Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
検索エンジニアが考える、 生成AI時代の人間の付加価値とは
Search
Recruit
PRO
March 07, 2024
Technology
3
940
検索エンジニアが考える、 生成AI時代の人間の付加価値とは
2024/02/21に、RECRUIT TECH CONFERENCE 2024で発表した、大杉の資料です。
Recruit
PRO
March 07, 2024
Tweet
Share
More Decks by Recruit
See All by Recruit
プロダクトマネジメントの分業が生む「デリバリーの渋滞」を解消するTPMの越境
recruitengineers
PRO
3
720
あなたの知らない Linuxカーネル脆弱性の世界
recruitengineers
PRO
4
300
dbtとBigQuery MLで実現する リクルートの営業支援基盤のモデル開発と保守運用
recruitengineers
PRO
4
220
『ホットペッパービューティー』のiOSアプリをUIKitからSwiftUIへ段階的に移行するためにやったこと
recruitengineers
PRO
4
1.7k
経営の意思決定を加速する 「事業KPIダッシュボード」構築の全貌
recruitengineers
PRO
4
390
Browser
recruitengineers
PRO
12
4k
JavaScript 研修
recruitengineers
PRO
9
2.2k
TypeScript入門
recruitengineers
PRO
37
15k
モダンフロントエンド 開発研修
recruitengineers
PRO
16
8.4k
Other Decks in Technology
See All in Technology
形式手法特論:CEGAR を用いたモデル検査の状態空間削減 #kernelvm / Kernel VM Study Hokuriku Part 8
ytaka23
2
450
ガバメントクラウド利用システムのライフサイクルについて
techniczna
0
180
Kiro Autonomous AgentとKiro Powers の紹介 / kiro-autonomous-agent-and-powers
tomoki10
0
320
モダンデータスタック (MDS) の話とデータ分析が起こすビジネス変革
sutotakeshi
0
430
バグハンター視点によるサプライチェーンの脆弱性
scgajge12
3
1k
[CMU-DB-2025FALL] Apache Fluss - A Streaming Storage for Real-Time Lakehouse
jark
0
110
グレートファイアウォールを自宅に建てよう
ctes091x
0
140
直接メモリアクセス
koba789
0
280
エンジニアとPMのドメイン知識の溝をなくす、 AIネイティブな開発プロセス
applism118
4
1k
大企業でもできる!ボトムアップで拡大させるプラットフォームの作り方
findy_eventslides
1
580
非CUDAの悲哀 〜Claude Code と挑んだ image to 3D “Hunyuan3D”を EVO-X2(Ryzen AI Max+395)で動作させるチャレンジ〜
hawkymisc
1
160
エンジニアリングマネージャー はじめての目標設定と評価
halkt
0
250
Featured
See All Featured
Code Review Best Practice
trishagee
74
19k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
659
61k
Designing Experiences People Love
moore
143
24k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.6k
Code Reviewing Like a Champion
maltzj
527
40k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.8k
Rails Girls Zürich Keynote
gr2m
95
14k
The Language of Interfaces
destraynor
162
25k
[RailsConf 2023] Rails as a piece of cake
palkan
58
6.1k
How GitHub (no longer) Works
holman
316
140k
Making Projects Easy
brettharned
120
6.5k
Facilitating Awesome Meetings
lara
57
6.7k
Transcript
検索エンジニアが考える、 生成AI時代の人間の付加価値とは 株式会社リクルート データ推進室 大杉 直也
大杉 直也 ボードゲーム 経歴 / Career 2014年にリクルート新卒入社。 2017年、N高等学校に3年次編入(社会人高校生)。 2020年、同高校卒業。 現在は、シニアサーチエンジニアとして働く傍ら、プロ
ンプトエンジニアリングの社内研修や事業現場へのヒア リングを踏まえた大規模言語モデルの利活用推進を実施 している。 現在、デジタル庁でもAI部門 担当者として兼業中。 趣味 / Hobbies データ推進室 データテクノロジーユニット アジリティテクノロジー部 A/Bテスト実践ガイド(翻訳) Apache Solr 入門(第3版) 出版物 / Publications
2023/02/10 2023/10/18 2023/03/03
2023/03/04 このあと、世の中的にはChatGPTプラグインが出たり、RAGという言葉が流行ったり、生 成AIと組み合わせる汎用ベクターサーチが各クラウドサービスで発表されたり、ChatGPT にWeb browsingの機能がついたりと色々おきました 大規模言語モデルは万能ではない。それを活用(既存手法を強化)&補助(既存手法で強 化)はまだまだやることが大量にある→おかげで仕事が増えた 今日はその辺の話をします
今日の話の流れ ◼ 大規模言語モデルで既存手法を強化する話(活用) • 検索エンジンを強化する • ヒトを強化する ◼ 大規模言語モデルを既存手法で強化する話(補助) •
