Upgrade to Pro — share decks privately, control downloads, hide ads and more …

A discussion on scaling Gaussian process regres...

Rohit Tripathy
November 19, 2019

A discussion on scaling Gaussian process regression

Review of some literature on accelerating Gaussian process regression with a special focus on fast solvers based on hierarchical decomposition of the covariance matrix.

Rohit Tripathy

November 19, 2019
Tweet

More Decks by Rohit Tripathy

Other Decks in Science

Transcript

  1. SUPERVISED LEARNING PROBLEM 2 SETTING: Dataset of input-output pairs: Unknown

    map from input to output: D = {(x(i), y(i))}N i=1 , x 2 RDin , y 2 RDout <latexit sha1_base64="O1kwhwtZNriXWcPto60cmfARF84=">AAACeXicbVFNSwMxEM2u3/Wr6lEP0WKpImVXBb0Ioj14kipWhW4t2TSrwWx2SbJiCfkP/jZv/hEvXsy2K2p1IPDmvTfJzCRMGZXK894cd2x8YnJqeqY0Oze/sFheWr6WSSYwaeGEJeI2RJIwyklLUcXIbSoIikNGbsLH01y/eSJC0oRfqX5KOjG65zSiGClLdcsvQYzUA0ZMNwysHsFAw9qACiP9bO50jW6ZHfjF9AtmCwamq+mRb/PzXA/gdxGsBpQXeagvraVhvdz8ugf+40kyZUy3XPHq3iDgX+AXoAKKaHbLr0EvwVlMuMIMSdn2vVR1NBKKYkZMKcgkSRF+RPekbSFHMZEdPdicgZuW6cEoEfZwBQfszwqNYin7cWidea9yVMvJ/7R2pqLDjp06zRThePhQlDGoEph/A+xRQbBifQsQFtT2CvEDEggr+1kluwR/dOS/4Hq37nt1/2K/cnxSrGMarIINUAM+OADH4Aw0QQtg8O6sOZtO1flw192auz20uk5RswJ+hbv3Ce6ewJU=</latexit> <latexit sha1_base64="O1kwhwtZNriXWcPto60cmfARF84=">AAACeXicbVFNSwMxEM2u3/Wr6lEP0WKpImVXBb0Ioj14kipWhW4t2TSrwWx2SbJiCfkP/jZv/hEvXsy2K2p1IPDmvTfJzCRMGZXK894cd2x8YnJqeqY0Oze/sFheWr6WSSYwaeGEJeI2RJIwyklLUcXIbSoIikNGbsLH01y/eSJC0oRfqX5KOjG65zSiGClLdcsvQYzUA0ZMNwysHsFAw9qACiP9bO50jW6ZHfjF9AtmCwamq+mRb/PzXA/gdxGsBpQXeagvraVhvdz8ugf+40kyZUy3XPHq3iDgX+AXoAKKaHbLr0EvwVlMuMIMSdn2vVR1NBKKYkZMKcgkSRF+RPekbSFHMZEdPdicgZuW6cEoEfZwBQfszwqNYin7cWidea9yVMvJ/7R2pqLDjp06zRThePhQlDGoEph/A+xRQbBifQsQFtT2CvEDEggr+1kluwR/dOS/4Hq37nt1/2K/cnxSrGMarIINUAM+OADH4Aw0QQtg8O6sOZtO1flw192auz20uk5RswJ+hbv3Ce6ewJU=</latexit> <latexit sha1_base64="O1kwhwtZNriXWcPto60cmfARF84=">AAACeXicbVFNSwMxEM2u3/Wr6lEP0WKpImVXBb0Ioj14kipWhW4t2TSrwWx2SbJiCfkP/jZv/hEvXsy2K2p1IPDmvTfJzCRMGZXK894cd2x8YnJqeqY0Oze/sFheWr6WSSYwaeGEJeI2RJIwyklLUcXIbSoIikNGbsLH01y/eSJC0oRfqX5KOjG65zSiGClLdcsvQYzUA0ZMNwysHsFAw9qACiP9bO50jW6ZHfjF9AtmCwamq+mRb/PzXA/gdxGsBpQXeagvraVhvdz8ugf+40kyZUy3XPHq3iDgX+AXoAKKaHbLr0EvwVlMuMIMSdn2vVR1NBKKYkZMKcgkSRF+RPekbSFHMZEdPdicgZuW6cEoEfZwBQfszwqNYin7cWidea9yVMvJ/7R2pqLDjp06zRThePhQlDGoEph/A+xRQbBifQsQFtT2CvEDEggr+1kluwR/dOS/4Hq37nt1/2K/cnxSrGMarIINUAM+OADH4Aw0QQtg8O6sOZtO1flw192auz20uk5RswJ+hbv3Ce6ewJU=</latexit> f : RDin ! RDout <latexit sha1_base64="TLxabLx8yf9TKVcJ3cNTfvwYuiE=">AAACsXicbVFNbxMxEPUuXyV8BThyGRG1SiUU7RYkEFKlCnrghApq2qLsNngdb2LFa6/sWSCy/P84c+Pf4E0XQduMZOnNm/fsmXFRS2ExSX5H8Y2bt27f2brbu3f/wcNH/cdPTqxuDONjpqU2ZwW1XArFxyhQ8rPacFoVkp8Wy/dt/fQbN1ZodYyrmucVnStRCkYxUNP+z+2sorhgVLpDDzv7kDkYrqmidD/8uRuKXf8C/jKrjtmFzE+d2E9D/rGtZ/DPBDuZUF1euM9Bchi0yl+6BzZodIPe98q3G6yQGTFfIDVGf99om/YHyShZB1wHaQcGpIujaf9XNtOsqbhCJqm1kzSpMXfUoGCS+17WWF5TtqRzPglQ0Yrb3K037mE7MDMotQlHIazZ/x2OVtauqiIo217t1VpLbqpNGizf5GHiukGu2MVDZSMBNbTfBzNhOEO5CoAyI0KvwBbUUIbhk3thCenVka+Dk71RmozST68GB++6dWyRZ+Q5GZKUvCYH5AM5ImPColF0HOXRefwy/hJ/jYsLaRx1nqfkUsTLP/+n1rQ=</latexit> <latexit sha1_base64="TLxabLx8yf9TKVcJ3cNTfvwYuiE=">AAACsXicbVFNbxMxEPUuXyV8BThyGRG1SiUU7RYkEFKlCnrghApq2qLsNngdb2LFa6/sWSCy/P84c+Pf4E0XQduMZOnNm/fsmXFRS2ExSX5H8Y2bt27f2brbu3f/wcNH/cdPTqxuDONjpqU2ZwW1XArFxyhQ8rPacFoVkp8Wy/dt/fQbN1ZodYyrmucVnStRCkYxUNP+z+2sorhgVLpDDzv7kDkYrqmidD/8uRuKXf8C/jKrjtmFzE+d2E9D/rGtZ/DPBDuZUF1euM9Bchi0yl+6BzZodIPe98q3G6yQGTFfIDVGf99om/YHyShZB1wHaQcGpIujaf9XNtOsqbhCJqm1kzSpMXfUoGCS+17WWF5TtqRzPglQ0Yrb3K037mE7MDMotQlHIazZ/x2OVtauqiIo217t1VpLbqpNGizf5GHiukGu2MVDZSMBNbTfBzNhOEO5CoAyI0KvwBbUUIbhk3thCenVka+Dk71RmozST68GB++6dWyRZ+Q5GZKUvCYH5AM5ImPColF0HOXRefwy/hJ/jYsLaRx1nqfkUsTLP/+n1rQ=</latexit> <latexit sha1_base64="TLxabLx8yf9TKVcJ3cNTfvwYuiE=">AAACsXicbVFNbxMxEPUuXyV8BThyGRG1SiUU7RYkEFKlCnrghApq2qLsNngdb2LFa6/sWSCy/P84c+Pf4E0XQduMZOnNm/fsmXFRS2ExSX5H8Y2bt27f2brbu3f/wcNH/cdPTqxuDONjpqU2ZwW1XArFxyhQ8rPacFoVkp8Wy/dt/fQbN1ZodYyrmucVnStRCkYxUNP+z+2sorhgVLpDDzv7kDkYrqmidD/8uRuKXf8C/jKrjtmFzE+d2E9D/rGtZ/DPBDuZUF1euM9Bchi0yl+6BzZodIPe98q3G6yQGTFfIDVGf99om/YHyShZB1wHaQcGpIujaf9XNtOsqbhCJqm1kzSpMXfUoGCS+17WWF5TtqRzPglQ0Yrb3K037mE7MDMotQlHIazZ/x2OVtauqiIo217t1VpLbqpNGizf5GHiukGu2MVDZSMBNbTfBzNhOEO5CoAyI0KvwBbUUIbhk3thCenVka+Dk71RmozST68GB++6dWyRZ+Q5GZKUvCYH5AM5ImPColF0HOXRefwy/hJ/jYsLaRx1nqfkUsTLP/+n1rQ=</latexit> FIND: ˆ f(·; ✓) ⇡ f(·), s.t., ˆ f(x⇤; ✓) ⇡ f(x⇤), x⇤ / 2 D <latexit sha1_base64="c8aPxH4srKSRRuj4AJjAFWMgRXc=">AAADSnicbVLNb9MwFHeyAaN8dXDk8kTVqZ2mKkFIINCkCXbghAai26S6K47rtNaSOLJfoJWVv48LJ278EVw4gBAX3DaDduuTIj3/Puz3Xl6UJ9JgEHzz/I3Na9dvbN2s3bp95+69+vb9Y6MKzUWXq0Tp04gZkchMdFFiIk5zLVgaJeIkOn81408+Cm2kyt7jNBf9lI0yGUvO0EGDbe9Dk6YMx5wl9rCEnX2gFlpzKIrtpDyzLdku9+ACmVZIG2g5sHI/dOc3M57CfxPsUJlV58i+c5JDp83KlXtgjUYVWJa1Zvx8jReolqMxMq3Vp/U+OmZo47JF+VDhC6A4FsjarhiW51pNIF4wbVcFigla08HOvPQa/LMuNb5brr9jRdLeW+r7bBdopvCir8VMB/VG0AnmAVeTsEoapIqjQf0rHSpepCJDnjBjemGQY98yjZInwrVZGJEzfs5GoufSjKXC9O18FUpoOmQIsdLuyxDm6LLDstSYaRo55axEc5mbgeu4XoHxs777EXmBIuOLh+IiAVQw2ysYSi04JlOXMK6lqxX4mGnG0W1fzQ0hvNzy1eT4cScMOuHbJ42Dl9U4tshD8oi0SEiekgPymhyRLuHeZ++799P75X/xf/i//T8Lqe9VngdkJTY2/wLLNhDk</latexit> <latexit sha1_base64="c8aPxH4srKSRRuj4AJjAFWMgRXc=">AAADSnicbVLNb9MwFHeyAaN8dXDk8kTVqZ2mKkFIINCkCXbghAai26S6K47rtNaSOLJfoJWVv48LJ278EVw4gBAX3DaDduuTIj3/Puz3Xl6UJ9JgEHzz/I3Na9dvbN2s3bp95+69+vb9Y6MKzUWXq0Tp04gZkchMdFFiIk5zLVgaJeIkOn81408+Cm2kyt7jNBf9lI0yGUvO0EGDbe9Dk6YMx5wl9rCEnX2gFlpzKIrtpDyzLdku9+ACmVZIG2g5sHI/dOc3M57CfxPsUJlV58i+c5JDp83KlXtgjUYVWJa1Zvx8jReolqMxMq3Vp/U+OmZo47JF+VDhC6A4FsjarhiW51pNIF4wbVcFigla08HOvPQa/LMuNb5brr9jRdLeW+r7bBdopvCir8VMB/VG0AnmAVeTsEoapIqjQf0rHSpepCJDnjBjemGQY98yjZInwrVZGJEzfs5GoufSjKXC9O18FUpoOmQIsdLuyxDm6LLDstSYaRo55axEc5mbgeu4XoHxs777EXmBIuOLh+IiAVQw2ysYSi04JlOXMK6lqxX4mGnG0W1fzQ0hvNzy1eT4cScMOuHbJ42Dl9U4tshD8oi0SEiekgPymhyRLuHeZ++799P75X/xf/i//T8Lqe9VngdkJTY2/wLLNhDk</latexit> <latexit sha1_base64="c8aPxH4srKSRRuj4AJjAFWMgRXc=">AAADSnicbVLNb9MwFHeyAaN8dXDk8kTVqZ2mKkFIINCkCXbghAai26S6K47rtNaSOLJfoJWVv48LJ278EVw4gBAX3DaDduuTIj3/Puz3Xl6UJ9JgEHzz/I3Na9dvbN2s3bp95+69+vb9Y6MKzUWXq0Tp04gZkchMdFFiIk5zLVgaJeIkOn81408+Cm2kyt7jNBf9lI0yGUvO0EGDbe9Dk6YMx5wl9rCEnX2gFlpzKIrtpDyzLdku9+ACmVZIG2g5sHI/dOc3M57CfxPsUJlV58i+c5JDp83KlXtgjUYVWJa1Zvx8jReolqMxMq3Vp/U+OmZo47JF+VDhC6A4FsjarhiW51pNIF4wbVcFigla08HOvPQa/LMuNb5brr9jRdLeW+r7bBdopvCir8VMB/VG0AnmAVeTsEoapIqjQf0rHSpepCJDnjBjemGQY98yjZInwrVZGJEzfs5GoufSjKXC9O18FUpoOmQIsdLuyxDm6LLDstSYaRo55axEc5mbgeu4XoHxs777EXmBIuOLh+IiAVQw2ysYSi04JlOXMK6lqxX4mGnG0W1fzQ0hvNzy1eT4cScMOuHbJ42Dl9U4tshD8oi0SEiekgPymhyRLuHeZ++799P75X/xf/i//T8Lqe9VngdkJTY2/wLLNhDk</latexit>
  2. GAUSSIAN PROCESSES 3 DEFINITION: A Gaussian process (GP) is a

