Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Lecture 6 - Stochastic population models

Lecture 6 - Stochastic population models

Richard Chandler

January 29, 2020
Tweet

More Decks by Richard Chandler

Other Decks in Education

Transcript

  1. Random Variables A random variable is a variable whose value

    can’t be predicted with certainty. Introduction Geometric Growth Logistic growth 3 / 17
  2. Random Variables A random variable is a variable whose value

    can’t be predicted with certainty. Examples? • Weather • Our own behavior • Population size Introduction Geometric Growth Logistic growth 3 / 17
  3. Probability distributions A random variable (X) can be described by

    a probability distribution. Introduction Geometric Growth Logistic growth 4 / 17
  4. Probability distributions A random variable (X) can be described by

    a probability distribution. There are many types of probability distributions • Normal (or Gaussian) • Poisson • Binomial • Multinomial • etc. . . Introduction Geometric Growth Logistic growth 4 / 17
  5. Normal (Gaussian) Distribution X ∼ Normal(µ = 0, σ2 =

    1) −3 −2 −1 0 1 2 3 X Introduction Geometric Growth Logistic growth 5 / 17
  6. Normal (Gaussian) Distribution X ∼ Normal(µ = 0, σ2 =

    1) −3 −2 −1 0 1 2 3 X q Introduction Geometric Growth Logistic growth 5 / 17
  7. Normal (Gaussian) Distribution X ∼ Normal(µ = 0, σ2 =

    1) −3 −2 −1 0 1 2 3 X q q Introduction Geometric Growth Logistic growth 5 / 17
  8. Normal (Gaussian) Distribution X ∼ Normal(µ = 0, σ2 =

    1) −3 −2 −1 0 1 2 3 X q q q Introduction Geometric Growth Logistic growth 5 / 17
  9. Normal (Gaussian) Distribution X ∼ Normal(µ = 0, σ2 =

    1) −3 −2 −1 0 1 2 3 X q q q q Introduction Geometric Growth Logistic growth 5 / 17
  10. Normal (Gaussian) Distribution X ∼ Normal(µ = 0, σ2 =

    1) −3 −2 −1 0 1 2 3 X q q q q q Introduction Geometric Growth Logistic growth 5 / 17
  11. Normal (Gaussian) Distribution X ∼ Normal(µ = 0, σ2 =

    1) −3 −2 −1 0 1 2 3 X q q q q q q Introduction Geometric Growth Logistic growth 5 / 17
  12. Normal (Gaussian) Distribution X ∼ Normal(µ = 0, σ2 =

    1) −3 −2 −1 0 1 2 3 X q q q q q q q Introduction Geometric Growth Logistic growth 5 / 17
  13. Normal (Gaussian) Distribution X ∼ Normal(µ = 0, σ2 =

    1) −3 −2 −1 0 1 2 3 X q q q q q q q q Introduction Geometric Growth Logistic growth 5 / 17
  14. Normal (Gaussian) Distribution X ∼ Normal(µ = 0, σ2 =

    1) −3 −2 −1 0 1 2 3 X q q q q q q q q q Introduction Geometric Growth Logistic growth 5 / 17
  15. Normal (Gaussian) Distribution X ∼ Normal(µ = 0, σ2 =

    1) −3 −2 −1 0 1 2 3 X q q q q q q q q q q Introduction Geometric Growth Logistic growth 5 / 17
  16. Normal (Gaussian) Distribution −2 −1 0 1 2 0.0 0.5

    1.0 1.5 2.0 2.5 3.0 X Relative probability µ=0, σ2=0.6 µ=0, σ2=0.4 µ=0, σ2=0.2 Introduction Geometric Growth Logistic growth 6 / 17
  17. A purely stochastic model Nt ∼ Normal(µ = 50, σ2

