Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Asset Centric な データ変換パイプラインの攻略法
Search
Recruit
PRO
January 21, 2025
Technology
2
320
Asset Centric な データ変換パイプラインの攻略法
2025/01/21に、Tokyo dbt Meetup #11で発表した、森田の資料です。
Recruit
PRO
January 21, 2025
Tweet
Share
More Decks by Recruit
See All by Recruit
事業の財務責任に向き合うリクルートデータプラットフォームのFinOps
recruitengineers
PRO
0
19
AI-DLCを現場にインストールしてみた:プロトタイプ開発で分かったこと・やめたこと
recruitengineers
PRO
2
150
プロダクトマネジメントの分業が生む「デリバリーの渋滞」を解消するTPMの越境
recruitengineers
PRO
3
830
あなたの知らない Linuxカーネル脆弱性の世界
recruitengineers
PRO
4
320
dbtとBigQuery MLで実現する リクルートの営業支援基盤のモデル開発と保守運用
recruitengineers
PRO
5
250
『ホットペッパービューティー』のiOSアプリをUIKitからSwiftUIへ段階的に移行するためにやったこと
recruitengineers
PRO
4
1.8k
経営の意思決定を加速する 「事業KPIダッシュボード」構築の全貌
recruitengineers
PRO
4
410
Browser
recruitengineers
PRO
12
4k
JavaScript 研修
recruitengineers
PRO
9
2.2k
Other Decks in Technology
See All in Technology
大企業でもできる!ボトムアップで拡大させるプラットフォームの作り方
findy_eventslides
1
820
re:Invent 2025 ~何をする者であり、どこへいくのか~
tetutetu214
0
220
今年のデータ・ML系アップデートと気になるアプデのご紹介
nayuts
1
460
Database イノベーショントークを振り返る/reinvent-2025-database-innovation-talk-recap
emiki
0
220
NIKKEI Tech Talk #41: セキュア・バイ・デザインからクラウド管理を考える
sekido
PRO
0
130
re:Invent2025 3つの Frontier Agents を紹介 / introducing-3-frontier-agents
tomoki10
0
230
初めてのDatabricks AI/BI Genie
taka_aki
0
200
たまに起きる外部サービスの障害に備えたり備えなかったりする話
egmc
0
190
WordPress は終わったのか ~今のWordPress の制作手法ってなにがあんねん?~ / Is WordPress Over? How We Build with WordPress Today
tbshiki
1
810
re:Invent2025 コンテナ系アップデート振り返り(+CloudWatchログのアップデート紹介)
masukawa
0
390
CARTAのAI CoE が挑む「事業を進化させる AI エンジニアリング」 / carta ai coe evolution business ai engineering
carta_engineering
0
1.9k
AWS CLIの新しい認証情報設定方法aws loginコマンドの実態
wkm2
6
750
Featured
See All Featured
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.8k
Docker and Python
trallard
47
3.7k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
128
54k
Scaling GitHub
holman
464
140k
Building Applications with DynamoDB
mza
96
6.8k
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.3k
Site-Speed That Sticks
csswizardry
13
1k
GitHub's CSS Performance
jonrohan
1032
470k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.6k
Mobile First: as difficult as doing things right
swwweet
225
10k
Fireside Chat
paigeccino
41
3.7k
Transcript
© Recruit Co., Ltd. All Rights Reserved Asset Centric な
データ変換パイプラインの攻略法 株式会社リクルート データ推進室 プロダクト開発統括室 森⽥ 順也 2024/01/21 dbt meetup dbt labs Japan Launch イベント前夜祭
© Recruit Co., Ltd. All Rights Reserved プロダクト開発統括室 データ推進室 結婚‧旅⾏‧⾃動⾞領域
アナリティクスエンジニア /テックリード 2015-2019 IoTデータの研究開発 2019-2020 住宅領域 アナリティクスエンジニア 2020-現在 結婚‧旅⾏‧⾃動⾞領域 アナリティクスエンジニア 森⽥ 順也 Junya MORITA Profile 経歴 所属 2 X: https://x.com/jjjjj_kn Podcast: https://open.spotify.com/show/6Xc6jNS2p1UqjnPppwO80V?si=WXCP2O58RrePvsjTMomtIw Zenn: https://zenn.dev/mjunya1030
祝🎉 dbt Labs Japan Launch!