    stochastic process such that any finite collection of random variables are jointly distributed as Gaussian. A GP is fully specified by a mean function and a covariance kernel so that: {Xt }t 0, s.t.{Xt1 , Xt2 , · · · , Xtk } ⇠ N(m, K) <latexit sha1_base64="ueKukNNnXl+++J3uZc9hKxWo4Rs=">AAADwnicdVLbbtNAEHVsLiVcmsIjLyOiVHFVRXaFBAJVVJAHJKSqINJGitNovVknS2yvuzuGRMY/yRP8DWvHJUkbRrI0e+bM+MzR+EnIFTrOn5pp3bl77/7Og/rDR4+f7Db2np4rkUrKelSEQvZ9oljIY9ZDjiHrJ5KRyA/ZhT/7UNQvvjOpuIi/4iJhw4hMYh5wSlBDo73a75YXEZxSEmbdHPaPwcugXUJ+kM3zy6zN7fwQrpFFhdjg5aOMH7v6fVrUPVg1wb7H4+rtZ180pau5cb4xB7ZwRIp5Xm8Fb7b0gif5ZIpESvHjP33elGAW5G2PjgW+BQ+nDImt1ZAkkWIOwbJiaxnI5pipDnZK7fUW/OtdW/0g3z5kg2Ifrm1+eQBeLPB6s6WrdW1pf4RQWobgTdgVOPmGCICSk+HI1YUyOSoYhVxVAbOCpW1QPFpNP10pjtbs/ZTbo0bT6ThlwO3ErZKmUcXZqPHLGwuaRixGGhKlBq6T4DAjEjkNmd4iVSwhdEYmbKDTmERMDbPyBHNoaWQMgZD6ixFKdL0jI5FSi8jXzEKiulkrwG21QYrB66E+gCRFFtPlj4I0BBRQ3DOMuWQUw4VOCJVcawU6JZJQ1Fdf1ya4N1e+nZwfdVyn435+2Tx5X9mxYzw3XhhtwzVeGSfGR+PM6BnUfGcyMzaF1bW+WVeWWlLNWtXzzNgI6+dfLzc26g==</latexit> <latexit sha1_base64="ueKukNNnXl+++J3uZc9hKxWo4Rs=">AAADwnicdVLbbtNAEHVsLiVcmsIjLyOiVHFVRXaFBAJVVJAHJKSqINJGitNovVknS2yvuzuGRMY/yRP8DWvHJUkbRrI0e+bM+MzR+EnIFTrOn5pp3bl77/7Og/rDR4+f7Db2np4rkUrKelSEQvZ9oljIY9ZDjiHrJ5KRyA/ZhT/7UNQvvjOpuIi/4iJhw4hMYh5wSlBDo73a75YXEZxSEmbdHPaPwcugXUJ+kM3zy6zN7fwQrpFFhdjg5aOMH7v6fVrUPVg1wb7H4+rtZ180pau5cb4xB7ZwRIp5Xm8Fb7b0gif5ZIpESvHjP33elGAW5G2PjgW+BQ+nDImt1ZAkkWIOwbJiaxnI5pipDnZK7fUW/OtdW/0g3z5kg2Ifrm1+eQBeLPB6s6WrdW1pf4RQWobgTdgVOPmGCICSk+HI1YUyOSoYhVxVAbOCpW1QPFpNP10pjtbs/ZTbo0bT6ThlwO3ErZKmUcXZqPHLGwuaRixGGhKlBq6T4DAjEjkNmd4iVSwhdEYmbKDTmERMDbPyBHNoaWQMgZD6ixFKdL0jI5FSi8jXzEKiulkrwG21QYrB66E+gCRFFtPlj4I0BBRQ3DOMuWQUw4VOCJVcawU6JZJQ1Fdf1ya4N1e+nZwfdVyn435+2Tx5X9mxYzw3XhhtwzVeGSfGR+PM6BnUfGcyMzaF1bW+WVeWWlLNWtXzzNgI6+dfLzc26g==</latexit> <latexit sha1_base64="ueKukNNnXl+++J3uZc9hKxWo4Rs=">AAADwnicdVLbbtNAEHVsLiVcmsIjLyOiVHFVRXaFBAJVVJAHJKSqINJGitNovVknS2yvuzuGRMY/yRP8DWvHJUkbRrI0e+bM+MzR+EnIFTrOn5pp3bl77/7Og/rDR4+f7Db2np4rkUrKelSEQvZ9oljIY9ZDjiHrJ5KRyA/ZhT/7UNQvvjOpuIi/4iJhw4hMYh5wSlBDo73a75YXEZxSEmbdHPaPwcugXUJ+kM3zy6zN7fwQrpFFhdjg5aOMH7v6fVrUPVg1wb7H4+rtZ180pau5cb4xB7ZwRIp5Xm8Fb7b0gif5ZIpESvHjP33elGAW5G2PjgW+BQ+nDImt1ZAkkWIOwbJiaxnI5pipDnZK7fUW/OtdW/0g3z5kg2Ifrm1+eQBeLPB6s6WrdW1pf4RQWobgTdgVOPmGCICSk+HI1YUyOSoYhVxVAbOCpW1QPFpNP10pjtbs/ZTbo0bT6ThlwO3ErZKmUcXZqPHLGwuaRixGGhKlBq6T4DAjEjkNmd4iVSwhdEYmbKDTmERMDbPyBHNoaWQMgZD6ixFKdL0jI5FSi8jXzEKiulkrwG21QYrB66E+gCRFFtPlj4I0BBRQ3DOMuWQUw4VOCJVcawU6JZJQ1Fdf1ya4N1e+nZwfdVyn435+2Tx5X9mxYzw3XhhtwzVeGSfGR+PM6BnUfGcyMzaF1bW+WVeWWlLNWtXzzNgI6+dfLzc26g==</latexit> µt = E[Xt] = m(t), cov(Xt, Xt0 ) = E[XtXt0 ] E[Xt]E[Xt0 ] = k(t, t0) <latexit sha1_base64="qy2CwNYqB5G+9WUmJ/2ZOObDuTs=">AAAEQ3icdVNba9RAFE6zXmq8tfroy8GybVLqkhRBURaKVhCEUsVeZGe7TGYnu8PmZuakdgnz33zxD/jmH/DFB0V8FZxk03a3XQcCZ77vO2e+cybjp6GQ6LrfFszGlavXri/esG7eun3n7tLyvX2Z5BnjeywJk+zQp5KHIuZ7KDDkh2nGaeSH/MAfvSz5g2OeSZHE73Gc8m5EB7EIBKOood6y+aFJIopDRsNiW8FqG0gBdgX5QXGijgpbOGoDTpFxjThAVK8QbU/vd0qewHkSrBIR13u/eKcl21obq5k6MEeT5KiU1QyezckFkonBEGmWJZ/+k0eGFItA2YT1E3wOBIccqaPd0DTNkhMIJoyjbSA/wUK2sFV5t5pwljvV+rqaX2RG4mxMdX60DiRO8LSzyVS1sQIOewjVzBDIgH8EV824AKg0BfY8TVTBZqko/coaGJUqPQcpovPyO+eWo6n5vlGORaJcH9o+w16pjnbRLS85sqspEIslx7YGJyes6WvV5IWEmurCo0uVZvYTURtGti6Ha05vacVtudWCy4FXBytGvXZ7S19JP2F5xGNkIZWy47kpdguaoWAhVxbJJU8pG9EB7+gwphGX3aJ6AwqaGulDkGT6ixEqdDqjoJGU48jXytK0vMiV4Dyuk2PwtKv/wDRHHrPJQUEeAiZQPijoi4wzDMc6oCwT2iuwIc0oQ/3sLD0E72LLl4P9zZbntry3j1e2XtTjWDQeGA8N2/CMJ8aW8drYNfYMZn42v5s/zV+NL40fjd+NPxOpuVDn3DdmVuPvP79SZRQ=</latexit> <latexit sha1_base64="qy2CwNYqB5G+9WUmJ/2ZOObDuTs=">AAAEQ3icdVNba9RAFE6zXmq8tfroy8GybVLqkhRBURaKVhCEUsVeZGe7TGYnu8PmZuakdgnz33zxD/jmH/DFB0V8FZxk03a3XQcCZ77vO2e+cybjp6GQ6LrfFszGlavXri/esG7eun3n7tLyvX2Z5BnjeywJk+zQp5KHIuZ7KDDkh2nGaeSH/MAfvSz5g2OeSZHE73Gc8m5EB7EIBKOood6y+aFJIopDRsNiW8FqG0gBdgX5QXGijgpbOGoDTpFxjThAVK8QbU/vd0qewHkSrBIR13u/eKcl21obq5k6MEeT5KiU1QyezckFkonBEGmWJZ/+k0eGFItA2YT1E3wOBIccqaPd0DTNkhMIJoyjbSA/wUK2sFV5t5pwljvV+rqaX2RG4mxMdX60DiRO8LSzyVS1sQIOewjVzBDIgH8EV824AKg0BfY8TVTBZqko/coaGJUqPQcpovPyO+eWo6n5vlGORaJcH9o+w16pjnbRLS85sqspEIslx7YGJyes6WvV5IWEmurCo0uVZvYTURtGti6Ha05vacVtudWCy4FXBytGvXZ7S19JP2F5xGNkIZWy47kpdguaoWAhVxbJJU8pG9EB7+gwphGX3aJ6AwqaGulDkGT6ixEqdDqjoJGU48jXytK0vMiV4Dyuk2PwtKv/wDRHHrPJQUEeAiZQPijoi4wzDMc6oCwT2iuwIc0oQ/3sLD0E72LLl4P9zZbntry3j1e2XtTjWDQeGA8N2/CMJ8aW8drYNfYMZn42v5s/zV+NL40fjd+NPxOpuVDn3DdmVuPvP79SZRQ=</latexit> <latexit sha1_base64="qy2CwNYqB5G+9WUmJ/2ZOObDuTs=">AAAEQ3icdVNba9RAFE6zXmq8tfroy8GybVLqkhRBURaKVhCEUsVeZGe7TGYnu8PmZuakdgnz33zxD/jmH/DFB0V8FZxk03a3XQcCZ77vO2e+cybjp6GQ6LrfFszGlavXri/esG7eun3n7tLyvX2Z5BnjeywJk+zQp5KHIuZ7KDDkh2nGaeSH/MAfvSz5g2OeSZHE73Gc8m5EB7EIBKOood6y+aFJIopDRsNiW8FqG0gBdgX5QXGijgpbOGoDTpFxjThAVK8QbU/vd0qewHkSrBIR13u/eKcl21obq5k6MEeT5KiU1QyezckFkonBEGmWJZ/+k0eGFItA2YT1E3wOBIccqaPd0DTNkhMIJoyjbSA/wUK2sFV5t5pwljvV+rqaX2RG4mxMdX60DiRO8LSzyVS1sQIOewjVzBDIgH8EV824AKg0BfY8TVTBZqko/coaGJUqPQcpovPyO+eWo6n5vlGORaJcH9o+w16pjnbRLS85sqspEIslx7YGJyes6WvV5IWEmurCo0uVZvYTURtGti6Ha05vacVtudWCy4FXBytGvXZ7S19JP2F5xGNkIZWy47kpdguaoWAhVxbJJU8pG9EB7+gwphGX3aJ6AwqaGulDkGT6ixEqdDqjoJGU48jXytK0vMiV4Dyuk2PwtKv/wDRHHrPJQUEeAiZQPijoi4wzDMc6oCwT2iuwIc0oQ/3sLD0E72LLl4P9zZbntry3j1e2XtTjWDQeGA8N2/CMJ8aW8drYNfYMZn42v5s/zV+NL40fjd+NPxOpuVDn3DdmVuPvP79SZRQ=</latexit>
  3. GAUSSIAN PROCESS REGRESSION 4 § Standard regression techniques ( generalized

    linear models, deep neural networks etc. ) – • Hypothesize that the unknown function resides in a space of parameterized functions. • Pose a risk minimization problem of the form: ✓⇤ = argmin ✓ 1 N N X i=1 L(y(i), ˆ f(x(i); ✓)) + R(✓) <latexit sha1_base64="rJ0gPCqJuqt0XtHAY/MGsexelmE=">AAAE8XicdVNbaxNBFN420dZ4a/XRl4MlbbbWkC2CogSKVhCUUou9QDcNk8lssmRv7pytDcP8C198UMRX/41v/hvPXtpNmjgwcOY73znznXNmepHnSmy1/i4sVqo3bi4t36rdvnP33v2V1QdHMkxiLg556IXxSY9J4bmBOEQXPXESxYL5PU8c90ZvUv/xuYilGwafcByJjs8Ggeu4nCFB3dXKUt32GQ4589SuhvU22AoaGdRz1IU+Uw3X1FtwiYwLxARbd5Xbtui8l/ptKINg3XaD4txTB0TZJW6gp/LAHE6YoNa1uvNyTizYsTsYIovj8Mt/4uwhQ+Xohs37Ib4CG4cCmUlqWBTF4QU4ucckGSguUMkmNjPttTpcxU6UvqnnJ5mimFsTlZ9tgh2EeFlZ3lUSpuCki5D1DMEeiM/Q0lMqADKOwq5FjszYThmpXlkAo5RFfZCuX6bfKyX7E/19r0261k/o1vYV+FafkoxOOmW/kbWBKufheYPQ/I4NGix5r0UUrg48nUk1dc5JbRg1KB1umM1a3r20TamMJOjTUxSoclirLDr2FYsHfj5jJ2ZcWZrKojoTv3xiZcUfyorH5fvMxzf7dK8maMITsD36GX1W5jqgXLm7u7LWarayBbOGVRhrRrH2uyt/7H7IE18EyD0m5anVirBDpaDLPaFrdiJFxPiIDcQpmQHzheyo7MdqqBPSByeMaQcIGToZoZgv5djvETOVKq/7UnCe7zRB50WH/kuUoAh4fpGTeIAhpN8f+m4sOHpjMhiPXdIKfMio6UiTqVETrOslzxpH202r1bQ+PlvbeV20Y9l4ZDw2GoZlPDd2jHfGvnFo8EpQ+Vr5XvlRldVv1Z/VXzl1caGIeWhMrervfx9/ohw=</latexit> <latexit sha1_base64="rJ0gPCqJuqt0XtHAY/MGsexelmE=">AAAE8XicdVNbaxNBFN420dZ4a/XRl4MlbbbWkC2CogSKVhCUUou9QDcNk8lssmRv7pytDcP8C198UMRX/41v/hvPXtpNmjgwcOY73znznXNmepHnSmy1/i4sVqo3bi4t36rdvnP33v2V1QdHMkxiLg556IXxSY9J4bmBOEQXPXESxYL5PU8c90ZvUv/xuYilGwafcByJjs8Ggeu4nCFB3dXKUt32GQ4589SuhvU22AoaGdRz1IU+Uw3X1FtwiYwLxARbd5Xbtui8l/ptKINg3XaD4txTB0TZJW6gp/LAHE6YoNa1uvNyTizYsTsYIovj8Mt/4uwhQ+Xohs37Ib4CG4cCmUlqWBTF4QU4ucckGSguUMkmNjPttTpcxU6UvqnnJ5mimFsTlZ9tgh2EeFlZ3lUSpuCki5D1DMEeiM/Q0lMqADKOwq5FjszYThmpXlkAo5RFfZCuX6bfKyX7E/19r0261k/o1vYV+FafkoxOOmW/kbWBKufheYPQ/I4NGix5r0UUrg48nUk1dc5JbRg1KB1umM1a3r20TamMJOjTUxSoclirLDr2FYsHfj5jJ2ZcWZrKojoTv3xiZcUfyorH5fvMxzf7dK8maMITsD36GX1W5jqgXLm7u7LWarayBbOGVRhrRrH2uyt/7H7IE18EyD0m5anVirBDpaDLPaFrdiJFxPiIDcQpmQHzheyo7MdqqBPSByeMaQcIGToZoZgv5djvETOVKq/7UnCe7zRB50WH/kuUoAh4fpGTeIAhpN8f+m4sOHpjMhiPXdIKfMio6UiTqVETrOslzxpH202r1bQ+PlvbeV20Y9l4ZDw2GoZlPDd2jHfGvnFo8EpQ+Vr5XvlRldVv1Z/VXzl1caGIeWhMrervfx9/ohw=</latexit> <latexit sha1_base64="rJ0gPCqJuqt0XtHAY/MGsexelmE=">AAAE8XicdVNbaxNBFN420dZ4a/XRl4MlbbbWkC2CogSKVhCUUou9QDcNk8lssmRv7pytDcP8C198UMRX/41v/hvPXtpNmjgwcOY73znznXNmepHnSmy1/i4sVqo3bi4t36rdvnP33v2V1QdHMkxiLg556IXxSY9J4bmBOEQXPXESxYL5PU8c90ZvUv/xuYilGwafcByJjs8Ggeu4nCFB3dXKUt32GQ4589SuhvU22AoaGdRz1IU+Uw3X1FtwiYwLxARbd5Xbtui8l/ptKINg3XaD4txTB0TZJW6gp/LAHE6YoNa1uvNyTizYsTsYIovj8Mt/4uwhQ+Xohs37Ib4CG4cCmUlqWBTF4QU4ucckGSguUMkmNjPttTpcxU6UvqnnJ5mimFsTlZ9tgh2EeFlZ3lUSpuCki5D1DMEeiM/Q0lMqADKOwq5FjszYThmpXlkAo5RFfZCuX6bfKyX7E/19r0261k/o1vYV+FafkoxOOmW/kbWBKufheYPQ/I4NGix5r0UUrg48nUk1dc5JbRg1KB1umM1a3r20TamMJOjTUxSoclirLDr2FYsHfj5jJ2ZcWZrKojoTv3xiZcUfyorH5fvMxzf7dK8maMITsD36GX1W5jqgXLm7u7LWarayBbOGVRhrRrH2uyt/7H7IE18EyD0m5anVirBDpaDLPaFrdiJFxPiIDcQpmQHzheyo7MdqqBPSByeMaQcIGToZoZgv5djvETOVKq/7UnCe7zRB50WH/kuUoAh4fpGTeIAhpN8f+m4sOHpjMhiPXdIKfMio6UiTqVETrOslzxpH202r1bQ+PlvbeV20Y9l4ZDw2GoZlPDd2jHfGvnFo8EpQ+Vr5XvlRldVv1Z/VXzl1caGIeWhMrervfx9/ohw=</latexit> LOG LIKELIHOOD LOG PRIOR
  4. GAUSSIAN PROCESS REGRESSION 6 Statistical model: Prior GP: Data: Posterior