    = 1) qq q q q q q q q q q q q q q q q qqq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qqq q q q q q q q q q q q q q q q q q q q qq q q q q qq q q 0 20 40 60 80 100 48 49 50 51 52 Time Population size (N) Introduction Geometric Growth Logistic growth 7 / 17
  18. Two important types of stochasticity Environmental stochasticity • Random variation

    in weather, habitat, etc. . . among years Introduction Geometric Growth Logistic growth 8 / 17
  19. Two important types of stochasticity Environmental stochasticity • Random variation

    in weather, habitat, etc. . . among years Demographic stochasticity • Random variation in the number of births and deaths among years Introduction Geometric Growth Logistic growth 8 / 17
  20. Geometric growth with environmental stochasticity Nt+1 = Nt + Nt

    r + Xt where Xt ∼ Normal(0, σ2 e ) Introduction Geometric Growth Logistic growth 9 / 17
  21. Geometric growth with environmental stochasticity Nt+1 = Nt + Nt

    r + Xt where Xt ∼ Normal(0, σ2 e ) R code: r <- 0.1 sigma.e <- 10 for(t in 2:nYears) { X[t-1] <- rnorm(n=1, mean=0, sd=sigma.e) N[t] <- N[t-1] + N[t-1]*r + X[t-1] } Introduction Geometric Growth Logistic growth 9 / 17
  22. Example N0 = 100, r = 0.1, µ = 0,

    σ2 e = 100 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 10 / 17
  23. Example N0 = 100, r = 0.1, µ = 0,

    σ2 e = 100 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 10 / 17
  24. Example N0 = 100, r = 0.1, µ = 0,

    σ2 e = 100 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 10 / 17
  25. Example N0 = 100, r = 0.1, µ = 0,

    σ2 e = 100 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 10 / 17
  26. Example N0 = 100, r = 0.1, µ = 0,

    σ2 e = 100 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 10 / 17
  27. Example N0 = 100, r = 0.1, µ = 0,

    σ2 e = 100 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 10 / 17
  28. Example N0 = 100, r = 0.1, µ = 0,

    σ2 e = 100 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 10 / 17
  29. Example N0 = 100, r = 0.1, µ = 0,

    σ2 e = 100 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 10 / 17
  30. Example N0 = 100, r = 0.1, µ = 0,

    σ2 e = 100 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 10 / 17
  31. Example N0 = 100, r = 0.1, µ = 0,

    σ2 e = 100 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 10 / 17
  32. Example N0 = 100, r = 0.1, µ = 0,

    σ2 e = 10000 q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 11 / 17
  33. Example N0 = 100, r = 0.1, µ = 0,

    σ2 e = 10000 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 11 / 17
  34. Example N0 = 100, r = 0.1, µ = 0,

    σ2 e = 10000 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 11 / 17
  35. Example N0 = 100, r = 0.1, µ = 0,

    σ2 e = 10000 q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 11 / 17
  36. Example N0 = 100, r = 0.1, µ = 0,

    σ2 e = 10000 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 11 / 17
  37. Example N0 = 100, r = 0.1, µ = 0,

    σ2 e = 10000 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 11 / 17
  38. Example N0 = 100, r = 0.1, µ = 0,

    σ2 e = 10000 q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 11 / 17
  39. Example N0 = 100, r = 0.1, µ = 0,

    σ2 e = 10000 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 11 / 17
  40. Example N0 = 100, r = 0.1, µ = 0,

    σ2 e = 10000 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 11 / 17
  41. Example N0 = 100, r = 0.1, µ = 0,

    σ2 e = 10000 q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 11 / 17
  42. Geometric growth with demographic stochasticity Nt+1 = Nt + Nt

    rt Introduction Geometric Growth Logistic growth 12 / 17
  43. Geometric growth with demographic stochasticity Nt+1 = Nt + Nt

    rt where rt ∼ Normal(¯ r, σ2 d ) Introduction Geometric Growth Logistic growth 12 / 17
  44. Example N0 = 100, ¯ r = 0.5, σ2 d

    = 0.01 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 13 / 17
  45. Example N0 = 100, ¯ r = 0.5, σ2 d

    = 0.01 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 13 / 17
  46. Example N0 = 100, ¯ r = 0.5, σ2 d

    = 0.01 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 13 / 17
  47. Example N0 = 100, ¯ r = 0.5, σ2 d

    = 0.01 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 13 / 17
  48. Example N0 = 100, ¯ r = 0.5, σ2 d

    = 0.01 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 13 / 17
  49. Example N0 = 100, ¯ r = 0.5, σ2 d

    = 0.01 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 13 / 17
  50. Example N0 = 100, ¯ r = 0.5, σ2 d

