources and learned wisdom
None
A sane data model
Our data model
Our ACTUAL data model
What does N+1 Selects look like? entries = get_post_ids() final_list
= [] for entry_id in entries: entry = get_entry(entry_id) final_list.append(entry)
Questions • How did I miss this? • How did
this guy know about it and I didn’t? • How can I make sure this never happens again.
–Wikipedia (aka Inducer of Impostor Syndrome) In mathematics, big O
notation describes the limiting behavior of a function when the argument tends towards a particular value or infinity, usually in terms of simpler functions.
–Me Big O is how programmers talk about the relation
of how much stuff is being done when comparing two pieces of code.
Google Study List Studied: • Data Structures • Algorithms •
System Design • Java Internals • Concurrency Issues
Google Study List Studied: • Data Structures! • Algorithms! •
System Design • Java Internals • Concurrency Issues These are Big O things
–Wikipedia A data structure is a particular way of storing
and organizing data in a computer so that it can be used efficiently.
–Wikipedia An algorithm is a step-by-step procedure for calculations
O(n)
What sorts of Big O are there? • O(1) —
Constant Time • O(log n) — Logarithmic Time • O(n) — Linear Time • O(n²) — Quadratic Time • O(n!) — Factorial Time
Intentionally left blank for people in the back
def get_from_list(idx, lst): return lst[idx] O(1)
def item_in_list(item, lst): for entry in lst: if entry ==
item: return True return False O(n)
Wait a second…
def item_in_list(item, lst): for entry in lst: if entry ==
item: return True return False O(n) — Broken Down
def item_in_list(item, lst): for entry in lst: O(n) if entry
== item: return True return False O(n) — Broken Down
def item_in_list(item, lst): for entry in lst: O(n) if entry
== item: O(1) return True return False O(n) — Broken Down
def item_in_list(item, lst): for entry in lst: O(n) if entry
== item: O(1) return True O(1) return False O(1) O(n) — Broken Down
def item_in_list(item, lst): for entry in lst: O(n) if entry
== item: O(1) return True O(1) return False O(1) O(n) — Broken Down =O(n) * O(1) + O(1)
Why don’t we say Big O of O(n) * O(1)
+ O(1)?
In non-“math-y” terms • If we plot our function, we
can also plot M * the big O and end up with a line that our function never crosses (for certain values of X)
Example O(n) * O(1) + O(1) Big O: To Plot:
?
Example O(n) * O(1) + O(1) Big O: To Plot:
x * ? O(n) always means x
Example O(n) * O(1) + O(1) Big O: To Plot:
x * 5 + 9 O(1) means pick any constant number
Example To Plot: x * 5 + 9
Example To Plot: x * 5 + 9
Example To Plot: x * 5 + 9
Is it O(1)? To Plot: x * 5 + 9
Is it O(n²)? To Plot: x * 5 + 9
Big O is an approximation of algorithmic complexity
def item_in_list(item, lst): for entry in lst: if entry ==
item: return True return False O(n)
What if the list is empty?
def item_in_list(item, lst): for entry in lst: if entry ==
item: return True return False O(n)
O(log n) The best example of O(log n) is binary
search.
O(log n) 1 2 3 4 5 6 7 8
9 10
O(log n) 1 2 3 4 5 6 7 8
9 10 4
O(log n) 1 2 3 4 5 6 7 8
9 10 4
O(log n) 1 2 3 4 5 6 7 8
9 10 4 == 6?
O(log n) 1 2 3 4 5 6 7 8
9 10 4 == 6? Nope.
O(log n) 1 2 3 4 5 6 7 8
9 10 4
O(log n) 1 2 3 4 5 6 7 8
9 10 4
O(log n) 1 2 3 4 5 6 7 8
9 10 4 == 3?
O(log n) 1 2 3 4 5 6 7 8
9 10 4 == 3? Nope.
O(log n) 1 2 3 4 5 6 7 8
9 10 4
O(log n) 1 2 3 4 5 6 7 8
9 10 4
O(log n) 1 2 3 4 5 6 7 8
9 10 4 == 4?
O(log n) 1 2 3 4 5 6 7 8
9 10 4 == 4? Yes!
def get_pairs(lst): pair_list = [] for i1 in lst: for
i2 in lst: pair_list.append([i1, i2]) return pair_list ! O(n²)
def get_pairs(lst): pair_list = [] O(1) for i1 in lst:
O(N) for i2 in lst: O(N) pair_list.append([i1, i2]) O(1) return pair_list O(1) ! O(n²)
def get_pairs(lst): pair_list = [] O(1) for i1 in lst:
O(N) for i2 in lst: O(N) pair_list.append([i1, i2]) O(1) return pair_list O(1) ! O(n²) = O(1) + O(n) * O(n) * O(1) + O(1)
O(n²) = O(1) + O(n) * O(n) * O(1) +
O(1)
O(n²) = O(1) + O(n) * O(n) * O(1) +
O(1)
O(n²) = O(1) + O(n) * O(n) * O(1) +
O(1) = O(n) * O(n) * O(1) + O(1) + O(1)
O(n²) = O(1) + O(n) * O(n) * O(1) +
O(1) = O(n) * O(n) * O(1) + O(1) + O(1) = x * x + 7 + 9 + 13
O(n²) = O(1) + O(n) * O(n) * O(1) +
O(1) = O(n) * O(n) * O(1) + O(1) + O(1) = x * x + 7 + 9 + 13 = x² + 29
O(n²) = x² + 29
O(n²) = x² + 29
O(n²) = x² + 29
O(n²) = x² + 29
Gotchas
The Big O of a function might not matter
Theoretical speed is different than practical speed.
This is probably not going to make your app faster.
Resources
Resources http://algorist.com/
Resources https://www.coursera.org/course/algo
Resources https://leanpub.com/computer-science-for-self-taught-programmers/
How do I write my code differently now?
Knowing Big-O doesn’t make you write your code differently.
Big O is… • useful in communicating about complexity of
code • basic arithmetic and algebra • used in talking about algorithms and data structures • not as hard as it originally sounds
Thanks •
[email protected]
• @justinabrahms • github.com/justinabrahms Credits: ! NYC
slide photo via flickr://Andos_pics