    GP: Posterior mean: Posterior variance: Ref. - Rasmussen, Carl Edward. "Gaussian processes in machine learning." Advanced lectures on machine learning. Springer, Berlin, Heidelberg, 2004. 63-71.. E[f⇤|x⇤, D] = m(x⇤) + k(x⇤, X) K + 2 n I 1 (y m(X)), V[f⇤|x⇤, D] = k(x⇤, X) K + 2 n I 1 k(x⇤, X)T <latexit sha1_base64="3ulIit+ZHlA1s0wPf1oZO2x41Kc=">AAAGXXictVRLb9NAEHZLE9pQSgsHDlxGVGnt0kZxhQQCRaqgSCBQVao+ItVJtHHWiRW/8K5Lo2X/JDe48FcYPxI7DxAXLFmanef3zcxuN3Bsxuv1H0vLd1ZK5bura5V76/c3HmxuPbxkfhSa9ML0HT9sdgmjju3RC25zhzaDkBK369Cr7vBtbL+6oSGzfe+cjwLacknfsy3bJBxVna0VVjVcwgcmccSxhJ0GGALURNW1xK1sC9XW5D6MNaNMo4EhO8Ju6Hg+ie0G5EGwY9hedu6KM3Q5Rl9PTuWBBT5+xKWsVK1XC2LBCO3+gJMw9L/+Ic4YEC4sqRpmz+evweADyomGaEgQhP4tWKlFQxic3nLBaryWYK9UYRJboL4nFyeZctH2C8zbe2B4Ph8zS7uKwAQ0OxySnnEw+vQL1OUUCoDER/COjoZEOIw9YrwsUwxjL+wDs908/UkO2S3096PUsKwbYdXGRPlOXiOMVjxlV03agMxN/0ZFbVpjFweL1pmIzNSCg7lUU+fUqQFDFdPxXa2GEJL2xX2KcUReD3eRcpGqpUjCQ1eQsO+mQ7ZCYgpdIi8kGrn5juWUP+WUR/mCpvOb393JCDV4BoaDV6NH8lxnmCs1V8Y7hVSsGPC36TnvF0ea9XBmE7DAUF0YhedmfGccanEVClOKMTG775KO8DDgUE5sH8Ybr7XFgV4ghlfnoFAb86aTHOO//Ff8/w/rXzO3zzub2/VaPflgXtAzYVvJvtPO5nej55uRSz1uOoSxa70e8BZuDbdNh8qKETEaEHNI+vQaRY+4lLVE8jpKqKKmB5Yf4u9xSLTFCEFcxkZuFz1jkGzWFisX2a4jbr1s4dsURJx6ZlrIihzgPsRPLfTskJrcGaFAzNBGrGAOCO43x0tQwSbos5TnhcvDml6v6Z+fbx+9ydqxqjxRniqqoisvlCPlvXKqXCjmys+SUlorVUq/yqXyenkjdV1eymIeKVNf+fFvGzAidg==</latexit> <latexit sha1_base64="3ulIit+ZHlA1s0wPf1oZO2x41Kc=">AAAGXXictVRLb9NAEHZLE9pQSgsHDlxGVGnt0kZxhQQCRaqgSCBQVao+ItVJtHHWiRW/8K5Lo2X/JDe48FcYPxI7DxAXLFmanef3zcxuN3Bsxuv1H0vLd1ZK5bura5V76/c3HmxuPbxkfhSa9ML0HT9sdgmjju3RC25zhzaDkBK369Cr7vBtbL+6oSGzfe+cjwLacknfsy3bJBxVna0VVjVcwgcmccSxhJ0GGALURNW1xK1sC9XW5D6MNaNMo4EhO8Ju6Hg+ie0G5EGwY9hedu6KM3Q5Rl9PTuWBBT5+xKWsVK1XC2LBCO3+gJMw9L/+Ic4YEC4sqRpmz+evweADyomGaEgQhP4tWKlFQxic3nLBaryWYK9UYRJboL4nFyeZctH2C8zbe2B4Ph8zS7uKwAQ0OxySnnEw+vQL1OUUCoDER/COjoZEOIw9YrwsUwxjL+wDs908/UkO2S3096PUsKwbYdXGRPlOXiOMVjxlV03agMxN/0ZFbVpjFweL1pmIzNSCg7lUU+fUqQFDFdPxXa2GEJL2xX2KcUReD3eRcpGqpUjCQ1eQsO+mQ7ZCYgpdIi8kGrn5juWUP+WUR/mCpvOb393JCDV4BoaDV6NH8lxnmCs1V8Y7hVSsGPC36TnvF0ea9XBmE7DAUF0YhedmfGccanEVClOKMTG775KO8DDgUE5sH8Ybr7XFgV4ghlfnoFAb86aTHOO//Ff8/w/rXzO3zzub2/VaPflgXtAzYVvJvtPO5nej55uRSz1uOoSxa70e8BZuDbdNh8qKETEaEHNI+vQaRY+4lLVE8jpKqKKmB5Yf4u9xSLTFCEFcxkZuFz1jkGzWFisX2a4jbr1s4dsURJx6ZlrIihzgPsRPLfTskJrcGaFAzNBGrGAOCO43x0tQwSbos5TnhcvDml6v6Z+fbx+9ydqxqjxRniqqoisvlCPlvXKqXCjmys+SUlorVUq/yqXyenkjdV1eymIeKVNf+fFvGzAidg==</latexit> <latexit sha1_base64="3ulIit+ZHlA1s0wPf1oZO2x41Kc=">AAAGXXictVRLb9NAEHZLE9pQSgsHDlxGVGnt0kZxhQQCRaqgSCBQVao+ItVJtHHWiRW/8K5Lo2X/JDe48FcYPxI7DxAXLFmanef3zcxuN3Bsxuv1H0vLd1ZK5bura5V76/c3HmxuPbxkfhSa9ML0HT9sdgmjju3RC25zhzaDkBK369Cr7vBtbL+6oSGzfe+cjwLacknfsy3bJBxVna0VVjVcwgcmccSxhJ0GGALURNW1xK1sC9XW5D6MNaNMo4EhO8Ju6Hg+ie0G5EGwY9hedu6KM3Q5Rl9PTuWBBT5+xKWsVK1XC2LBCO3+gJMw9L/+Ic4YEC4sqRpmz+evweADyomGaEgQhP4tWKlFQxic3nLBaryWYK9UYRJboL4nFyeZctH2C8zbe2B4Ph8zS7uKwAQ0OxySnnEw+vQL1OUUCoDER/COjoZEOIw9YrwsUwxjL+wDs908/UkO2S3096PUsKwbYdXGRPlOXiOMVjxlV03agMxN/0ZFbVpjFweL1pmIzNSCg7lUU+fUqQFDFdPxXa2GEJL2xX2KcUReD3eRcpGqpUjCQ1eQsO+mQ7ZCYgpdIi8kGrn5juWUP+WUR/mCpvOb393JCDV4BoaDV6NH8lxnmCs1V8Y7hVSsGPC36TnvF0ea9XBmE7DAUF0YhedmfGccanEVClOKMTG775KO8DDgUE5sH8Ybr7XFgV4ghlfnoFAb86aTHOO//Ff8/w/rXzO3zzub2/VaPflgXtAzYVvJvtPO5nej55uRSz1uOoSxa70e8BZuDbdNh8qKETEaEHNI+vQaRY+4lLVE8jpKqKKmB5Yf4u9xSLTFCEFcxkZuFz1jkGzWFisX2a4jbr1s4dsURJx6ZlrIihzgPsRPLfTskJrcGaFAzNBGrGAOCO43x0tQwSbos5TnhcvDml6v6Z+fbx+9ydqxqjxRniqqoisvlCPlvXKqXCjmys+SUlorVUq/yqXyenkjdV1eymIeKVNf+fFvGzAidg==</latexit> f ⇠ GP(f|m(x), k(x, x0; H)), f⇤ |D ⇠ GP(f⇤ | ˜ m(x), ˜ k(x, x0; H)). <latexit sha1_base64="UxLO0dF3Vu8MrgT9Z0RQShoCbjA=">AAAHBHictVVJb9NAFHYLCSVsLdzg8kSV1oY0iiskEFWkCoooAlWl6hKpTqOJM06seAn2uCSazoELf4ULBxDiyo/gxr/heUlsJwFxYaRIM2/9vrc47YFl+qxW+7WweOlyoXhl6Wrp2vUbN28tr9w+9t3A0+mR7lqu12gTn1qmQ4+YySzaGHiU2G2LnrT7z0P9yTn1fNN1DtloQJs26TqmYeqEoai1Urhb1mzCejqx+I6AtTpoHORI1Db4UJxx2VREBcaSUSJRQBMtbtZVfO+Feg1SJ1jTTCd5t/kBmuygrSNycWCOjRswIUpl4+kcX9A8s9tjxPPc93/w03qEcUPImt5x2RZorEcZURANGQw8dwhGrFEQBqNDxv0qq0bYS2WY+GaoPxDzg+RMlEqG+dkD0ByXjZnFVUVgHBotBlHNGGhd+g5qIocCILLhrKWiIrpshhYhXj8R9EMrrINv2mn4vRSynanva6FgWjvArPWJ8IU4RRjNsMu2HJUBmevuuYzSOMc6Nha1Ux6JqgkbM6Fy79ioDn0Zw7F1pYoQovKFdQpxBE4HZ5EyHosFj9w9mxOva8dNNjyic1UgLyQa2OmMpZTfpJRH6YDG/Zud3UkLFXgImoWr0SFprAOMFatL5fFQIRcjRHyRb3Ql29OkiFOjgBn68lwvfDfCpbGowWTItCkE5Ztdm7S4gw6bYqJ7NR555YxvqBlmuDsbmdwYN2nlmMDxvxL4f2D/GvnssGTgQuXm+OW+kA24yNUUafXlYQWG61up4e6YroHLdpGlNDdkbMRMq0NxQfLBE3FfzE1SbS2v1qq16MDsRU0uq1Jy9lvLP7WOqwc2dZhuEd8/VWsD1sThZqZuUVHSAp8OiN4nXXqKV4fY1G/y6CMuoIySDhiuhz+HQSTNenBi+/7IbqNliNKf1oXCebrTgBlPmvgJHQSMOnqcyAgsYC6E/wjQMT2qM2uEF6J7JmIFvUdwDRnuagmLoE5Tnr0cb1bVWlV9+2h1+1lSjiXpnnRfkiVVeixtS7vSvnQk6YUPhU+FL4WvxY/Fz8Vvxe+x6eJC4nNHyp3ij98IYF5b</latexit> <latexit sha1_base64="UxLO0dF3Vu8MrgT9Z0RQShoCbjA=">AAAHBHictVVJb9NAFHYLCSVsLdzg8kSV1oY0iiskEFWkCoooAlWl6hKpTqOJM06seAn2uCSazoELf4ULBxDiyo/gxr/heUlsJwFxYaRIM2/9vrc47YFl+qxW+7WweOlyoXhl6Wrp2vUbN28tr9w+9t3A0+mR7lqu12gTn1qmQ4+YySzaGHiU2G2LnrT7z0P9yTn1fNN1DtloQJs26TqmYeqEoai1Urhb1mzCejqx+I6AtTpoHORI1Db4UJxx2VREBcaSUSJRQBMtbtZVfO+Feg1SJ1jTTCd5t/kBmuygrSNycWCOjRswIUpl4+kcX9A8s9tjxPPc93/w03qEcUPImt5x2RZorEcZURANGQw8dwhGrFEQBqNDxv0qq0bYS2WY+GaoPxDzg+RMlEqG+dkD0ByXjZnFVUVgHBotBlHNGGhd+g5qIocCILLhrKWiIrpshhYhXj8R9EMrrINv2mn4vRSynanva6FgWjvArPWJ8IU4RRjNsMu2HJUBmevuuYzSOMc6Nha1Ux6JqgkbM6Fy79ioDn0Zw7F1pYoQovKFdQpxBE4HZ5EyHosFj9w9mxOva8dNNjyic1UgLyQa2OmMpZTfpJRH6YDG/Zud3UkLFXgImoWr0SFprAOMFatL5fFQIRcjRHyRb3Ql29OkiFOjgBn68lwvfDfCpbGowWTItCkE5Ztdm7S4gw6bYqJ7NR555YxvqBlmuDsbmdwYN2nlmMDxvxL4f2D/GvnssGTgQuXm+OW+kA24yNUUafXlYQWG61up4e6YroHLdpGlNDdkbMRMq0NxQfLBE3FfzE1SbS2v1qq16MDsRU0uq1Jy9lvLP7WOqwc2dZhuEd8/VWsD1sThZqZuUVHSAp8OiN4nXXqKV4fY1G/y6CMuoIySDhiuhz+HQSTNenBi+/7IbqNliNKf1oXCebrTgBlPmvgJHQSMOnqcyAgsYC6E/wjQMT2qM2uEF6J7JmIFvUdwDRnuagmLoE5Tnr0cb1bVWlV9+2h1+1lSjiXpnnRfkiVVeixtS7vSvnQk6YUPhU+FL4WvxY/Fz8Vvxe+x6eJC4nNHyp3ij98IYF5b</latexit> <latexit sha1_base64="UxLO0dF3Vu8MrgT9Z0RQShoCbjA=">AAAHBHictVVJb9NAFHYLCSVsLdzg8kSV1oY0iiskEFWkCoooAlWl6hKpTqOJM06seAn2uCSazoELf4ULBxDiyo/gxr/heUlsJwFxYaRIM2/9vrc47YFl+qxW+7WweOlyoXhl6Wrp2vUbN28tr9w+9t3A0+mR7lqu12gTn1qmQ4+YySzaGHiU2G2LnrT7z0P9yTn1fNN1DtloQJs26TqmYeqEoai1Urhb1mzCejqx+I6AtTpoHORI1Db4UJxx2VREBcaSUSJRQBMtbtZVfO+Feg1SJ1jTTCd5t/kBmuygrSNycWCOjRswIUpl4+kcX9A8s9tjxPPc93/w03qEcUPImt5x2RZorEcZURANGQw8dwhGrFEQBqNDxv0qq0bYS2WY+GaoPxDzg+RMlEqG+dkD0ByXjZnFVUVgHBotBlHNGGhd+g5qIocCILLhrKWiIrpshhYhXj8R9EMrrINv2mn4vRSynanva6FgWjvArPWJ8IU4RRjNsMu2HJUBmevuuYzSOMc6Nha1Ux6JqgkbM6Fy79ioDn0Zw7F1pYoQovKFdQpxBE4HZ5EyHosFj9w9mxOva8dNNjyic1UgLyQa2OmMpZTfpJRH6YDG/Zud3UkLFXgImoWr0SFprAOMFatL5fFQIRcjRHyRb3Ql29OkiFOjgBn68lwvfDfCpbGowWTItCkE5Ztdm7S4gw6bYqJ7NR555YxvqBlmuDsbmdwYN2nlmMDxvxL4f2D/GvnssGTgQuXm+OW+kA24yNUUafXlYQWG61up4e6YroHLdpGlNDdkbMRMq0NxQfLBE3FfzE1SbS2v1qq16MDsRU0uq1Jy9lvLP7WOqwc2dZhuEd8/VWsD1sThZqZuUVHSAp8OiN4nXXqKV4fY1G/y6CMuoIySDhiuhz+HQSTNenBi+/7IbqNliNKf1oXCebrTgBlPmvgJHQSMOnqcyAgsYC6E/wjQMT2qM2uEF6J7JmIFvUdwDRnuagmLoE5Tnr0cb1bVWlV9+2h1+1lSjiXpnnRfkiVVeixtS7vSvnQk6YUPhU+FL4WvxY/Fz8Vvxe+x6eJC4nNHyp3ij98IYF5b</latexit>
  5. INFERENCE IN GP REGRESSION 7 Fig.: Graphical model for GPR

    INFERENCE PROBLEM – Estimate the posterior distribution of the hyperparameters. All hyperparameters: Prior: Posterior: Likelihood: Intractable !
  6. INFERENCE IN GP REGRESSION 8 Fig.: Graphical model for GPR