検索エンジンで強化する • ヒトで強化する ◼ 情報サービスx生成AIで作られる世界の方向性(予想)
大規模言語モデルで 既存手法を強化する話(活用) 検索編 検索エンジニアが考える、生成AI時代の人間の付加価値とは
検索エンジンを大規模言語モデルで強化する 検索エンジン データ 分析レポート フォーマット変換 ラベリング データクレンジング 文章生成・要約 など 集計結果の解釈
インサイトの提案 など 更新処理・データ分析 検索エンジン 検索 クエリ 検索結果 固有表現抽出 クエリ意図推定 など 再フィルタリング 検索結果の解釈 など オレンジ色が大規模言語モデル で実現可能な処理
前述の処理のほとんどは大規模言語モデル以前の自然言語処理の手法 でも実現可能 大規模言語モデル以降では何が変わったか? →汎用的なモデルに対してのプロンプトの工夫だけで多種多様な処理が実装可能 →→テストケース作成や開発リードタイムの大幅な削減 さらに →該当処理の開発に必要なスキルが大きく変わった →→いわゆるプロンプトデザイン →→従来のデータサイエンス能力は品質評価の観点で依然重要 このことから「より多くの人」で「多種多様な試行錯誤」を「迅速」
に行えるようになった 理想は要件定義時点で企画者が「このプロンプトでいける!」と正し く言える状態 そのための環境整備と教育をどうすべきかを社内で検証中
b 大規模言語モデルを 既存手法で強化する話(補助) 検索編 検索エンジニアが考える、生成AI時代の人間の付加価値とは
検索エンジンで大規模言語モデルを強化する 大規模言語モデルの弱点である 1. 知識のアップデートを大量・高速に実施 a. プロンプトに知識埋め込みはtoken数制約にひっかかる b. 追加学習は計算時間がかかる 2. 大量のデータを解釈性高く制御
a. 中身の処理がブラックボックス は検索エンジンが得意とするところなので、検索エンジンと組み合わ せることが有効 リクルートではこの検索エンジンを高品質にするための条件が揃って いる
検索エンジンで大規模言語モデルを強化するために重要なもの 検索対象のアイテム ・ リクルートでは全国の営業網からファクトチェックされた信頼のおけるアイテムが登録される 検索のアルゴリズム ・ 流行りの汎用型の埋め込み表現はドメイン特化の検索では品質いまいち。教師付き学習によるファイン チューニングが必要 ・ リクルートでは複数のドメインでシェア率業界トップクラスのWebサービスがあり、そこの検索関連ロ
グが優良なシグナルになる 検索のシステム基盤 ・ リクルートでは検索システムを、(1)汎用的なもの(2)特化型のものをそれぞれ提供する専門のエンジニ ア組織が存在(いわばスタートアップからエンタープライズまで) 検索の評価 ・ データ基盤が整備されており、社内にA/Bテストの専門家もいる
b 大規模言語モデルで 既存手法を強化する話(活用) ヒト編 検索エンジニアが考える、生成AI時代の人間の付加価値とは
ヒトを大規模言語モデルで強化する いわゆる生成AIによるDX案件 リクルートだと「記事作成」「校閲」などが比重高そう 記事作成 取材した内容メモから記事タイトル案の提案 →きちんとファクトチェックしている 校閲 広告表示のガイドラインなどに抵触していないかの確認 →法律で明確に定められたルールを遵守する リクルートのメディアとして「品質」を担保する活動を強化できる
ヒトを大規模言語モデルで強化する 記事テーマ キーワード 取材メモ など 記事作成補助 校閲補助 記事原稿 入稿情報 など
この記事原案を元に記事を作れる 必要なら大規模言語モデルとチャットしな がら整えていく 作家性が重要でない箇所(例:アクセス情 報)の文章作成を省エネ化し、「どんなテ ーマ」で「どんな見出し」で「どんな構成 にするか」といった拘りポイントにヒトは 注力できるようになる 過去の良い記事例 記事作成のコツ など 法令ガイドライン 社内表記ルール など + + オレンジ色が大規模言語モデル で実現可能な処理 固有のルール 記事原案 社内限定の知識 修正案 リクルートでは実際に記事がリリースされ る前の品質担保を重要視している この品質担保に必要な知識はかなり多く、 レビューできる人材が希少リソースになり がち 固有のルールによる判定を大規模言語モデ ルで行うことで (1)希少リソース人材の作 文工数の削減 (2)希少リソース人材に頼ら ない初心者育成ができる
b 大規模言語モデルを 既存手法で強化する話(補助) ヒト編 検索エンジニアが考える、生成AI時代の人間の付加価値とは
ヒトで大規模言語モデルを強化する 供給側の情報 宿や飲食店や物件 など ヒトが介在しない場合 ヒトが介在する場合 生成AIだけでも、消費者像に合わせた加工 は十分可能 しかし、 (1)
そもそも供給側の情報は本当か (2) 文言が法律要件などに合うか (3) 本当に消費者に好ましいものか などに不安が残る オレンジ色が大規模言語モデル で実現可能な処理 ヒトが介在することで、上述の不安は解消 され、以下のように付加価値をつけられる • 特に重要なのは、供給側(クライアント) と直接接点を持っていることで、消費者 からのフィードバックを伝えることがで きる点 • これにより、需要と供給のバランスがよ り取りやすくなり、ムダの少ない効率的 な市場経済が実現されやすくなる • また消費者の潜在的なニーズを顕在化す るドライバーを作ることで (例:見出し 文言)供給側(クライアントの種類)もより 多様になっていく 供給側の情報 宿や飲食店や物件 など 消費者 原案 加工後 情報 消費者 加工後 情報 校正 ファクトチェック 編集 フィードバック
ヒトで大規模言語モデルを強化する 現状の大規模言語モデルは以下の2つができない (1)現実世界のファクトチェック (2)何が良いものかの価値の最終判断 価値向上には編集組織と営業組織との協業が不可欠 • 企画立案だけでなく、綿密な取材や実際にお客さんのところまで足を 運び、意思決定できる人材がいる • クローリングなどによる「質より量の世界観」ではこれらは高コスト
体質と見なされがちだったが、生成AI時代では「量」は誰でもできる ようになり、「質」が重要になるはず • そしてこの「質」を組織的に得られるようになるには一朝一夕ではな かなか難しいのではないか?
サービス ヒト 検索エンジン 生成AI 不足を補う 不足を補う 機能強化 生産性向上 機能提供 利便性向上
価値向上 生成AI時代はこの世界観でより良いものが作られていく(はず)