© Recruit Co., Ltd. All Rights Reserved 4 本⽇お伝えしたいこと dbt
のすばらしさ x dbt 運⽤のリアル ~ Job 管理編 ~
© Recruit Co., Ltd. All Rights Reserved Agenda 1. データパイプラインにおける
Job 管理の課題 2. Asset Centric な依存管理の課題 3. 監査ログを使った data observation 5 お願い:スライドに ✋ があったら 当てはまる⽅は挙⼿をお願いします
© Recruit Co., Ltd. All Rights Reserved 運⽤している分析基盤 Data Lake
Cloud Storage Data Mart BigQuery Data Warehouse BigQuery クライアント様向け アプリ・基盤 カスタマー向け アプリ・基盤 データ抽出・ロード Cloud Composer Transform Extract Load マート生成 dbt Core / Cloud Composer レコメンドシステム 本日の主役となる マート生成ジョブ 集客最適化‧営業活動効率化、ABテストの評価等、事業の価値を最⼤化するためのデータ分析基盤 GCP環境を基盤に、dbt と Cloud Composer によるマート⽣成ジョブを運⽤ マート⽣成ジョブで処理されるデータ量は数百TB
© Recruit Co., Ltd. All Rights Reserved データパイプラインにおける Job 管理の課題
session 1
Q: 500⾏以上のSQLを解析したことがある ✋
© Recruit Co., Ltd. All Rights Reserved 9 Transform における
Job の特徴 ⼀⾒シンプルなタスクでも、細々とした処理が多数出てくる SQLは数百⾏規模に膨れ上がりがち
© Recruit Co., Ltd. All Rights Reserved 10 Job の分割
中間テーブルを作れば、処理をシンプルにできる
© Recruit Co., Ltd. All Rights Reserved 11 分割した job
の依存関係の管理 分割した Job は順番通りに実⾏する必要がある 依存関係をきちんと管理するため、ワークフローエンジンを使う
Q: Jobは成功しているのに、データが更新されてい なかったことがある✋
Q: クエリの循環参照を起こしたことがある✋
© Recruit Co., Ltd. All Rights Reserved 14 依存関係管理の課題 taskが増えていくと、依存関係を把握しづらくなる
データ変換処理では、カラムを⼀つ追加する等により、依存するタスクが増えやすい
© Recruit Co., Ltd. All Rights Reserved 15 Asset Centric
な依存関係管理 データそのものに定義された情報だけで依存関係を管理する 依存関係を直感的に把握でき、Job を意識する必要がない
© Recruit Co., Ltd. All Rights Reserved 16 Asset Centric
なツール例 dbt SQLの中で参照されているテーブルを再帰的にたどることで、データ リネージ(データの流れの系譜)を構築してくれる dagstar SQLに閉じず、 APIリクエスト結果などでも依存関係を管理できる
© Recruit Co., Ltd. All Rights Reserved 17 dbt のすばらしさとは
Asset Centric なアプローチで、Job の依存関係管理から解放 ↓ 複雑なデータ基盤を運⽤できるようになった
© Recruit Co., Ltd. All Rights Reserved Asset Centric な依存管理の課題
session 2
Q: dbtの処理が終わるのに5分以上かかる✋
Q: 異なる dbt job が、おなじテーブルを更新してい た✋
© Recruit Co., Ltd. All Rights Reserved 21 データの多重更新 Asset
Centric な Job 管理で、複数の Job を起動すると データの多重更新を起こしやすい
© Recruit Co., Ltd. All Rights Reserved 22 多重更新を避けるための機能 dbtの
exclude 機能は、特定のモデルを実⾏対象から除外できる 多重更新が起きているテーブルを洗いだし、逐⼀ exclude で除外すればよい
© Recruit Co., Ltd. All Rights Reserved 23 Asset Centric
の弱点 Jobが複数あり、除外条件が定義されると、どの Job がどのテーブルを更新するのか データの定義(SQL)と除外条件の両⽅を読まないとわからない
© Recruit Co., Ltd. All Rights Reserved 24 実際におきた課題 job
B の実⾏時、table X で不整合が発⽣し、下流テーブルが作られないケース job C、job Dは正しく成功する?tableXを参照しているから失敗する?