    Approximation of the posterior at the mode: Optimization task: HMAP = argmin H log p(y|X, H) <latexit sha1_base64="IDn6HW7pMXIct8TFfa4DkDVzbFc=">AAAHeXictVVJb9NAFHYLTUrYWjjC4UGV1i5pFBckEFWlAkUUAVWpukSq02jijBMr3rDHJdF0fgP/jRt/hAsXnpfEdhoQF0aKNPPW73tL3PEsM2CNxo+5+WvXF0rlxRuVm7du37m7tHzvJHBDX6fHumu5frNDAmqZDj1mJrNo0/MpsTsWPe0M3kT60wvqB6brHLGRR1s26TmmYeqEoai9vPCtqtmE9XVi8V0Bq9ugcZBjUcfgQ3HOZVMRNRhLRqlEAU20ubmt4ns/0muQOcGqZjrpu8MP0WQXbR1RiAMzbNyQCVGpGi9n+ILmm70+I77vfv2Dn9YnjBtC1vSuy7ZAY33KiIJoiOf57hCMRKMgDEaHjAd1Vo+xV6ow8c1RXxezgxRMlFqO+fk6aI7LxsySqiIwDs02g7hmDLQe/QINUUABENtw1lZREV82I4sIb5AKBpEV1iEw7Sz8fgbZztX3g1AwrR1i1u2J8K04QxitqMu2HJcBmevuhYzSJMcaNha1Ux6pqgUbV0IV3onRNgxkDMfWlDpCiMsX1SnCETpdnEXKeCIWPHb3bU78np002fCJzlWBvJBoaGczllH+mFEeZQOa9O/q7E5aqMAT0CxcjS7JYh1irERdqY6HCrkYEeLLYqNr+Z6mRZwaBcwwkGd64bsZLY1FDSZDrk0RqMDs2aTNHXTYFBPd+/HIK+d8Q80xw93ZyOXGuGkrxwRO/pXA/wP718jnR7jjuFGFQX53IGQDLgtFRV4DeViD4dpWZrg34Wvgul3mSc2MmRgx0+pSXJFi9FQ8EDOz1Cu5Z3syrJ9eHYipcc7MZsx0tDaW2wMv18HLrBy1QtL20kqj3ogPXL2o6WVFSs9Be+m71nX10KYO0y0SBGdqw2MtzM5M3aKiooUB9Yg+ID16hleH2DRo8fjLIaCKki4Yro8/h0EszXtwYgfByO6gZYQxmNZFwlm6s5AZL1r4v+2FjDp6ksgILWAuRJ8h6Jo+1Zk1wgvRfROxgt4nuPsMK1rBIqjTlK9eTjbraqOufn62svM6Lcei9EB6LMmSKj2XdqQ96UA6lvSFn6WHpWpptfSr/Kgsl9cT0/m51Oe+VDjlp78BNDOIew==</latexit> <latexit sha1_base64="IDn6HW7pMXIct8TFfa4DkDVzbFc=">AAAHeXictVVJb9NAFHYLTUrYWjjC4UGV1i5pFBckEFWlAkUUAVWpukSq02jijBMr3rDHJdF0fgP/jRt/hAsXnpfEdhoQF0aKNPPW73tL3PEsM2CNxo+5+WvXF0rlxRuVm7du37m7tHzvJHBDX6fHumu5frNDAmqZDj1mJrNo0/MpsTsWPe0M3kT60wvqB6brHLGRR1s26TmmYeqEoai9vPCtqtmE9XVi8V0Bq9ugcZBjUcfgQ3HOZVMRNRhLRqlEAU20ubmt4ns/0muQOcGqZjrpu8MP0WQXbR1RiAMzbNyQCVGpGi9n+ILmm70+I77vfv2Dn9YnjBtC1vSuy7ZAY33KiIJoiOf57hCMRKMgDEaHjAd1Vo+xV6ow8c1RXxezgxRMlFqO+fk6aI7LxsySqiIwDs02g7hmDLQe/QINUUABENtw1lZREV82I4sIb5AKBpEV1iEw7Sz8fgbZztX3g1AwrR1i1u2J8K04QxitqMu2HJcBmevuhYzSJMcaNha1Ux6pqgUbV0IV3onRNgxkDMfWlDpCiMsX1SnCETpdnEXKeCIWPHb3bU78np002fCJzlWBvJBoaGczllH+mFEeZQOa9O/q7E5aqMAT0CxcjS7JYh1irERdqY6HCrkYEeLLYqNr+Z6mRZwaBcwwkGd64bsZLY1FDSZDrk0RqMDs2aTNHXTYFBPd+/HIK+d8Q80xw93ZyOXGuGkrxwRO/pXA/wP718jnR7jjuFGFQX53IGQDLgtFRV4DeViD4dpWZrg34Wvgul3mSc2MmRgx0+pSXJFi9FQ8EDOz1Cu5Z3syrJ9eHYipcc7MZsx0tDaW2wMv18HLrBy1QtL20kqj3ogPXL2o6WVFSs9Be+m71nX10KYO0y0SBGdqw2MtzM5M3aKiooUB9Yg+ID16hleH2DRo8fjLIaCKki4Yro8/h0EszXtwYgfByO6gZYQxmNZFwlm6s5AZL1r4v+2FjDp6ksgILWAuRJ8h6Jo+1Zk1wgvRfROxgt4nuPsMK1rBIqjTlK9eTjbraqOufn62svM6Lcei9EB6LMmSKj2XdqQ96UA6lvSFn6WHpWpptfSr/Kgsl9cT0/m51Oe+VDjlp78BNDOIew==</latexit> <latexit sha1_base64="IDn6HW7pMXIct8TFfa4DkDVzbFc=">AAAHeXictVVJb9NAFHYLTUrYWjjC4UGV1i5pFBckEFWlAkUUAVWpukSq02jijBMr3rDHJdF0fgP/jRt/hAsXnpfEdhoQF0aKNPPW73tL3PEsM2CNxo+5+WvXF0rlxRuVm7du37m7tHzvJHBDX6fHumu5frNDAmqZDj1mJrNo0/MpsTsWPe0M3kT60wvqB6brHLGRR1s26TmmYeqEoai9vPCtqtmE9XVi8V0Bq9ugcZBjUcfgQ3HOZVMRNRhLRqlEAU20ubmt4ns/0muQOcGqZjrpu8MP0WQXbR1RiAMzbNyQCVGpGi9n+ILmm70+I77vfv2Dn9YnjBtC1vSuy7ZAY33KiIJoiOf57hCMRKMgDEaHjAd1Vo+xV6ow8c1RXxezgxRMlFqO+fk6aI7LxsySqiIwDs02g7hmDLQe/QINUUABENtw1lZREV82I4sIb5AKBpEV1iEw7Sz8fgbZztX3g1AwrR1i1u2J8K04QxitqMu2HJcBmevuhYzSJMcaNha1Ux6pqgUbV0IV3onRNgxkDMfWlDpCiMsX1SnCETpdnEXKeCIWPHb3bU78np002fCJzlWBvJBoaGczllH+mFEeZQOa9O/q7E5aqMAT0CxcjS7JYh1irERdqY6HCrkYEeLLYqNr+Z6mRZwaBcwwkGd64bsZLY1FDSZDrk0RqMDs2aTNHXTYFBPd+/HIK+d8Q80xw93ZyOXGuGkrxwRO/pXA/wP718jnR7jjuFGFQX53IGQDLgtFRV4DeViD4dpWZrg34Wvgul3mSc2MmRgx0+pSXJFi9FQ8EDOz1Cu5Z3syrJ9eHYipcc7MZsx0tDaW2wMv18HLrBy1QtL20kqj3ogPXL2o6WVFSs9Be+m71nX10KYO0y0SBGdqw2MtzM5M3aKiooUB9Yg+ID16hleH2DRo8fjLIaCKki4Yro8/h0EszXtwYgfByO6gZYQxmNZFwlm6s5AZL1r4v+2FjDp6ksgILWAuRJ8h6Jo+1Zk1wgvRfROxgt4nuPsMK1rBIqjTlK9eTjbraqOufn62svM6Lcei9EB6LMmSKj2XdqQ96UA6lvSFn6WHpWpptfSr/Kgsl9cT0/m51Oe+VDjlp78BNDOIew==</latexit> log p(y|X, H) = 1 2 yT KXX 2 n I 1 y 1 2 log det KXX 2 n I N 2 log 2⇡ <latexit sha1_base64="HZeOviACPCFicnOHJScOC6+fIN4=">AAAIsHictVVbj9NGFDbQkjS9LfDYl6Ouwto0ieKoEgi0EgUqqKCrLd1dIu1krYk9Tkx8wx7TRLPz9/oD+tZ/wxnbie1sWu1Da8nSzLl+37loprHvpXw4/PvGzVuffX671f6i8+VXX3/z7d6du2dplCU2O7UjP0rGU5oy3wvZKfe4z8Zxwmgw9dm76eK50r/7yJLUi8ITvorZJKCz0HM9m3IUWXdu/9klAeVzm/rihYT7h0AE6Llo6oqlvBC6Z8gerCWrUmIAkZbwDk28Hyk9gcoJ7hMvLO9T8RZNXqBtKBtxYIdNlHEpO1338Q5fIIk3m3OaJNEf/+BH5pQLV+rEdiL+BAifM04NREPjOImW4BYaA2FwtuQiHfBBjr3ThY1vjfoDuTtIw8To1ZhfPAASRnzNrKgqAhMwtjjkNeNAZuwDDGUDBUBuI7hloiI/jJSFwpuWgoWywjqkXlCFP6ogB7X6vpYGpg0yzHq4Ef4szxHGRHU50PMyIHM7+qijtMhxgI1F7ZZHqZpA/0qoxr0wOoSFjuH4gTFACHn5VJ0Ujix0cBYZF4VYitw9CQRNZkHRZDehtjAl8kKiWVDNWEX5TUV5VQ1o0b+rs7tpoQE/APFxNRxaxXqLsQp1p7seKuTiKsSXzUb36j0ti7g1Cphhoe/0wvtYLY3PXK5DrU0KVOrNAmqJEB1GcqP7ZT3yxoXomzVmuDv9Wm6MW7ZyTeDsugT+P7D/GvniBHccN6oxyC+Ppe7CZaOoyGuhL3uwPHhSGb7a8HVx3S7rpHbGLIy45zsMV6QZvRQv5M4sg063drc20/rrT8dya54rsx1DrfbGj2YQ11p4WdWj18jaub4pQuhvFqbWDNyKExAkfx1Ewhy5bmXVyZJMHrQ64WBdr7/1XIpdDURBdV0Dh/H/NPsm2VHBWOUakdiz9vaHg2H+wdWDWR72tfI7tvb+Ik5kZwELue3TND03hzGfYM+4Z/tMdkiWspjaCzpj53gMacDSichLKqGLEgfcKME/5JBL6x6CBmm6CqZoqRik2zol3KU7z7j7aILPXZxxFtpFIjfzgUegXm9wvITZ3F/hgdqJh1jBnlOsB8c57GARzG3KVw9no4E5HJi//bj/9FlZjrb2nfa9pmum9lB7qr3SjrVTzW71W7+3SGvSHrXHbatNC9ObN0qfe1rja7//BPhD/Nc=</latexit> <latexit sha1_base64="HZeOviACPCFicnOHJScOC6+fIN4=">AAAIsHictVVbj9NGFDbQkjS9LfDYl6Ouwto0ieKoEgi0EgUqqKCrLd1dIu1krYk9Tkx8wx7TRLPz9/oD+tZ/wxnbie1sWu1Da8nSzLl+37loprHvpXw4/PvGzVuffX671f6i8+VXX3/z7d6du2dplCU2O7UjP0rGU5oy3wvZKfe4z8Zxwmgw9dm76eK50r/7yJLUi8ITvorZJKCz0HM9m3IUWXdu/9klAeVzm/rihYT7h0AE6Llo6oqlvBC6Z8gerCWrUmIAkZbwDk28Hyk9gcoJ7hMvLO9T8RZNXqBtKBtxYIdNlHEpO1338Q5fIIk3m3OaJNEf/+BH5pQLV+rEdiL+BAifM04NREPjOImW4BYaA2FwtuQiHfBBjr3ThY1vjfoDuTtIw8To1ZhfPAASRnzNrKgqAhMwtjjkNeNAZuwDDGUDBUBuI7hloiI/jJSFwpuWgoWywjqkXlCFP6ogB7X6vpYGpg0yzHq4Ef4szxHGRHU50PMyIHM7+qijtMhxgI1F7ZZHqZpA/0qoxr0wOoSFjuH4gTFACHn5VJ0Ujix0cBYZF4VYitw9CQRNZkHRZDehtjAl8kKiWVDNWEX5TUV5VQ1o0b+rs7tpoQE/APFxNRxaxXqLsQp1p7seKuTiKsSXzUb36j0ti7g1Cphhoe/0wvtYLY3PXK5DrU0KVOrNAmqJEB1GcqP7ZT3yxoXomzVmuDv9Wm6MW7ZyTeDsugT+P7D/GvniBHccN6oxyC+Ppe7CZaOoyGuhL3uwPHhSGb7a8HVx3S7rpHbGLIy45zsMV6QZvRQv5M4sg063drc20/rrT8dya54rsx1DrfbGj2YQ11p4WdWj18jaub4pQuhvFqbWDNyKExAkfx1Ewhy5bmXVyZJMHrQ64WBdr7/1XIpdDURBdV0Dh/H/NPsm2VHBWOUakdiz9vaHg2H+wdWDWR72tfI7tvb+Ik5kZwELue3TND03hzGfYM+4Z/tMdkiWspjaCzpj53gMacDSichLKqGLEgfcKME/5JBL6x6CBmm6CqZoqRik2zol3KU7z7j7aILPXZxxFtpFIjfzgUegXm9wvITZ3F/hgdqJh1jBnlOsB8c57GARzG3KVw9no4E5HJi//bj/9FlZjrb2nfa9pmum9lB7qr3SjrVTzW71W7+3SGvSHrXHbatNC9ObN0qfe1rja7//BPhD/Nc=</latexit> <latexit sha1_base64="HZeOviACPCFicnOHJScOC6+fIN4=">AAAIsHictVVbj9NGFDbQkjS9LfDYl6Ouwto0ieKoEgi0EgUqqKCrLd1dIu1krYk9Tkx8wx7TRLPz9/oD+tZ/wxnbie1sWu1Da8nSzLl+37loprHvpXw4/PvGzVuffX671f6i8+VXX3/z7d6du2dplCU2O7UjP0rGU5oy3wvZKfe4z8Zxwmgw9dm76eK50r/7yJLUi8ITvorZJKCz0HM9m3IUWXdu/9klAeVzm/rihYT7h0AE6Llo6oqlvBC6Z8gerCWrUmIAkZbwDk28Hyk9gcoJ7hMvLO9T8RZNXqBtKBtxYIdNlHEpO1338Q5fIIk3m3OaJNEf/+BH5pQLV+rEdiL+BAifM04NREPjOImW4BYaA2FwtuQiHfBBjr3ThY1vjfoDuTtIw8To1ZhfPAASRnzNrKgqAhMwtjjkNeNAZuwDDGUDBUBuI7hloiI/jJSFwpuWgoWywjqkXlCFP6ogB7X6vpYGpg0yzHq4Ef4szxHGRHU50PMyIHM7+qijtMhxgI1F7ZZHqZpA/0qoxr0wOoSFjuH4gTFACHn5VJ0Ujix0cBYZF4VYitw9CQRNZkHRZDehtjAl8kKiWVDNWEX5TUV5VQ1o0b+rs7tpoQE/APFxNRxaxXqLsQp1p7seKuTiKsSXzUb36j0ti7g1Cphhoe/0wvtYLY3PXK5DrU0KVOrNAmqJEB1GcqP7ZT3yxoXomzVmuDv9Wm6MW7ZyTeDsugT+P7D/GvniBHccN6oxyC+Ppe7CZaOoyGuhL3uwPHhSGb7a8HVx3S7rpHbGLIy45zsMV6QZvRQv5M4sg063drc20/rrT8dya54rsx1DrfbGj2YQ11p4WdWj18jaub4pQuhvFqbWDNyKExAkfx1Ewhy5bmXVyZJMHrQ64WBdr7/1XIpdDURBdV0Dh/H/NPsm2VHBWOUakdiz9vaHg2H+wdWDWR72tfI7tvb+Ik5kZwELue3TND03hzGfYM+4Z/tMdkiWspjaCzpj53gMacDSichLKqGLEgfcKME/5JBL6x6CBmm6CqZoqRik2zol3KU7z7j7aILPXZxxFtpFIjfzgUegXm9wvITZ3F/hgdqJh1jBnlOsB8c57GARzG3KVw9no4E5HJi//bj/9FlZjrb2nfa9pmum9lB7qr3SjrVTzW71W7+3SGvSHrXHbatNC9ObN0qfe1rja7//BPhD/Nc=</latexit>
  7. APPROACHES TO SCALE GAUSSIAN PROCESSES 9 BRUTE FORCE EXCERPT FROM

    THE ABSTRACT `` By partitioning and distributing kernel matrix multiplies, we demonstrate that an exact GP can be trained on over a million points in 3 days using 8GPUs and can compute predictive means and variances in under a second using 1 GPU attest time. Moreover, we perform the first-ever comparison of exact GPs against state-of-the-art scalable approximations on large-scale regression datasets with104−106 data points, showing dramatic performance improvements. ‘’[1] Ref.: 1. Wang, Ke Alexander, Geoff Pleiss, Jacob R. Gardner, Stephen Tyree, Kilian Q. Weinberger, and Andrew Gordon Wilson. "Exact Gaussian Processes on a Million Data Points." arXiv preprint arXiv:1903.08114 (2019).
  8. APPROACHES TO SCALE GAUSSIAN PROCESSES 10 § Inducing point/Pseudo-input methods

    (Sparse Gaussian process regression) • ``Summarize” N training data points with M training data points (or pseudo-inputs) – different choices of pseudo- inputs lead to different Sparse GP strategies (M << N). • Reduce training cost from O(N3) to O(NM2) and storage cost from O(N2) to O(NM). • Do not require special structure in the data, i.e., meant to be usable ‘off-the-shelf’. • Key examples – Snelson, Gahramani (2006)[1], Titsias (2009)[2] (and many others). § Structure-exploiting approaches: • Exploit the fact the dataset is generated with some meaningful structure (such as grid inputs). • Main types of structure – Kronecker[3] and Toeplitz[4]. • Kronecker structure arises when inputs are on a multidimensional lattice; Toeplitz structure arises when the data lies on a regularly spaced 1D – making such methods highly useful for some scientific applications (thinking surrogate models for PDE solvers) but not so much for general purpose datasets. Ref.: 1. Snelson, Edward and Ghahramani, Zoubin. Sparse Gaussian processes using pseudo-inputs. In Advances in neural information processing systems (NIPS), volume 18, pp. 1257. MIT Press, 2006. 2. Titsias, Michalis. Variational learning of inducing variables in sparse Gaussian processes. In Artificial Intelligence and Statistics, pp. 567-574. 2009. 3. Saatçi, Yunus. Scalable inference for structured Gaussian process models. PhD thesis., University of Cambridge, 2012. 4. Cunningham, John P., Krishna V. Shenoy, and Maneesh Sahani. Fast Gaussian process methods for point process intensity estimation. In Proceedings of the 25th international conference on Machine learning, pp. 192-199. ACM, 2008.
  9. APPROACHES TO SCALE GAUSSIAN PROCESSES 11 § Reduced-rank approximation of