    = 0.01 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 13 / 17
  51. Example N0 = 100, ¯ r = 0.5, σ2 d

    = 0.01 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 13 / 17
  52. Example N0 = 100, ¯ r = 0.5, σ2 d

    = 0.01 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 13 / 17
  53. Example N0 = 100, ¯ r = 0.5, σ2 d

    = 0.01 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 13 / 17
  54. Example N0 = 100, ¯ r = 0.5, σ2 d

    = 0.25 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 14 / 17
  55. Example N0 = 100, ¯ r = 0.5, σ2 d

    = 0.25 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 14 / 17
  56. Example N0 = 100, ¯ r = 0.5, σ2 d

    = 0.25 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 14 / 17
  57. Example N0 = 100, ¯ r = 0.5, σ2 d

    = 0.25 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 14 / 17
  58. Example N0 = 100, ¯ r = 0.5, σ2 d

    = 0.25 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 14 / 17
  59. Example N0 = 100, ¯ r = 0.5, σ2 d

    = 0.25 q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 14 / 17
  60. Example N0 = 100, ¯ r = 0.5, σ2 d

    = 0.25 q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 14 / 17
  61. Example N0 = 100, ¯ r = 0.5, σ2 d

    = 0.25 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 14 / 17
  62. Example N0 = 100, ¯ r = 0.5, σ2 d

    = 0.25 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 14 / 17
  63. Example N0 = 100, ¯ r = 0.5, σ2 d

    = 0.25 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 200 400 600 800 1000 Time Population size (N) Introduction Geometric Growth Logistic growth 14 / 17
  64. Logistic growth with stochastic carrying capacity Nt+1 = Nt +

    Nt rmax (1 − Nt /Kt ) where Kt ∼ Normal( ¯ K, σ2 e ) Introduction Geometric Growth Logistic growth 15 / 17
  65. Logistic example, rmax = 0.2, ¯ K = 100, σ2

    e = 400 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 50 100 150 200 250 300 Time Population size (N) Introduction Geometric Growth Logistic growth 16 / 17
  66. Logistic example, rmax = 0.2, ¯ K = 100, σ2

    e = 400 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 50 100 150 200 250 300 Time Population size (N) Introduction Geometric Growth Logistic growth 16 / 17
  67. Logistic example, rmax = 0.2, ¯ K = 100, σ2

    e = 400 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 50 100 150 200 250 300 Time Population size (N) Introduction Geometric Growth Logistic growth 16 / 17
  68. Logistic example, rmax = 0.2, ¯ K = 100, σ2

    e = 400 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 50 100 150 200 250 300 Time Population size (N) Introduction Geometric Growth Logistic growth 16 / 17
  69. Logistic example, rmax = 0.2, ¯ K = 100, σ2

    e = 400 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 50 100 150 200 250 300 Time Population size (N) Introduction Geometric Growth Logistic growth 16 / 17
  70. Logistic example, rmax = 0.2, ¯ K = 100, σ2

    e = 400 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 50 100 150 200 250 300 Time Population size (N) Introduction Geometric Growth Logistic growth 16 / 17
  71. Logistic example, rmax = 0.2, ¯ K = 100, σ2

    e = 400 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 50 100 150 200 250 300 Time Population size (N) Introduction Geometric Growth Logistic growth 16 / 17
  72. Logistic example, rmax = 0.2, ¯ K = 100, σ2

    e = 400 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 50 100 150 200 250 300 Time Population size (N) Introduction Geometric Growth Logistic growth 16 / 17
  73. Logistic example, rmax = 0.2, ¯ K = 100, σ2

    e = 400 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 50 100 150 200 250 300 Time Population size (N) Introduction Geometric Growth Logistic growth 16 / 17
  74. Logistic example, rmax = 0.2, ¯ K = 100, σ2

    e = 400 q q q q q q q q q q q q q q q q q q q q q 0 5 10 15 20 0 50 100 150 200 250 300 Time Population size (N) Introduction Geometric Growth Logistic growth 16 / 17
  75. Summary Purely deterministic models are too rigid Purely stochastic models

    don’t tell us much The goal is to develop a mechanistic model that represents our biological understanding while allowing for stochasticity Introduction Geometric Growth Logistic growth 17 / 17