• Procedimiento de optimización de Hiperparametros de una red neuronal • Prerrequisitos: Curso Básico de Python (PIT) Estadística Descriptiva 8. Bibliografía • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436-444. • Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep learning (Vol. 1, No. 2). Cambridge: MIT press. • Shinde, P. P., & Shah, S. (2018, August). A review of machine learning and deep learning applications. In 2018 Fourth international conference on computing communication control and automation (ICCUBEA) (pp. 1-6). IEEE. • Kelleher, J. D. (2019). Deep learning. MIT press. • Du, X., Cai, Y., Wang, S., & Zhang, L. (2016, November). Overview of deep learning. In 2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC) (pp. 159-164). IEEE. • Prince, S. J. (2023). Understanding deep learning. MIT press. • Wu, Y. C., & Feng, J. W. (2018). Development and application of artificial neural network. Wireless Personal Communications, 102(2), 1645-1656. • Abdi, H., Valentin, D., & Edelman, B. (1999). Neural networks (No. 124). Sage. • Picton, P. (1994). What is a neural network?. In Introduction to neural networks (pp. 1-12). London: Macmillan Education UK. • Kukreja, H., Bharath, N., Siddesh, C. S., & Kuldeep, S. (2016). An introduction to artificial neural network. Int J Adv Res Innov Ideas Educ, 1(5), 27-30. • Gurney, K. (2018). An introduction to neural networks. CRC press. Abraham Zamudio