    the covariance kernel / matrix: § Optimal rank q approximation through SVD is not of practical interest; we need an alternative approach to computing the low rank approximation of K. § Nystrom approximation[1] – first q eigenfunctions of the following integral operator: § Random Fourier Features[2] – Approximating the kernel by sampling it’s spectral density: Ref.: 1. Williams, Christopher KI, and Matthias Seeger. "Using the Nyström method to speed up kernel machines." In Advances in neural information processing systems, pp. 682-688. 2001. 2. Rahimi, Ali, and Benjamin Recht. "Random features for large-scale kernel machines." In Advances in neural information processing systems, pp. 1177-1184. 2008. K = QQT , where, Q 2 RN⇥q =) Fast inversion of QQT + 2 n I using Matrix inversion Lemma. <latexit sha1_base64="r3AVmTFhBiJF8lTEWf2l6efeaf8=">AAAJbHictVZbbxtFFN6WS2xzaQp9KKqQjoicrItjeSMkqlaWChQooo2SKkkjZW1rvJ61R95bd2dbW5N54Sfyxk/ghd/Amd31XuwF5QFWijRzrt93Lp5MAodFvN//49bt997/4MOdRrP10ceffHpn9+5nF5EfhxY9t3zHDy8nJKIO8+g5Z9yhl0FIiTtx6OvJ4gelf/2WhhHzvTO+CujQJTOP2cwiHEXjuzu/tU2X8LlFHPFMwv4ATAF6IprYYilHQmcd2YW1ZJVJOmDKsWADA+/HSm9C4QT7JvOy+0S8QpNnaOvJShyosfFjLmWrbT+u8QUzZLM5J2Hov/sHP3NOuLClblpTnz8Bk88pJx1EQ4Ig9Jdgp5oOwuB0yUXU470Ee6sNuW+J+kNZH6Ri0umWmI8egun5fM0srSoCE3A55pDUjIM5o2+gLysoABIbwccGKpLDkbJQeKNMsFBWWIeIuUX44wKyW6rvr7KDad0Ysw5y4Y/yCmEMVZddPSkDMrf8tzpK0xwH2FjUbnhkqiEcboWq3FOjASx0DMcPOj2EkJRP1UnhiL0pziLlIhVLkbiHriDhzE2bbIfEEoZEXkg0dosZKyi/KCivigFN+7c9u3kLO/A1mA6uxpQUsV5hrFTdaq+HCrnYCvF1tdHdck+zIm6MAmZY6LVeeL9US+NQm+tQapMCFbGZS8bCQ4cjmet+WY98ZyQOjRIz3J3DUm6Mm7VyTeDipgT+P7D/Gnl0hjuOG1UZ5J9PpG7DdaWoyGuhL7uwPHhSGD7P+dq4btdlUrUxUyPOnCnFFalGz8QLWZul12qX7uN8Wl9+dyI35rkwqxlqtTeOP4Og1MLroh7dSlbMeWNbxHCYb0ypG7gWZyDM5HkQIZ3KdS+LVmZskqDFCSfrZg0u51L0SiBSrusiTCn/T7PnyY5TxirXkRmwVmlKB3B6Ojpb/77CuzkNaRcknG69OcdqAlwawRv1Hrn44uI5dfuJRByYlz2e4NsgTTMjosLnu6CAKsB1YDMEccS8GbwkPGTLUswX1HVJT4539/q9fvLB9sHIDnta9p2Md383p74Vu9TjlkOi6MroB3yI88aZ5VDZMuOIBsRakBm9wqNHkOFQJNMgoY2SKdh+iH8eh0Ra9hDEjaKVO0FLxSfa1Clhne4q5vajIT7VQcypZ6WJ7NgB7oP6zwOmLKQWd1Z4IFbIECtYc4Kt5FiOFhbB2KS8fbg46hn9nnH6zd7T77NyNLQH2learhnat9pT7bl2op1r1s6fjTuN+40vGn817zUfNL9MTW/fynw+1ypfc/9vL7dAEw==</latexit> <latexit sha1_base64="r3AVmTFhBiJF8lTEWf2l6efeaf8=">AAAJbHictVZbbxtFFN6WS2xzaQp9KKqQjoicrItjeSMkqlaWChQooo2SKkkjZW1rvJ61R95bd2dbW5N54Sfyxk/ghd/Amd31XuwF5QFWijRzrt93Lp5MAodFvN//49bt997/4MOdRrP10ceffHpn9+5nF5EfhxY9t3zHDy8nJKIO8+g5Z9yhl0FIiTtx6OvJ4gelf/2WhhHzvTO+CujQJTOP2cwiHEXjuzu/tU2X8LlFHPFMwv4ATAF6IprYYilHQmcd2YW1ZJVJOmDKsWADA+/HSm9C4QT7JvOy+0S8QpNnaOvJShyosfFjLmWrbT+u8QUzZLM5J2Hov/sHP3NOuLClblpTnz8Bk88pJx1EQ4Ig9Jdgp5oOwuB0yUXU470Ee6sNuW+J+kNZH6Ri0umWmI8egun5fM0srSoCE3A55pDUjIM5o2+gLysoABIbwccGKpLDkbJQeKNMsFBWWIeIuUX44wKyW6rvr7KDad0Ysw5y4Y/yCmEMVZddPSkDMrf8tzpK0xwH2FjUbnhkqiEcboWq3FOjASx0DMcPOj2EkJRP1UnhiL0pziLlIhVLkbiHriDhzE2bbIfEEoZEXkg0dosZKyi/KCivigFN+7c9u3kLO/A1mA6uxpQUsV5hrFTdaq+HCrnYCvF1tdHdck+zIm6MAmZY6LVeeL9US+NQm+tQapMCFbGZS8bCQ4cjmet+WY98ZyQOjRIz3J3DUm6Mm7VyTeDipgT+P7D/Gnl0hjuOG1UZ5J9PpG7DdaWoyGuhL7uwPHhSGD7P+dq4btdlUrUxUyPOnCnFFalGz8QLWZul12qX7uN8Wl9+dyI35rkwqxlqtTeOP4Og1MLroh7dSlbMeWNbxHCYb0ypG7gWZyDM5HkQIZ3KdS+LVmZskqDFCSfrZg0u51L0SiBSrusiTCn/T7PnyY5TxirXkRmwVmlKB3B6Ojpb/77CuzkNaRcknG69OcdqAlwawRv1Hrn44uI5dfuJRByYlz2e4NsgTTMjosLnu6CAKsB1YDMEccS8GbwkPGTLUswX1HVJT4539/q9fvLB9sHIDnta9p2Md383p74Vu9TjlkOi6MroB3yI88aZ5VDZMuOIBsRakBm9wqNHkOFQJNMgoY2SKdh+iH8eh0Ra9hDEjaKVO0FLxSfa1Clhne4q5vajIT7VQcypZ6WJ7NgB7oP6zwOmLKQWd1Z4IFbIECtYc4Kt5FiOFhbB2KS8fbg46hn9nnH6zd7T77NyNLQH2learhnat9pT7bl2op1r1s6fjTuN+40vGn817zUfNL9MTW/fynw+1ypfc/9vL7dAEw==</latexit> <latexit sha1_base64="r3AVmTFhBiJF8lTEWf2l6efeaf8=">AAAJbHictVZbbxtFFN6WS2xzaQp9KKqQjoicrItjeSMkqlaWChQooo2SKkkjZW1rvJ61R95bd2dbW5N54Sfyxk/ghd/Amd31XuwF5QFWijRzrt93Lp5MAodFvN//49bt997/4MOdRrP10ceffHpn9+5nF5EfhxY9t3zHDy8nJKIO8+g5Z9yhl0FIiTtx6OvJ4gelf/2WhhHzvTO+CujQJTOP2cwiHEXjuzu/tU2X8LlFHPFMwv4ATAF6IprYYilHQmcd2YW1ZJVJOmDKsWADA+/HSm9C4QT7JvOy+0S8QpNnaOvJShyosfFjLmWrbT+u8QUzZLM5J2Hov/sHP3NOuLClblpTnz8Bk88pJx1EQ4Ig9Jdgp5oOwuB0yUXU470Ee6sNuW+J+kNZH6Ri0umWmI8egun5fM0srSoCE3A55pDUjIM5o2+gLysoABIbwccGKpLDkbJQeKNMsFBWWIeIuUX44wKyW6rvr7KDad0Ysw5y4Y/yCmEMVZddPSkDMrf8tzpK0xwH2FjUbnhkqiEcboWq3FOjASx0DMcPOj2EkJRP1UnhiL0pziLlIhVLkbiHriDhzE2bbIfEEoZEXkg0dosZKyi/KCivigFN+7c9u3kLO/A1mA6uxpQUsV5hrFTdaq+HCrnYCvF1tdHdck+zIm6MAmZY6LVeeL9US+NQm+tQapMCFbGZS8bCQ4cjmet+WY98ZyQOjRIz3J3DUm6Mm7VyTeDipgT+P7D/Gnl0hjuOG1UZ5J9PpG7DdaWoyGuhL7uwPHhSGD7P+dq4btdlUrUxUyPOnCnFFalGz8QLWZul12qX7uN8Wl9+dyI35rkwqxlqtTeOP4Og1MLroh7dSlbMeWNbxHCYb0ypG7gWZyDM5HkQIZ3KdS+LVmZskqDFCSfrZg0u51L0SiBSrusiTCn/T7PnyY5TxirXkRmwVmlKB3B6Ojpb/77CuzkNaRcknG69OcdqAlwawRv1Hrn44uI5dfuJRByYlz2e4NsgTTMjosLnu6CAKsB1YDMEccS8GbwkPGTLUswX1HVJT4539/q9fvLB9sHIDnta9p2Md383p74Vu9TjlkOi6MroB3yI88aZ5VDZMuOIBsRakBm9wqNHkOFQJNMgoY2SKdh+iH8eh0Ra9hDEjaKVO0FLxSfa1Clhne4q5vajIT7VQcypZ6WJ7NgB7oP6zwOmLKQWd1Z4IFbIECtYc4Kt5FiOFhbB2KS8fbg46hn9nnH6zd7T77NyNLQH2learhnat9pT7bl2op1r1s6fjTuN+40vGn817zUfNL9MTW/fynw+1ypfc/9vL7dAEw==</latexit> Z k(x, x0) i(x)dx = i i(x), ˜ k(x, x0) = q X i=1 i i(x) i(x0) <latexit sha1_base64="oMwPnQqXDITjs2HSELMG+2XPyhY=">AAAKQXictVbLj9tEGHdbHkl4bcuRyydWaeySjeIVEogqUoECRbSr3Wpf0jqJJs44GcWv2uM20ez8a1z4D7hx58IBhLhy4Rvbie3ERXsAS5HG3/P3+x6eTEKXxbzf/+XW7TtvvPnW241m651333v/g727987jIIlsemYHbhBdTkhMXebTM864Sy/DiBJv4tKLyeJrpb94SaOYBf4pX4V06JGZzxxmE46i8d3GRdvyCJ/bxBWPJdwfgCVAT0UTRyzlSOjMkF1YS1a5xABLjgUbmPh+pPQWFE5w32J+/j4Rz9HkMdr6shIHamyChEvZajtf1PiCFbHZnJMoCl69xs+aEy4cqVv2NOAPweJzyomBaEgYRsESnExjIAxOl1zEPd5LsbfasPEtUX8g64NUTIxuifnoAVh+wNfMsqoiMAGXYw5pzThYM/oC+rKCAiC1EXxsoiI9HCoLhTfOBQtlhXWImVeEPyoge6X6/iANTOslmHWwEX4jrxDGUHXZ09MyIHM7eKmjNMvRwcaidssjVw3hYCdU5T0zGsBCx3C8Y/QQQlo+VSeFI/GnOIuUi0wsReoeeYJEMy9rshMRW5gSeSHRxCtmrKD8tKC8KgY069/u7G5aaMAnYLm4GlNSxHqOsTJ1q70eKuTiKMTX1UZ3yz3Ni7g1Cphhodd64fulWhqXOlyHUpsUqJjNPDIWPjocyo3u+/XIGyNxYJaY4e4clHJj3LyVawLnNyXw/4H918ijU9xx3KjKIH93LHUHritFRV4LfdmFZedhYfhkw9fBdbsuk6qNmRlx5k4prkg1ei5eyNosvVa79D7eTOuzL4/l1jwXZjVDrfbGDWYQllp4XdSjW8mKOW9sixgONhtT6gauxSkIK70eRESnct3LopU5mzRoccLJulmDy7kUvRKIjOu6CFPK/9Psm2RHGWOV69AK2Xr60zEdwMnJ6HT9gYVXcxrRLkg42bl0jtQIeDSGF+pC8vDKxXPm9i2JOTA/vz0hcEBaVs5Ehd8sg0KqENehzREkMfNn8IzwiC1LMZ9SzyM92UJUvLIy5Tulg1HCOcMvYWV4iwrLQqqGMvvEjVmtVxfv6dLUvzbjoPL1VcWphmVVKNuijjHe2+/3+ukDuwczP+xr+XM83vvZmgZ24lGf2y6J4yuzH/IhLhFntkuxRklMQ2IvyIxe4dEn2LWhSEdcQhslU3CCCH9YylRa9hDEi+OVN0FLhTHe1ilhne4q4c7nQ/z/ESac+naWyElc4AGov1MwZRG1ubvCA7EjhljBnhOcT44tbmERzG3Ku4fzw57Z75knn+4/+iovR0P7SPtY0zVT+0x7pD3RjrUzzW782Pi18Xvjj+ZPzd+afzb/ykxv38p9PtQqT/PvfwBelpQO</latexit> <latexit