© Recruit Co., Ltd. All Rights Reserved 監査ログを使った data observation
session 3
Q: Jobがコケたら、⼀旦⾃分に連絡が来る✋
© Recruit Co., Ltd. All Rights Reserved 27 data observation
によって⾜りない情報を補う どのテーブルが、いつ、どの Job によって更新されているのか、⾃動収集する elementary-data https://docs.elementary-data.com/dbt/pac kage-models#dbt-run-results dbt run の後に on-run-end フックを使ってロ グを記録し、「どのテーブルがどの Job で更 新されたのか」や「どの Job が失敗したの か」といった情報を記録してくれる BigQuery監査ログ https://cloud.google.com/bigquery/docs/referen ce/auditlogs dbtが生成したテーブルと、それを実行した Job の 情報を確認できる
© Recruit Co., Ltd. All Rights Reserved 28 BigQuery 監査ログをつかった
data observation BigQuery 監査ログとdbtの query comment 機能を使って Jobと更新テーブルのステータスをモニタリングする
© Recruit Co., Ltd. All Rights Reserved 29 BigQuery 監査ログの基本
監査ログの protopayload_auditlog.metadataJson というフィールドに JSON形式で BigQuery のテーブル⽣成 Job のログが格納される
© Recruit Co., Ltd. All Rights Reserved 30 dbt のクエリに
Job 名を⼊れる dbt は model ファイルに記述された Jinja 形式の SQL を compile してから BigQuery 上で実⾏する。 この際、compile する際に動的な comment を付与できる。 query_comment: append: true comment: "Job name is {{ var(JOB_NAME, 'unknown') }}" dbt run --select table_X --vars={"JOB_NAME": "daily-Job-10am"} /* Job name is daily-Job-10am */ create or replace view `gcp-project`.`my_dataset`.`table_X` OPTIONS( description="""""", ) as ... project.yml の設定 build 時に渡すオプション 生成されるDDL文
© Recruit Co., Ltd. All Rights Reserved 31 テーブルを更新した Job
を可視化する 監査ログから Job 名‧テーブル名‧⽣成時刻の3つを取得する
© Recruit Co., Ltd. All Rights Reserved 32 テーブルを更新した Job
以外の情報も可視化する スロット消費量やjob実⾏時間も取得できる
© Recruit Co., Ltd. All Rights Reserved 33 実際のモニタでわかること Job
J の実行時間が 伸びている 新規に Job A が登場し テーブルが追加されている Job J,C,E が同じテーブルを 多重更新している 実行時間や スロット消費の詳細も わかる
© Recruit Co., Ltd. All Rights Reserved 34 Asset Centric
なアプローチで、Job の依存関係管理から解放 ↓ 複雑なデータ基盤を運⽤できるようになった ↓ Asset Centric なJob管理の複雑さ(多重更新)が⽣まれた ↓ テーブルと Job の対応はモニタリング等で運⽤対処 まとめ
© Recruit Co., Ltd. All Rights Reserved 35 今は、Job とテーブルの更新履歴を可視化し、改善点を探せる状態
今後は、Job を統合したり 不要な Job を削減する必要がある ソースとなるデータ量の負荷や連携タイミングといった パイプラインの課題を乗り越えてJob削減した話は… 今後の展望
https://www.recruit.co.jp/special/techconference202 5 リクルート テックカンファレンス リクルートの開発事例・ナレッジを共有する 技術カンファレンス こちらで発表するので、ぜひご参加ください! (自分のセッションは20日17:45~予定です)
Q: Recruit Techカンファレンスに⾏きたいと思った ✋
© Recruit Co., Ltd. All Rights Reserved 38 We are
hiring! カジュアル⾯談はこちらより お申し込みください データサイエンティスト 機械学習エンジニア データエンジニア アナリティクスエンジニア R&Dエンジニア データアプリケーションエンジニア クラウドエンジニア