sha1_base64="oMwPnQqXDITjs2HSELMG+2XPyhY=">AAAKQXictVbLj9tEGHdbHkl4bcuRyydWaeySjeIVEogqUoECRbSr3Wpf0jqJJs44GcWv2uM20ez8a1z4D7hx58IBhLhy4Rvbie3ERXsAS5HG3/P3+x6eTEKXxbzf/+XW7TtvvPnW241m651333v/g727987jIIlsemYHbhBdTkhMXebTM864Sy/DiBJv4tKLyeJrpb94SaOYBf4pX4V06JGZzxxmE46i8d3GRdvyCJ/bxBWPJdwfgCVAT0UTRyzlSOjMkF1YS1a5xABLjgUbmPh+pPQWFE5w32J+/j4Rz9HkMdr6shIHamyChEvZajtf1PiCFbHZnJMoCl69xs+aEy4cqVv2NOAPweJzyomBaEgYRsESnExjIAxOl1zEPd5LsbfasPEtUX8g64NUTIxuifnoAVh+wNfMsqoiMAGXYw5pzThYM/oC+rKCAiC1EXxsoiI9HCoLhTfOBQtlhXWImVeEPyoge6X6/iANTOslmHWwEX4jrxDGUHXZ09MyIHM7eKmjNMvRwcaidssjVw3hYCdU5T0zGsBCx3C8Y/QQQlo+VSeFI/GnOIuUi0wsReoeeYJEMy9rshMRW5gSeSHRxCtmrKD8tKC8KgY069/u7G5aaMAnYLm4GlNSxHqOsTJ1q70eKuTiKMTX1UZ3yz3Ni7g1Cphhodd64fulWhqXOlyHUpsUqJjNPDIWPjocyo3u+/XIGyNxYJaY4e4clHJj3LyVawLnNyXw/4H918ijU9xx3KjKIH93LHUHritFRV4LfdmFZedhYfhkw9fBdbsuk6qNmRlx5k4prkg1ei5eyNosvVa79D7eTOuzL4/l1jwXZjVDrfbGDWYQllp4XdSjW8mKOW9sixgONhtT6gauxSkIK70eRESnct3LopU5mzRoccLJulmDy7kUvRKIjOu6CFPK/9Psm2RHGWOV69AK2Xr60zEdwMnJ6HT9gYVXcxrRLkg42bl0jtQIeDSGF+pC8vDKxXPm9i2JOTA/vz0hcEBaVs5Ehd8sg0KqENehzREkMfNn8IzwiC1LMZ9SzyM92UJUvLIy5Tulg1HCOcMvYWV4iwrLQqqGMvvEjVmtVxfv6dLUvzbjoPL1VcWphmVVKNuijjHe2+/3+ukDuwczP+xr+XM83vvZmgZ24lGf2y6J4yuzH/IhLhFntkuxRklMQ2IvyIxe4dEn2LWhSEdcQhslU3CCCH9YylRa9hDEi+OVN0FLhTHe1ilhne4q4c7nQ/z/ESac+naWyElc4AGov1MwZRG1ubvCA7EjhljBnhOcT44tbmERzG3Ku4fzw57Z75knn+4/+iovR0P7SPtY0zVT+0x7pD3RjrUzzW782Pi18Xvjj+ZPzd+afzb/ykxv38p9PtQqT/PvfwBelpQO</latexit> <latexit sha1_base64="oMwPnQqXDITjs2HSELMG+2XPyhY=">AAAKQXictVbLj9tEGHdbHkl4bcuRyydWaeySjeIVEogqUoECRbSr3Wpf0jqJJs44GcWv2uM20ez8a1z4D7hx58IBhLhy4Rvbie3ERXsAS5HG3/P3+x6eTEKXxbzf/+XW7TtvvPnW241m651333v/g727987jIIlsemYHbhBdTkhMXebTM864Sy/DiBJv4tKLyeJrpb94SaOYBf4pX4V06JGZzxxmE46i8d3GRdvyCJ/bxBWPJdwfgCVAT0UTRyzlSOjMkF1YS1a5xABLjgUbmPh+pPQWFE5w32J+/j4Rz9HkMdr6shIHamyChEvZajtf1PiCFbHZnJMoCl69xs+aEy4cqVv2NOAPweJzyomBaEgYRsESnExjIAxOl1zEPd5LsbfasPEtUX8g64NUTIxuifnoAVh+wNfMsqoiMAGXYw5pzThYM/oC+rKCAiC1EXxsoiI9HCoLhTfOBQtlhXWImVeEPyoge6X6/iANTOslmHWwEX4jrxDGUHXZ09MyIHM7eKmjNMvRwcaidssjVw3hYCdU5T0zGsBCx3C8Y/QQQlo+VSeFI/GnOIuUi0wsReoeeYJEMy9rshMRW5gSeSHRxCtmrKD8tKC8KgY069/u7G5aaMAnYLm4GlNSxHqOsTJ1q70eKuTiKMTX1UZ3yz3Ni7g1Cphhodd64fulWhqXOlyHUpsUqJjNPDIWPjocyo3u+/XIGyNxYJaY4e4clHJj3LyVawLnNyXw/4H918ijU9xx3KjKIH93LHUHritFRV4LfdmFZedhYfhkw9fBdbsuk6qNmRlx5k4prkg1ei5eyNosvVa79D7eTOuzL4/l1jwXZjVDrfbGDWYQllp4XdSjW8mKOW9sixgONhtT6gauxSkIK70eRESnct3LopU5mzRoccLJulmDy7kUvRKIjOu6CFPK/9Psm2RHGWOV69AK2Xr60zEdwMnJ6HT9gYVXcxrRLkg42bl0jtQIeDSGF+pC8vDKxXPm9i2JOTA/vz0hcEBaVs5Ehd8sg0KqENehzREkMfNn8IzwiC1LMZ9SzyM92UJUvLIy5Tulg1HCOcMvYWV4iwrLQqqGMvvEjVmtVxfv6dLUvzbjoPL1VcWphmVVKNuijjHe2+/3+ukDuwczP+xr+XM83vvZmgZ24lGf2y6J4yuzH/IhLhFntkuxRklMQ2IvyIxe4dEn2LWhSEdcQhslU3CCCH9YylRa9hDEi+OVN0FLhTHe1ilhne4q4c7nQ/z/ESac+naWyElc4AGov1MwZRG1ubvCA7EjhljBnhOcT44tbmERzG3Ku4fzw57Z75knn+4/+iovR0P7SPtY0zVT+0x7pD3RjrUzzW782Pi18Xvjj+ZPzd+afzb/ykxv38p9PtQqT/PvfwBelpQO</latexit> s(!) = F{k(r)} = Z 1 1 k(r)e i!rdr, k(r) = F 1{s(!)} = Z 1 1 s(!)ei!rdr, ˜ k(r) = 1 M q X i=1 cos(!ir). <latexit sha1_base64="6D4igp2AJWHDGLPuqNJaMBdmvmQ=">AAALT3ictVZLb9tGEGbSV0S3jdMeexnUkE2mkiAZBVo0EJC2aZqisWEHtmPAlIQVtZQW4ivLZSKB3n/YS3vr3+ilhxZFZ/kQSUkOfGgJCFrOzuub+WaX49Blkeh2f79z951333v/g3sNfefDjz6+v/vgk4soiLlNz+3ADfjlmETUZT49F0y49DLklHhjl74cz79X+y9fUx6xwD8Ty5AOPDL1mcNsIlA0etCgTcsjYmYTN3kiYb8PVgJGKho7yUIOE4OZsgWFZJlLTLDkKGH9Hr4fq30LSiPYt5ifv4+TF6jyBHV9WfMDW3SCWEipN51vttiCxdl0JgjnwZsb7KwZEYkjDcueBOIRWGJGBTExGxKGPFiAk+2YmIagC5FEHdFJc9ebsLKtQH8otzupqZitCvLhQ7D8QBTIsqpiYglcjgSkNRNgTekr6MpaFgCpTiJGPdxIF4dKQ+Ub5YK50sI6RMwr3R+XKXuV+v4sTQzrxRi1vxL+IK8wjYHqsmekZUDkdvDaQGkW4wAbi7trFvnWANobrmrvmVIf5ga6EwdmB1NIy6fqpPKI/QlykYokE8skNedeQvjUy5rscGInPYm4EGjslRwrIT8vIS9Lgmb92+TuqoUmfAGWi6MxIaWvF+gr29abBakQi6Myvq43ulXtaV7ENSpghLmx1QrfL9XQuNQRBlTapJKK2NQjo8RHg0O52vupoLw5TNq9CjKcnXYlNvrNW1kAuLgtgP8v2bd6Hp7hjONE1Yj844k0HLiuFRVxzY1FCxYHj0rFZyu8Do7bdRXUVp+ZkmDuhOKI1L3n4rncGqWjNyvvoxVbj749kWt8LtW2kFrNjRtMIay08LqsR6sWFWPeWhdzaK8mptINHIszSKz0ekg4nciil2UrczSp03KFzLpdg6uxFLxKEhnWoggTKv7T6KtgxxliFevQClnB/pSmfTg9HZ4VByy8mVFOWyDhdOPSOVYU8GgEr9SF5OGVi+vM7CmJBDA/vz0hcEBaVo5EuV8Ng8pUZbwt2zyDOGL+FI6I4GxR8fmceh7pqAuC+aI2M9VL5QDdhDOGR2GNvWWJZSlVrMzOuBHbatXCi7pC+xsj9mvHr6pO3S2rp7IuOjD1/ciwAo9OiVlcQYq1TyVedHODqw8IJUfgo6St/h2hTvN8kalQ5BrGS70AlxXEvAW6lSnVnKfkxAhl7LeHKfUw1o2h8LDZL2uWxSwYfyQ3KmUHhVusFjc7AKPdvW6nmz6wuejliz0tf05Gu79Zk8COPeoL2yVRdNXrhmKAR4pgtkulbsURDYk9J1N6hUufIIcHSTrwEpoomYATcPwhr1Jp1SIhXhQtvTFqKpTR+p4Sbtu7ioXz9QC/xsJYUN/OAjmxCyIA9XEJE8apLdwlLojNGeYK9oxgoQQSXsci9NYhby4uDju9bqd3+uXe4+/yctzTPtM+1wytp32lPdaeaSfauWY3fmn80fir8bf+q/6n/s9Ornr3Tr74VKs9O41/AVEU8BU=</latexit> <latexit sha1_base64="6D4igp2AJWHDGLPuqNJaMBdmvmQ=">AAALT3ictVZLb9tGEGbSV0S3jdMeexnUkE2mkiAZBVo0EJC2aZqisWEHtmPAlIQVtZQW4ivLZSKB3n/YS3vr3+ilhxZFZ/kQSUkOfGgJCFrOzuub+WaX49Blkeh2f79z951333v/g3sNfefDjz6+v/vgk4soiLlNz+3ADfjlmETUZT49F0y49DLklHhjl74cz79X+y9fUx6xwD8Ty5AOPDL1mcNsIlA0etCgTcsjYmYTN3kiYb8PVgJGKho7yUIOE4OZsgWFZJlLTLDkKGH9Hr4fq30LSiPYt5ifv4+TF6jyBHV9WfMDW3SCWEipN51vttiCxdl0JgjnwZsb7KwZEYkjDcueBOIRWGJGBTExGxKGPFiAk+2YmIagC5FEHdFJc9ebsLKtQH8otzupqZitCvLhQ7D8QBTIsqpiYglcjgSkNRNgTekr6MpaFgCpTiJGPdxIF4dKQ+Ub5YK50sI6RMwr3R+XKXuV+v4sTQzrxRi1vxL+IK8wjYHqsmekZUDkdvDaQGkW4wAbi7trFvnWANobrmrvmVIf5ga6EwdmB1NIy6fqpPKI/QlykYokE8skNedeQvjUy5rscGInPYm4EGjslRwrIT8vIS9Lgmb92+TuqoUmfAGWi6MxIaWvF+gr29abBakQi6Myvq43ulXtaV7ENSpghLmx1QrfL9XQuNQRBlTapJKK2NQjo8RHg0O52vupoLw5TNq9CjKcnXYlNvrNW1kAuLgtgP8v2bd6Hp7hjONE1Yj844k0HLiuFRVxzY1FCxYHj0rFZyu8Do7bdRXUVp+ZkmDuhOKI1L3n4rncGqWjNyvvoxVbj749kWt8LtW2kFrNjRtMIay08LqsR6sWFWPeWhdzaK8mptINHIszSKz0ekg4nciil2UrczSp03KFzLpdg6uxFLxKEhnWoggTKv7T6KtgxxliFevQClnB/pSmfTg9HZ4VByy8mVFOWyDhdOPSOVYU8GgEr9SF5OGVi+vM7CmJBDA/vz0hcEBaVo5EuV8Ng8pUZbwt2zyDOGL+FI6I4GxR8fmceh7pqAuC+aI2M9VL5QDdhDOGR2GNvWWJZSlVrMzOuBHbatXCi7pC+xsj9mvHr6pO3S2rp7IuOjD1/ciwAo9OiVlcQYq1TyVedHODqw8IJUfgo6St/h2hTvN8kalQ5BrGS70AlxXEvAW6lSnVnKfkxAhl7LeHKfUw1o2h8LDZL2uWxSwYfyQ3KmUHhVusFjc7AKPdvW6nmz6wuejliz0tf05Gu79Zk8COPeoL2yVRdNXrhmKAR4pgtkulbsURDYk9J1N6hUufIIcHSTrwEpoomYATcPwhr1Jp1SIhXhQtvTFqKpTR+p4Sbtu7ioXz9QC/xsJYUN/OAjmxCyIA9XEJE8apLdwlLojNGeYK9oxgoQQSXsci9NYhby4uDju9bqd3+uXe4+/yctzTPtM+1wytp32lPdaeaSfauWY3fmn80fir8bf+q/6n/s9Ornr3Tr74VKs9O41/AVEU8BU=</latexit> <latexit sha1_base64="6D4igp2AJWHDGLPuqNJaMBdmvmQ=">AAALT3ictVZLb9tGEGbSV0S3jdMeexnUkE2mkiAZBVo0EJC2aZqisWEHtmPAlIQVtZQW4ivLZSKB3n/YS3vr3+ilhxZFZ/kQSUkOfGgJCFrOzuub+WaX49Blkeh2f79z951333v/g3sNfefDjz6+v/vgk4soiLlNz+3ADfjlmETUZT49F0y49DLklHhjl74cz79X+y9fUx6xwD8Ty5AOPDL1mcNsIlA0etCgTcsjYmYTN3kiYb8PVgJGKho7yUIOE4OZsgWFZJlLTLDkKGH9Hr4fq30LSiPYt5ifv4+TF6jyBHV9WfMDW3SCWEipN51vttiCxdl0JgjnwZsb7KwZEYkjDcueBOIRWGJGBTExGxKGPFiAk+2YmIagC5FEHdFJc9ebsLKtQH8otzupqZitCvLhQ7D8QBTIsqpiYglcjgSkNRNgTekr6MpaFgCpTiJGPdxIF4dKQ+Ub5YK50sI6RMwr3R+XKXuV+v4sTQzrxRi1vxL+IK8wjYHqsmekZUDkdvDaQGkW4wAbi7trFvnWANobrmrvmVIf5ga6EwdmB1NIy6fqpPKI/QlykYokE8skNedeQvjUy5rscGInPYm4EGjslRwrIT8vIS9Lgmb92+TuqoUmfAGWi6MxIaWvF+gr29abBakQi6Myvq43ulXtaV7ENSpghLmx1QrfL9XQuNQRBlTapJKK2NQjo8RHg0O52vupoLw5TNq9CjKcnXYlNvrNW1kAuLgtgP8v2bd6Hp7hjONE1Yj844k0HLiuFRVxzY1FCxYHj0rFZyu8Do7bdRXUVp+ZkmDuhOKI1L3n4rncGqWjNyvvoxVbj749kWt8LtW2kFrNjRtMIay08LqsR6sWFWPeWhdzaK8mptINHIszSKz0ekg4nciil2UrczSp03KFzLpdg6uxFLxKEhnWoggTKv7T6KtgxxliFevQClnB/pSmfTg9HZ4VByy8mVFOWyDhdOPSOVYU8GgEr9SF5OGVi+vM7CmJBDA/vz0hcEBaVo5EuV8Ng8pUZbwt2zyDOGL+FI6I4GxR8fmceh7pqAuC+aI2M9VL5QDdhDOGR2GNvWWJZSlVrMzOuBHbatXCi7pC+xsj9mvHr6pO3S2rp7IuOjD1/ciwAo9OiVlcQYq1TyVedHODqw8IJUfgo6St/h2hTvN8kalQ5BrGS70AlxXEvAW6lSnVnKfkxAhl7LeHKfUw1o2h8LDZL2uWxSwYfyQ3KmUHhVusFjc7AKPdvW6nmz6wuejliz0tf05Gu79Zk8COPeoL2yVRdNXrhmKAR4pgtkulbsURDYk9J1N6hUufIIcHSTrwEpoomYATcPwhr1Jp1SIhXhQtvTFqKpTR+p4Sbtu7ioXz9QC/xsJYUN/OAjmxCyIA9XEJE8apLdwlLojNGeYK9oxgoQQSXsci9NYhby4uDju9bqd3+uXe4+/yctzTPtM+1wytp32lPdaeaSfauWY3fmn80fir8bf+q/6n/s9Ornr3Tr74VKs9O41/AVEU8BU=</latexit>
  10. FAST DIRECT METHODS: HODLR MATRICES 12 § A large class

    of dense matrices arising in scientific applications can be represented as hierarchical matrices. § Goal – Accelerate the computation of determinant/inverse of the Gram matrix by making hierarchical approximations to the covariance matrix. § We discuss the methodology and results in Ambikasaran (2014) [1]. Ref.: 1. Ambikasaran, Sivaram, Daniel Foreman-Mackey, Leslie Greengard, David W. Hogg, and Michael O'Neil. "Fast direct methods for gaussian processes." arXiv preprint arXiv:1403.6015 (2014).
  11. HODLR MATRICES 13 Level 1 Level 2 Level 3 Level

    4 Fig. : 4 levels of HODLR matrices. Dense block Low-rank block
  12. HODLR MATRICES – SIMPLE 2 LEVEL EXAMPLE 14 K 2

    Rn⇥n <latexit sha1_base64="PIFlW0otVBg45kxOOaeFPjrHsfM=">AAAL+HictVZbj9tEFHbLrThQtvDIy4FVdu2SRMmCBKKKVGgpRe0uu9XudqV1Ek2ccTKKb7XHbZbZ+SW88ABCvPJTeOPfcMaX2E6y1T5QS1HGZ87lO+d8Z8bj0GUx73b/vXHzrbffefe9W+/rjQ8+vP3R1p2PT+MgiWx6YgduEJ2NSUxd5tMTzrhLz8KIEm/s0ufj+QO1//wljWIW+Mf8IqQDj0x95jCbcBSN7ui3m5ZH+MwmrngoYacPlgAjFY0dsZBDYTBTtqCQXOQSEyw5Eqzfw/cDtW9BaQQ7FvPz97F4hioPUdeXNT+wQSdIuJR60/l2gy1YEZvOOImi4NUVdtaMcOFIw7InAb8HFp9RTkxEQ8IwChbgZDsmwuB0wUXc4Z0Uu96EpW0l9btys5OaitmqZD68C5Yf8CKzrKoITMDZiENaMw7WlL6ArqyhAEh1BB/1cCNd7CkNhTfOBXOlhXWImVe6Pyghe5X6PpEmhvUSjNpfCn+Q5whjoLrsGWkZMHM7eGmgNIuxi43F3RWLfGsA7TVXtfdMqQ9zA93xXbODENLyqTopHIk/QS5SLjKxFKl55AkSTb2syU5EbNGTmBcmmnglx8qUn5YpX5QEzfq3zt1lC034AiwXR2NCSl/P0Fe2rTcLUmEujkJ8WW90q9rTvIgrVMAIc2OjFb6fqaFxqcMNqLRJgYrZ1CMj4aPBnlzu/VRQ3hyKdq+SGc5OuxIb/eatLBI4vW4Cbw7saz0Pj3HGcaJqRP7xUBoOXNaKinnNjUULFrv3SsXHy3wdHLfLalIbfWZKnLkTiiNS956L53JjlI7erLyPlmzd/+5QrvC5VNtAajU3bjCFsNLCy7IerVpUjHltXcTQXk5MpRs4FscgrPR6EBGdyKKXZSvzbFKn5QqZdb0GV2Op9CogslyLIkwo/1+jL4MdZBmrWHtWyAr2pzTtw9HR8Lg4YOHVjEa0BRKO1i6dA0UBj8bwQl1IHl65uM7MHpGYA/Pz2xMCB6Rl5Zko98thUEgV4k1ocwRJzPwp7BMesUXF51PqeaSjLgjm89rMVC+VXXQTzhgehTX2liWWpVSxMjvjRmyjVQsv6grtr4zYrx2/qjp1t6wOZVW0izzeiQ0r8OiUmMUdpGj7SOJNNzci9QWh5Jj5SLTVv8PVcZ4vMhWKZMOAqReIZCXlqAVYtkyr5j2lJ4Yog78+TqmHwa6MpY6bnbJsWdCC9PtyrVh2UPjFgkVmB6Ak6IOsS9nheo2huO6hqzcF1Ga+KMrP0jgYfomFgM9A6k/WhsAvhsCXo63tbqebPrC+6OWLbS1/Dkdb/1iTwE486nPbJXF83uuGfIBnH2e2S6VuJTENiT0nU3qOS59gnIFIUUpoomQCThDhDwcglVYtBPHi+MIbo6aCG6/uKeGmvfOEO98M8LMxTDj17SyQk7jAA1BfwTBhEbW5e4ELYkcMsYI9I9hOjpOpYxF6qymvL073Or1up3f01fb97/Ny3NI+1T7XDK2nfa3d1x5rh9qJZuuJ/qv+u/5H45fGb40/G39lqjdv5DafaLWn8fd/YvIqUw==</latexit> <latexit sha1_base64="PIFlW0otVBg45kxOOaeFPjrHsfM=">AAAL+HictVZbj9tEFHbLrThQtvDIy4FVdu2SRMmCBKKKVGgpRe0uu9XudqV1Ek2ccTKKb7XHbZbZ+SW88ABCvPJTeOPfcMaX2E6y1T5QS1HGZ87lO+d8Z8bj0GUx73b/vXHzrbffefe9W+/rjQ8+vP3R1p2PT+MgiWx6YgduEJ2NSUxd5tMTzrhLz8KIEm/s0ufj+QO1//wljWIW+Mf8IqQDj0x95jCbcBSN7ui3m5ZH+MwmrngoYacPlgAjFY0dsZBDYTBTtqCQXOQSEyw5Eqzfw/cDtW9BaQQ7FvPz97F4hioPUdeXNT+wQSdIuJR60/l2gy1YEZvOOImi4NUVdtaMcOFIw7InAb8HFp9RTkxEQ8IwChbgZDsmwuB0wUXc4Z0Uu96EpW0l9btys5OaitmqZD68C5Yf8CKzrKoITMDZiENaMw7WlL6ArqyhAEh1BB/1cCNd7CkNhTfOBXOlhXWImVe6Pyghe5X6PpEmhvUSjNpfCn+Q5whjoLrsGWkZMHM7eGmgNIuxi43F3RWLfGsA7TVXtfdMqQ9zA93xXbODENLyqTopHIk/QS5SLjKxFKl55AkSTb2syU5EbNGTmBcmmnglx8qUn5YpX5QEzfq3zt1lC034AiwXR2NCSl/P0Fe2rTcLUmEujkJ8WW90q9rTvIgrVMAIc2OjFb6fqaFxqcMNqLRJgYrZ1CMj4aPBnlzu/VRQ3hyKdq+SGc5OuxIb/eatLBI4vW4Cbw7saz0Pj3HGcaJqRP7xUBoOXNaKinnNjUULFrv3SsXHy3wdHLfLalIbfWZKnLkTiiNS956L53JjlI7erLyPlmzd/+5QrvC5VNtAajU3bjCFsNLCy7IerVpUjHltXcTQXk5MpRs4FscgrPR6EBGdyKKXZSvzbFKn5QqZdb0GV2Op9CogslyLIkwo/1+jL4MdZBmrWHtWyAr2pzTtw9HR8Lg4YOHVjEa0BRKO1i6dA0UBj8bwQl1IHl65uM7MHpGYA/Pz2xMCB6Rl5Zko98thUEgV4k1ocwRJzPwp7BMesUXF51PqeaSjLgjm89rMVC+VXXQTzhgehTX2liWWpVSxMjvjRmyjVQsv6grtr4zYrx2/qjp1t6wOZVW0izzeiQ0r8OiUmMUdpGj7SOJNNzci9QWh5Jj5SLTVv8PVcZ4vMhWKZMOAqReIZCXlqAVYtkyr5j2lJ4Yog78+TqmHwa6MpY6bnbJsWdCC9PtyrVh2UPjFgkVmB6Ak6IOsS9nheo2huO6hqzcF1Ga+KMrP0jgYfomFgM9A6k/WhsAvhsCXo63tbqebPrC+6OWLbS1/Dkdb/1iTwE486nPbJXF83uuGfIBnH2e2S6VuJTENiT0nU3qOS59gnIFIUUpoomQCThDhDwcglVYtBPHi+MIbo6aCG6/uKeGmvfOEO98M8LMxTDj17SyQk7jAA1BfwTBhEbW5e4ELYkcMsYI9I9hOjpOpYxF6qymvL073Or1up3f01fb97/Ny3NI+1T7XDK2nfa3d1x5rh9qJZuuJ/qv+u/5H45fGb40/G39lqjdv5DafaLWn8fd/YvIqUw==</latexit> <latexit sha1_base64="PIFlW0otVBg45kxOOaeFPjrHsfM=">AAAL+HictVZbj9tEFHbLrThQtvDIy4FVdu2SRMmCBKKKVGgpRe0uu9XudqV1Ek2ccTKKb7XHbZbZ+SW88ABCvPJTeOPfcMaX2E6y1T5QS1HGZ87lO+d8Z8bj0GUx73b/vXHzrbffefe9W+/rjQ8+vP3R1p2PT+MgiWx6YgduEJ2NSUxd5tMTzrhLz8KIEm/s0ufj+QO1//wljWIW+Mf8IqQDj0x95jCbcBSN7ui3m5ZH+MwmrngoYacPlgAjFY0dsZBDYTBTtqCQXOQSEyw5Eqzfw/cDtW9BaQQ7FvPz97F4hioPUdeXNT+wQSdIuJR60/l2gy1YEZvOOImi4NUVdtaMcOFIw7InAb8HFp9RTkxEQ8IwChbgZDsmwuB0wUXc4Z0Uu96EpW0l9btys5OaitmqZD68C5Yf8CKzrKoITMDZiENaMw7WlL6ArqyhAEh1BB/1cCNd7CkNhTfOBXOlhXWImVe6Pyghe5X6PpEmhvUSjNpfCn+Q5whjoLrsGWkZMHM7eGmgNIuxi43F3RWLfGsA7TVXtfdMqQ9zA93xXbODENLyqTopHIk/QS5SLjKxFKl55AkSTb2syU5EbNGTmBcmmnglx8qUn5YpX5QEzfq3zt1lC034AiwXR2NCSl/P0Fe2rTcLUmEujkJ8WW90q9rTvIgrVMAIc2OjFb6fqaFxqcMNqLRJgYrZ1CMj4aPBnlzu/VRQ3hyKdq+SGc5OuxIb/eatLBI4vW4Cbw7saz0Pj3HGcaJqRP7xUBoOXNaKinnNjUULFrv3SsXHy3wdHLfLalIbfWZKnLkTiiNS956L53JjlI7erLyPlmzd/+5QrvC5VNtAajU3bjCFsNLCy7IerVpUjHltXcTQXk5MpRs4FscgrPR6EBGdyKKXZSvzbFKn5QqZdb0GV2Op9CogslyLIkwo/1+jL4MdZBmrWHtWyAr2pzTtw9HR8Lg4YOHVjEa0BRKO1i6dA0UBj8bwQl1IHl65uM7MHpGYA/Pz2xMCB6Rl5Zko98thUEgV4k1ocwRJzPwp7BMesUXF51PqeaSjLgjm89rMVC+VXXQTzhgehTX2liWWpVSxMjvjRmyjVQsv6grtr4zYrx2/qjp1t6wOZVW0izzeiQ0r8OiUmMUdpGj7SOJNNzci9QWh5Jj5SLTVv8PVcZ4vMhWKZMOAqReIZCXlqAVYtkyr5j2lJ4Yog78+TqmHwa6MpY6bnbJsWdCC9PtyrVh2UPjFgkVmB6Ak6IOsS9nheo2huO6hqzcF1Ga+KMrP0jgYfomFgM9A6k/WhsAvhsCXo63tbqebPrC+6OWLbS1/Dkdb/1iTwE486nPbJXF83uuGfIBnH2e2S6VuJTENiT0nU3qOS59gnIFIUUpoomQCThDhDwcglVYtBPHi+MIbo6aCG6/uKeGmvfOEO98M8LMxTDj17SyQk7jAA1BfwTBhEbW5e4ELYkcMsYI9I9hOjpOpYxF6qymvL073Or1up3f01fb97/Ny3NI+1T7XDK2nfa3d1x5rh9qJZuuJ/qv+u/5H45fGb40/G39lqjdv5DafaLWn8fd/YvIqUw==</latexit> Real, symmetric matrix: K = " K(1) 1 U(1) 1 V (1) 1 T V (1) 1 U(1) 1 T K(1) 2 # <latexit sha1_base64="XBDKBKdotevTutkFVnRlS3sMIGs=">AAAMeHictVZbbxtFFN6WW9kESOGxLweC493iWF6DBKKyVGgpRWlCUtlppKxtjdez9sh7cXfHraPJ/AV+HG/8EF544sxevLu2U+UBLFmeOXNu3znfmfFo7rGYt1p/3bn73vsffPjRvY/1nd1PPv1s7/7n53G4iBzac0IvjC5GJKYeC2iPM+7Ri3lEiT/y6KvR7Ik6f/WGRjELgy6/mtO+TyYBc5lDOIqG9/U/arZP+NQhnngq4aADtgAjEY1csZQDYTBTNiCXXGUSE2w5FKxj4f5EndtQGMGBzYJsPxIvUeUp6gay4ge26IQLLqVec3/cYgt2xCZTTqIofHuDnT0lXLjSsJ1xyB+BzaeUExOzIfN5FC7BTU9MTIPTJRdxkzeT3PUarGxL0B/K7U4qKmajhHzwEOwg5DmytKqYmICLIYekZhzsCX0NLVnJAiDREXxo4UGyaCsNlW+cCWZKC+sQM79wf1Kk7JfqeyRNDOsvMGpnJfxFXmIafdVl30jKgMid8I2B0jRGHRuLp2sW2VEfDjdcVfapUgdmBrrjdbOJKSTlU3VSeSyCMXKRcpGKpUjMI1+QaOKnTXYj4ghLIi4EuvALjhWQXxSQrwqCpv3b5O6qhSZ8A7aHozEmha+X6Cs91ms5qRCLqzK+rja6Ue5pVsQ1KmCEmbHVCvcXamg86nIDSm1SScVs4pOhCNCgLVdnv+WUNwfi0Cohw9k5LMVGv1krcwDntwXw/yX7Ts+DLs44TlSFyL+eSsOF60pREdfMWDZgWX9UKD5f4XVx3K7LoLb6TJU488YUR6TqPRPP5NYoTb1W2g9XbD3+6VSu8blQ20JqNTdeOIF5qYXXRT0alagY89a6mMPhamJK3cCx6IKwk+dBRHQs814WrczQJE6LFTLrdg0ux1LwSkmkWPMijCn/T6Ovgp2kiFWstj1nOfsTmnbg7GzQzS9YeDulEW2AhLONR+dEUcCnMbxWD5KPTy6uU7NnJObAguz1hNAFadsZEuV+NQwqU5XxtmyzDBYxCyZwTHjEliWfL6jvk6Z6IFjAKzNTflTq6GY+ZXgVVthblFgWUsXK9I4bsq1WDXyoS7S/MWKncv2q6lTdsmoq66I68vggNuzQpxNi5m+Qou0ziS/dzIjUPwglR+RDcah+Xa6u82yRqlAkGwZMvEAkS5CjBmDZUq2K94SeGKII/u44hR4GuzGWum4OirKlQXPSH8uNYjlh7hcLFplNgIKgT9IupZfrLYbitpeuXhNQmfm8KL9L42TwLRYCvgSpQ+1oYwyCfAwCqR9hdro9ohMWiJGfUFaCfjQUCpthmXjLQq+0E+fFBn+6UhXrvKzQKyt00RydtfNT3abBeBVouLffaraSD2wurGyxr2Wf0+Hen/Y4dBY+DbjjkTi+tFpz3se7lzPHo1K3FzGdE2dGJvQSlwFBlH2RVElCDSVjcMMIvziAibRsIYgfx1f+CDVVseL1MyXcdna54O4PffzbOl9wGjhpIHfhAQ9B/QuHMYuow70rXBAnYpgrOFOCdOJ4M+hYBGsd8ubivN20Wk3r7Lv9xz9n5binPdC+0gzN0r7XHmvPtVOtpzn63zsPdr7eqe38swu79V0zVb17J7P5Qqt8dtv/AsQ6Ugg=</latexit> <latexit sha1_base64="XBDKBKdotevTutkFVnRlS3sMIGs=">AAAMeHictVZbbxtFFN6WW9kESOGxLweC493iWF6DBKKyVGgpRWlCUtlppKxtjdez9sh7cXfHraPJ/AV+HG/8EF544sxevLu2U+UBLFmeOXNu3znfmfFo7rGYt1p/3bn73vsffPjRvY/1nd1PPv1s7/7n53G4iBzac0IvjC5GJKYeC2iPM+7Ri3lEiT/y6KvR7Ik6f/WGRjELgy6/mtO+TyYBc5lDOIqG9/U/arZP+NQhnngq4aADtgAjEY1csZQDYTBTNiCXXGUSE2w5FKxj4f5EndtQGMGBzYJsPxIvUeUp6gay4ge26IQLLqVec3/cYgt2xCZTTqIofHuDnT0lXLjSsJ1xyB+BzaeUExOzIfN5FC7BTU9MTIPTJRdxkzeT3PUarGxL0B/K7U4qKmajhHzwEOwg5DmytKqYmICLIYekZhzsCX0NLVnJAiDREXxo4UGyaCsNlW+cCWZKC+sQM79wf1Kk7JfqeyRNDOsvMGpnJfxFXmIafdVl30jKgMid8I2B0jRGHRuLp2sW2VEfDjdcVfapUgdmBrrjdbOJKSTlU3VSeSyCMXKRcpGKpUjMI1+QaOKnTXYj4ghLIi4EuvALjhWQXxSQrwqCpv3b5O6qhSZ8A7aHozEmha+X6Cs91ms5qRCLqzK+rja6Ue5pVsQ1KmCEmbHVCvcXamg86nIDSm1SScVs4pOhCNCgLVdnv+WUNwfi0Cohw9k5LMVGv1krcwDntwXw/yX7Ts+DLs44TlSFyL+eSsOF60pREdfMWDZgWX9UKD5f4XVx3K7LoLb6TJU488YUR6TqPRPP5NYoTb1W2g9XbD3+6VSu8blQ20JqNTdeOIF5qYXXRT0alagY89a6mMPhamJK3cCx6IKwk+dBRHQs814WrczQJE6LFTLrdg0ux1LwSkmkWPMijCn/T6Ovgp2kiFWstj1nOfsTmnbg7GzQzS9YeDulEW2AhLONR+dEUcCnMbxWD5KPTy6uU7NnJObAguz1hNAFadsZEuV+NQwqU5XxtmyzDBYxCyZwTHjEliWfL6jvk6Z6IFjAKzNTflTq6GY+ZXgVVthblFgWUsXK9I4bsq1WDXyoS7S/MWKncv2q6lTdsmoq66I68vggNuzQpxNi5m+Qou0ziS/dzIjUPwglR+RDcah+Xa6u82yRqlAkGwZMvEAkS5CjBmDZUq2K94SeGKII/u44hR4GuzGWum4OirKlQXPSH8uNYjlh7hcLFplNgIKgT9IupZfrLYbitpeuXhNQmfm8KL9L42TwLRYCvgSpQ+1oYwyCfAwCqR9hdro9ohMWiJGfUFaCfjQUCpthmXjLQq+0E+fFBn+6UhXrvKzQKyt00RydtfNT3abBeBVouLffaraSD2wurGyxr2Wf0+Hen/Y4dBY+DbjjkTi+tFpz3se7lzPHo1K3FzGdE2dGJvQSlwFBlH2RVElCDSVjcMMIvziAibRsIYgfx1f+CDVVseL1MyXcdna54O4PffzbOl9wGjhpIHfhAQ9B/QuHMYuow70rXBAnYpgrOFOCdOJ4M+hYBGsd8ubivN20Wk3r7Lv9xz9n5binPdC+0gzN0r7XHmvPtVOtpzn63zsPdr7eqe38swu79V0zVb17J7P5Qqt8dtv/AsQ6Ugg=</latexit> <latexit sha1_base64="XBDKBKdotevTutkFVnRlS3sMIGs=">AAAMeHictVZbbxtFFN6WW9kESOGxLweC493iWF6DBKKyVGgpRWlCUtlppKxtjdez9sh7cXfHraPJ/AV+HG/8EF544sxevLu2U+UBLFmeOXNu3znfmfFo7rGYt1p/3bn73vsffPjRvY/1nd1PPv1s7/7n53G4iBzac0IvjC5GJKYeC2iPM+7Ri3lEiT/y6KvR7Ik6f/WGRjELgy6/mtO+TyYBc5lDOIqG9/U/arZP+NQhnngq4aADtgAjEY1csZQDYTBTNiCXXGUSE2w5FKxj4f5EndtQGMGBzYJsPxIvUeUp6gay4ge26IQLLqVec3/cYgt2xCZTTqIofHuDnT0lXLjSsJ1xyB+BzaeUExOzIfN5FC7BTU9MTIPTJRdxkzeT3PUarGxL0B/K7U4qKmajhHzwEOwg5DmytKqYmICLIYekZhzsCX0NLVnJAiDREXxo4UGyaCsNlW+cCWZKC+sQM79wf1Kk7JfqeyRNDOsvMGpnJfxFXmIafdVl30jKgMid8I2B0jRGHRuLp2sW2VEfDjdcVfapUgdmBrrjdbOJKSTlU3VSeSyCMXKRcpGKpUjMI1+QaOKnTXYj4ghLIi4EuvALjhWQXxSQrwqCpv3b5O6qhSZ8A7aHozEmha+X6Cs91ms5qRCLqzK+rja6Ue5pVsQ1KmCEmbHVCvcXamg86nIDSm1SScVs4pOhCNCgLVdnv+WUNwfi0Cohw9k5LMVGv1krcwDntwXw/yX7Ts+DLs44TlSFyL+eSsOF60pREdfMWDZgWX9UKD5f4XVx3K7LoLb6TJU488YUR6TqPRPP5NYoTb1W2g9XbD3+6VSu8blQ20JqNTdeOIF5qYXXRT0alagY89a6mMPhamJK3cCx6IKwk+dBRHQs814WrczQJE6LFTLrdg0ux1LwSkmkWPMijCn/T6Ovgp2kiFWstj1nOfsTmnbg7GzQzS9YeDulEW2AhLONR+dEUcCnMbxWD5KPTy6uU7NnJObAguz1hNAFadsZEuV+NQwqU5XxtmyzDBYxCyZwTHjEliWfL6jvk6Z6IFjAKzNTflTq6GY+ZXgVVthblFgWUsXK9I4bsq1WDXyoS7S/MWKncv2q6lTdsmoq66I68vggNuzQpxNi5m+Qou0ziS/dzIjUPwglR+RDcah+Xa6u82yRqlAkGwZMvEAkS5CjBmDZUq2K94SeGKII/u44hR4GuzGWum4OirKlQXPSH8uNYjlh7hcLFplNgIKgT9IupZfrLYbitpeuXhNQmfm8KL9L42TwLRYCvgSpQ+1oYwyCfAwCqR9hdro9ohMWiJGfUFaCfjQUCpthmXjLQq+0E+fFBn+6UhXrvKzQKyt00RydtfNT3abBeBVouLffaraSD2wurGyxr2Wf0+Hen/Y4dBY+DbjjkTi+tFpz3se7lzPHo1K3FzGdE2dGJvQSlwFBlH2RVElCDSVjcMMIvziAibRsIYgfx1f+CDVVseL1MyXcdna54O4PffzbOl9wGjhpIHfhAQ9B/QuHMYuow70rXBAnYpgrOFOCdOJ4M+hYBGsd8ubivN20Wk3r7Lv9xz9n5binPdC+0gzN0r7XHmvPtVOtpzn63zsPdr7eqe38swu79V0zVb17J7P5Qqt8dtv/AsQ6Ugg=</latexit> The matrix K can be written as: K(1) 1 = " K(2) 1 U(2) 1 V (2) 1 T V (2) 1 U(2) 1 T K(2) 2 # , K(1) 2 = " K(2) 3 U(2) 2 V (2) 2 T V (2) 2 U(2) 2 T K(2) 4 # . <latexit sha1_base64="ANKc6ZuCSx9CJgBqBOqrwL6RPI8=">AAANkHictVdbbxpHFCbpLSWmddLHvpzWwl5SjGAdqVFT1KRJ07SOXTsCYskLaFhmYcReyO6Q2BrP3+kP6lv/Tc/shZ0FnPqhRbKYOXMu3znnOzN4NHdZxJvNv2/d/ujjTz797M7n5btblS++3L53vxcFi9CmXTtwg/BsRCLqMp92OeMuPZuHlHgjl74ZzZ6p8zfvaBixwO/wyznte2TiM4fZhKNoeO/un1XLI3xqE1c8l7DbBkuAEYtGjriQA2GwmqxDJrlMJTWw5FCwdgv3x+rcgtwIdi3mp/uReI0qz1HXlwU/sEEnWHApy1Xnhw22YIVsMuUkDIP319hZU8KFIw3LHgf8MVh8SjmpIRoyn4fBBTjJSQ1hcHrBRdTgjRh7uQpLWy31B3Kzk4JKra5lPngAlh/wLLOkqghMwNmQQ1wzDtaEvoWmLKAAiHUEH7bwIF6YSkPhjVLBTGlhHSLm5e6Pc8ieVt9DWcOw3gKjtpfCX+Q5wuirLntGXAbM3A7eGShNYuxhY/F0xSI96sP+mqvCPlFqw8xAd3yv1kAIcflUnRSOhT9GLlIuErEUsXnoCRJOvKTJTkhs0ZKYFya68HKO5Sm/ylO+zAma9G+du8sW1uA7sFwcjTHJfb1GX8lxuZqRCnNxFOKrYqPrek/TIq5QASPMjI1WuD9TQ+NShxugtUmBitjEI0Pho4Epl2e/ZZSvDcR+S8sMZ2dfi41+01ZmCfRumsD/B/aDngcdnHGcqAKRfz2RhgNXhaJiXjPjog4Xe49zxZfLfB0ctys9qY0+EyXO3DHFESl6T8UzuTFKo1zV9sMlW4+ensgVPudqG0it5sYNJjDXWniV16NeiIoxb6yLGPaXE6N1A8eiA8KKnwcR0rHMepm3Ms0mdpqvkFk3a7AeS6WngUhyzYowpvw/jb4MdpxkrGKZ1pxl7I9p2obT00Enu2Dh/ZSGtA4STtcenWNFAY9G8FY9SB4+ubhOzF6QiAPz09cTAgekZaWZKPfLYVBIFeJNaFMEi4j5EzgiPGQXms9X1PNIQz0QzOeFmdEflT10M58yvAoL7M1LLHOpYmVyxw3ZRqs6PtQa7a+N2C5cv6o6RbesCGVVtIc83o0MK/DohNSyN0jR9oXEl25mhOoXhJJj5kOxr74drq7zdJGoUCQbBoy9QCi1lMM6YNkSrYL3mJ4YIg/+4Ti5Hga7Npa6bnbzsiVBM9IfybVi2UHmFwsW1hoAOUGfJV1KLtcbDMVNL91yVUBh5rOi/CGN48EBFgK+AVmG6uHaGPjZGPjo5RDhIdoRnTBfjLyYtBIlh0Oh0jNaNbxooavtRC/f4FdHxvXq6RpdXaOD9ujNzE4xGvXHy1hlPRJiWYOSnZsFJKaOxNSQ9HSFrq6gA1Gn5QKOehzJ/BckBwUkpo7E3IDE1JGYq0gebkbSGG7vNBvN+APri1a62Cmln5Ph9l/WOLAXHvW57ZIoOm8157yPbxJntktl2VpEdE7sGZnQc1z6BLvfFzF7JFRRMgYnCPEPL6ZYqlsI4kXRpTdCTUWiaPVMCTednS+486iPP+fnC059OwnkLFzgAaj/TmDMQmpz9xIXxA4ZYgV7SnDMON6YZSxCazXl9UXPbLSajdbpw50nP6fluFP6uvRtySi1St+XnpRelk5K3ZK9Vdk62Ppxq125X3lU+anyNFG9fSu1+apU+FR+/wfuw6ve</latexit> <latexit sha1_base64="ANKc6ZuCSx9CJgBqBOqrwL6RPI8=">AAANkHictVdbbxpHFCbpLSWmddLHvpzWwl5SjGAdqVFT1KRJ07SOXTsCYskLaFhmYcReyO6Q2BrP3+kP6lv/Tc/shZ0FnPqhRbKYOXMu3znnOzN4NHdZxJvNv2/d/ujjTz797M7n5btblS++3L53vxcFi9CmXTtwg/BsRCLqMp92OeMuPZuHlHgjl74ZzZ6p8zfvaBixwO/wyznte2TiM4fZhKNoeO/un1XLI3xqE1c8l7DbBkuAEYtGjriQA2GwmqxDJrlMJTWw5FCwdgv3x+rcgtwIdi3mp/uReI0qz1HXlwU/sEEnWHApy1Xnhw22YIVsMuUkDIP319hZU8KFIw3LHgf8MVh8SjmpIRoyn4fBBTjJSQ1hcHrBRdTgjRh7uQpLWy31B3Kzk4JKra5lPngAlh/wLLOkqghMwNmQQ1wzDtaEvoWmLKAAiHUEH7bwIF6YSkPhjVLBTGlhHSLm5e6Pc8ieVt9DWcOw3gKjtpfCX+Q5wuirLntGXAbM3A7eGShNYuxhY/F0xSI96sP+mqvCPlFqw8xAd3yv1kAIcflUnRSOhT9GLlIuErEUsXnoCRJOvKTJTkhs0ZKYFya68HKO5Sm/ylO+zAma9G+du8sW1uA7sFwcjTHJfb1GX8lxuZqRCnNxFOKrYqPrek/TIq5QASPMjI1WuD9TQ+NShxugtUmBitjEI0Pho4Epl2e/ZZSvDcR+S8sMZ2dfi41+01ZmCfRumsD/B/aDngcdnHGcqAKRfz2RhgNXhaJiXjPjog4Xe49zxZfLfB0ctys9qY0+EyXO3DHFESl6T8UzuTFKo1zV9sMlW4+ensgVPudqG0it5sYNJjDXWniV16NeiIoxb6yLGPaXE6N1A8eiA8KKnwcR0rHMepm3Ms0mdpqvkFk3a7AeS6WngUhyzYowpvw/jb4MdpxkrGKZ1pxl7I9p2obT00Enu2Dh/ZSGtA4STtcenWNFAY9G8FY9SB4+ubhOzF6QiAPz09cTAgekZaWZKPfLYVBIFeJNaFMEi4j5EzgiPGQXms9X1PNIQz0QzOeFmdEflT10M58yvAoL7M1LLHOpYmVyxw3ZRqs6PtQa7a+N2C5cv6o6RbesCGVVtIc83o0MK/DohNSyN0jR9oXEl25mhOoXhJJj5kOxr74drq7zdJGoUCQbBoy9QCi1lMM6YNkSrYL3mJ4YIg/+4Ti5Hga7Npa6bnbzsiVBM9IfybVi2UHmFwsW1hoAOUGfJV1KLtcbDMVNL91yVUBh5rOi/CGN48EBFgK+AVmG6uHaGPjZGPjo5RDhIdoRnTBfjLyYtBIlh0Oh0jNaNbxooavtRC/f4FdHxvXq6RpdXaOD9ujNzE4xGvXHy1hlPRJiWYOSnZsFJKaOxNSQ9HSFrq6gA1Gn5QKOehzJ/BckBwUkpo7E3IDE1JGYq0gebkbSGG7vNBvN+APri1a62Cmln5Ph9l/WOLAXHvW57ZIoOm8157yPbxJntktl2VpEdE7sGZnQc1z6BLvfFzF7JFRRMgYnCPEPL6ZYqlsI4kXRpTdCTUWiaPVMCTednS+486iPP+fnC059OwnkLFzgAaj/TmDMQmpz9xIXxA4ZYgV7SnDMON6YZSxCazXl9UXPbLSajdbpw50nP6fluFP6uvRtySi1St+XnpRelk5K3ZK9Vdk62Ppxq125X3lU+anyNFG9fSu1+apU+FR+/wfuw6ve</latexit> <latexit sha1_base64="ANKc6ZuCSx9CJgBqBOqrwL6RPI8=">AAANkHictVdbbxpHFCbpLSWmddLHvpzWwl5SjGAdqVFT1KRJ07SOXTsCYskLaFhmYcReyO6Q2BrP3+kP6lv/Tc/shZ0FnPqhRbKYOXMu3znnOzN4NHdZxJvNv2/d/ujjTz797M7n5btblS++3L53vxcFi9CmXTtwg/BsRCLqMp92OeMuPZuHlHgjl74ZzZ6p8zfvaBixwO/wyznte2TiM4fZhKNoeO/un1XLI3xqE1c8l7DbBkuAEYtGjriQA2GwmqxDJrlMJTWw5FCwdgv3x+rcgtwIdi3mp/uReI0qz1HXlwU/sEEnWHApy1Xnhw22YIVsMuUkDIP319hZU8KFIw3LHgf8MVh8SjmpIRoyn4fBBTjJSQ1hcHrBRdTgjRh7uQpLWy31B3Kzk4JKra5lPngAlh/wLLOkqghMwNmQQ1wzDtaEvoWmLKAAiHUEH7bwIF6YSkPhjVLBTGlhHSLm5e6Pc8ieVt9DWcOw3gKjtpfCX+Q5wuirLntGXAbM3A7eGShNYuxhY/F0xSI96sP+mqvCPlFqw8xAd3yv1kAIcflUnRSOhT9GLlIuErEUsXnoCRJOvKTJTkhs0ZKYFya68HKO5Sm/ylO+zAma9G+du8sW1uA7sFwcjTHJfb1GX8lxuZqRCnNxFOKrYqPrek/TIq5QASPMjI1WuD9TQ+NShxugtUmBitjEI0Pho4Epl2e/ZZSvDcR+S8sMZ2dfi41+01ZmCfRumsD/B/aDngcdnHGcqAKRfz2RhgNXhaJiXjPjog4Xe49zxZfLfB0ctys9qY0+EyXO3DHFESl6T8UzuTFKo1zV9sMlW4+ensgVPudqG0it5sYNJjDXWniV16NeiIoxb6yLGPaXE6N1A8eiA8KKnwcR0rHMepm3Ms0mdpqvkFk3a7AeS6WngUhyzYowpvw/jb4MdpxkrGKZ1pxl7I9p2obT00Enu2Dh/ZSGtA4STtcenWNFAY9G8FY9SB4+ubhOzF6QiAPz09cTAgekZaWZKPfLYVBIFeJNaFMEi4j5EzgiPGQXms9X1PNIQz0QzOeFmdEflT10M58yvAoL7M1LLHOpYmVyxw3ZRqs6PtQa7a+N2C5cv6o6RbesCGVVtIc83o0MK/DohNSyN0jR9oXEl25mhOoXhJJj5kOxr74drq7zdJGoUCQbBoy9QCi1lMM6YNkSrYL3mJ4YIg/+4Ti5Hga7Npa6bnbzsiVBM9IfybVi2UHmFwsW1hoAOUGfJV1KLtcbDMVNL91yVUBh5rOi/CGN48EBFgK+AVmG6uHaGPjZGPjo5RDhIdoRnTBfjLyYtBIlh0Oh0jNaNbxooavtRC/f4FdHxvXq6RpdXaOD9ujNzE4xGvXHy1hlPRJiWYOSnZsFJKaOxNSQ9HSFrq6gA1Gn5QKOehzJ/BckBwUkpo7E3IDE1JGYq0gebkbSGG7vNBvN+APri1a62Cmln5Ph9l/WOLAXHvW57ZIoOm8157yPbxJntktl2VpEdE7sGZnQc1z6BLvfFzF7JFRRMgYnCPEPL6ZYqlsI4kXRpTdCTUWiaPVMCTednS+486iPP+fnC059OwnkLFzgAaj/TmDMQmpz9xIXxA4ZYgV7SnDMON6YZSxCazXl9UXPbLSajdbpw50nP6fluFP6uvRtySi1St+XnpRelk5K3ZK9Vdk62Ppxq125X3lU+anyNFG9fSu1+apU+FR+/wfuw6ve</latexit> 1st level 2nd level where, U(j) i , V (j) i 2 R n 2j ⇥r, are tall-and-thin matrices. <latexit sha1_base64="DJsmoxywTHeqOhXlSY4QLFDOkGs=">AAAOD3ictVdbbxtFFHbLrZgYUnjk5UDkZF1sy95WAlFZKrSUojQhqeI0Uja2xutZe+q9uLvj1tFk/gEv/BVeeAAhXnnljX/Dmb14Z20nzQNYijJz5ly+c853ZuzB1GURb7X+uXHzrbffefe9W++XP9iofPjR5u2Pj6NgFtq0awduEJ4MSERd5tMuZ9ylJ9OQEm/g0ueDyUN1/vwVDSMW+Ef8fErPPDLymcNswlHUv71RrVoe4WObuOKRhO0OWAKMWDRwxFz2hMFqsg6Z5DyV1MCSfcE6bdzvq3MLciPYtpif7gfiGao8Ql1fFvzAGp1gxqUsV52v19iCFbLRmJMwDF5fYmeNCReONCx7GPD7YPEx5aSGaMh0GgZzcJKTGsLgdM5F1OTNGHu5CgtbLfU7cr2TgkqtrmXeuwOWH/Ass6SqCEzASZ9DXDMO1oi+hJYsoACIdQTvt/EgXphKQ+GNUsFEaWEdIubl7vdzyJ5W311Zw7DeDKN2FsLv5CnCOFNd9oy4DJi5HbwyUJrE2MHG4umSRXp0Bo0VV4V9otSBiYHu+E6tiRDi8qk6KRwzf4hcpFwkYili89ATJBx5SZOdkNiiLTEvTHTm5RzLU36ap3yeEzTp3yp3Fy2swRdguTgaQ5L7eoa+kuNyNSMV5uIoxBfFRtf1nqZFXKICRpgYa61wf6KGxqUON0BrkwIVsZFH+sJHA1Muzn7IKF/riUZbywxnp6HFRr9pK7MEjq+bwP8H9krPvSOccZyoApG/P5CGAxeFomJeE2Neh/nO/VzxySJfB8ftQk9qrc9EiTN3SHFEit5T8USujdIsV7V9f8HWvW8O5BKfc7U1pFZz4wYjmGotvMjrUS9ExZjX1kUMjcXEaN3AsTgCYcXPgwjpUGa9zFuZZhM7zVfIrOs1WI+l0tNAJLlmRRhS/p9GXwTbTzJWsUxryjL2xzTtwOFh7yi7YOH1mIa0DhIOVx6dfUUBj0bwUj1IHj65uE7MHpOIA/PT1xMCB6RlpZko94thUEgV4nVoUwSziPkj2CM8ZHPN51PqeaSpHgjm88LM6I/KDrqZjhlehQX25iWWuVSxMrnj+mytVR0fao32l0bsFK5fVZ2iW1aEsizaQR5vR4YVeHREatkbpGj7WOJLNzFC9Q1CyTHzvmio/w5X13m6SFQokg0Dxl4glFrKYR2wbIlWwXtMTwyRB786Tq6HwS6Npa6b7bxsSdCM9HtypVh2kPnFgoW1JkBO0IdJl5LL9RpDcd1Lt1wVUJj5rCg/SmO/dxcLAZ+BLEN1d2UM/GwMfPSyi/AQ7YCOmC8GXkxaiZLdvlDpGe0aXrTQ1XbiON/gvyMZ1+tY1+jqGkdoj97M7BSjUX+4iFUMdTUYswDG1MGY68CYOhhzGYy5CqaeBDPfCOduAY6pwzHXwTF1OOYynHuXwGmWkytlcad11YSj7gv1Leg436z0OKGrj9dm74XM+q14HvurAwkpcOK6DeIPG3yM1nFIm0ZN2d/cajVb8QdWF+10sVVKPwf9zb+tYWDPPOpz2yVRdNpuTfkZPomc2S6VZWsW0SmxJ2RET3HpEwRzJmLySqiiZAhOEOIf3ouxVLcQxIuic2+Amiq/aPlMCdednc6489UZ/pqYzjj17SSQM3OBB6B+HMGQhdTm7jkuiB0yxAr2mGDZOF7YZSxCeznl1cWx2Wy3mu3De1sPvk3Lcav0aenzklFql74sPSg9KR2UuiV746eNXzZ+2/i98nPl18oflT8T1Zs3UptPSoVP5a9/ATs93Fc=</latexit> <latexit sha1_base64="DJsmoxywTHeqOhXlSY4QLFDOkGs=">AAAOD3ictVdbbxtFFHbLrZgYUnjk5UDkZF1sy95WAlFZKrSUojQhqeI0Uja2xutZe+q9uLvj1tFk/gEv/BVeeAAhXnnljX/Dmb14Z20nzQNYijJz5ly+c853ZuzB1GURb7X+uXHzrbffefe9W++XP9iofPjR5u2Pj6NgFtq0awduEJ4MSERd5tMuZ9ylJ9OQEm/g0ueDyUN1/vwVDSMW+Ef8fErPPDLymcNswlHUv71RrVoe4WObuOKRhO0OWAKMWDRwxFz2hMFqsg6Z5DyV1MCSfcE6bdzvq3MLciPYtpif7gfiGao8Ql1fFvzAGp1gxqUsV52v19iCFbLRmJMwDF5fYmeNCReONCx7GPD7YPEx5aSGaMh0GgZzcJKTGsLgdM5F1OTNGHu5CgtbLfU7cr2TgkqtrmXeuwOWH/Ass6SqCEzASZ9DXDMO1oi+hJYsoACIdQTvt/EgXphKQ+GNUsFEaWEdIubl7vdzyJ5W311Zw7DeDKN2FsLv5CnCOFNd9oy4DJi5HbwyUJrE2MHG4umSRXp0Bo0VV4V9otSBiYHu+E6tiRDi8qk6KRwzf4hcpFwkYili89ATJBx5SZOdkNiiLTEvTHTm5RzLU36ap3yeEzTp3yp3Fy2swRdguTgaQ5L7eoa+kuNyNSMV5uIoxBfFRtf1nqZFXKICRpgYa61wf6KGxqUON0BrkwIVsZFH+sJHA1Muzn7IKF/riUZbywxnp6HFRr9pK7MEjq+bwP8H9krPvSOccZyoApG/P5CGAxeFomJeE2Neh/nO/VzxySJfB8ftQk9qrc9EiTN3SHFEit5T8USujdIsV7V9f8HWvW8O5BKfc7U1pFZz4wYjmGotvMjrUS9ExZjX1kUMjcXEaN3AsTgCYcXPgwjpUGa9zFuZZhM7zVfIrOs1WI+l0tNAJLlmRRhS/p9GXwTbTzJWsUxryjL2xzTtwOFh7yi7YOH1mIa0DhIOVx6dfUUBj0bwUj1IHj65uE7MHpOIA/PT1xMCB6RlpZko94thUEgV4nVoUwSziPkj2CM8ZHPN51PqeaSpHgjm88LM6I/KDrqZjhlehQX25iWWuVSxMrnj+mytVR0fao32l0bsFK5fVZ2iW1aEsizaQR5vR4YVeHREatkbpGj7WOJLNzFC9Q1CyTHzvmio/w5X13m6SFQokg0Dxl4glFrKYR2wbIlWwXtMTwyRB786Tq6HwS6Npa6b7bxsSdCM9HtypVh2kPnFgoW1JkBO0IdJl5LL9RpDcd1Lt1wVUJj5rCg/SmO/dxcLAZ+BLEN1d2UM/GwMfPSyi/AQ7YCOmC8GXkxaiZLdvlDpGe0aXrTQ1XbiON/gvyMZ1+tY1+jqGkdoj97M7BSjUX+4iFUMdTUYswDG1MGY68CYOhhzGYy5CqaeBDPfCOduAY6pwzHXwTF1OOYynHuXwGmWkytlcad11YSj7gv1Leg436z0OKGrj9dm74XM+q14HvurAwkpcOK6DeIPG3yM1nFIm0ZN2d/cajVb8QdWF+10sVVKPwf9zb+tYWDPPOpz2yVRdNpuTfkZPomc2S6VZWsW0SmxJ2RET3HpEwRzJmLySqiiZAhOEOIf3ouxVLcQxIuic2+Amiq/aPlMCdednc6489UZ/pqYzjj17SSQM3OBB6B+HMGQhdTm7jkuiB0yxAr2mGDZOF7YZSxCeznl1cWx2Wy3mu3De1sPvk3Lcav0aenzklFql74sPSg9KR2UuiV746eNXzZ+2/i98nPl18oflT8T1Zs3UptPSoVP5a9/ATs93Fc=</latexit> <latexit sha1_base64="DJsmoxywTHeqOhXlSY4QLFDOkGs=">AAAOD3ictVdbbxtFFHbLrZgYUnjk5UDkZF1sy95WAlFZKrSUojQhqeI0Uja2xutZe+q9uLvj1tFk/gEv/BVeeAAhXnnljX/Dmb14Z20nzQNYijJz5ly+c853ZuzB1GURb7X+uXHzrbffefe9W++XP9iofPjR5u2Pj6NgFtq0awduEJ4MSERd5tMuZ9ylJ9OQEm/g0ueDyUN1/vwVDSMW+Ef8fErPPDLymcNswlHUv71RrVoe4WObuOKRhO0OWAKMWDRwxFz2hMFqsg6Z5DyV1MCSfcE6bdzvq3MLciPYtpif7gfiGao8Ql1fFvzAGp1gxqUsV52v19iCFbLRmJMwDF5fYmeNCReONCx7GPD7YPEx5aSGaMh0GgZzcJKTGsLgdM5F1OTNGHu5CgtbLfU7cr2TgkqtrmXeuwOWH/Ass6SqCEzASZ9DXDMO1oi+hJYsoACIdQTvt/EgXphKQ+GNUsFEaWEdIubl7vdzyJ5W311Zw7DeDKN2FsLv5CnCOFNd9oy4DJi5HbwyUJrE2MHG4umSRXp0Bo0VV4V9otSBiYHu+E6tiRDi8qk6KRwzf4hcpFwkYili89ATJBx5SZOdkNiiLTEvTHTm5RzLU36ap3yeEzTp3yp3Fy2swRdguTgaQ5L7eoa+kuNyNSMV5uIoxBfFRtf1nqZFXKICRpgYa61wf6KGxqUON0BrkwIVsZFH+sJHA1Muzn7IKF/riUZbywxnp6HFRr9pK7MEjq+bwP8H9krPvSOccZyoApG/P5CGAxeFomJeE2Neh/nO/VzxySJfB8ftQk9qrc9EiTN3SHFEit5T8USujdIsV7V9f8HWvW8O5BKfc7U1pFZz4wYjmGotvMjrUS9ExZjX1kUMjcXEaN3AsTgCYcXPgwjpUGa9zFuZZhM7zVfIrOs1WI+l0tNAJLlmRRhS/p9GXwTbTzJWsUxryjL2xzTtwOFh7yi7YOH1mIa0DhIOVx6dfUUBj0bwUj1IHj65uE7MHpOIA/PT1xMCB6RlpZko94thUEgV4nVoUwSziPkj2CM8ZHPN51PqeaSpHgjm88LM6I/KDrqZjhlehQX25iWWuVSxMrnj+mytVR0fao32l0bsFK5fVZ2iW1aEsizaQR5vR4YVeHREatkbpGj7WOJLNzFC9Q1CyTHzvmio/w5X13m6SFQokg0Dxl4glFrKYR2wbIlWwXtMTwyRB786Tq6HwS6Npa6b7bxsSdCM9HtypVh2kPnFgoW1JkBO0IdJl5LL9RpDcd1Lt1wVUJj5rCg/SmO/dxcLAZ+BLEN1d2UM/GwMfPSyi/AQ7YCOmC8GXkxaiZLdvlDpGe0aXrTQ1XbiON/gvyMZ1+tY1+jqGkdoj97M7BSjUX+4iFUMdTUYswDG1MGY68CYOhhzGYy5CqaeBDPfCOduAY6pwzHXwTF1OOYynHuXwGmWkytlcad11YSj7gv1Leg436z0OKGrj9dm74XM+q14HvurAwkpcOK6DeIPG3yM1nFIm0ZN2d/cajVb8QdWF+10sVVKPwf9zb+tYWDPPOpz2yVRdNpuTfkZPomc2S6VZWsW0SmxJ2RET3HpEwRzJmLySqiiZAhOEOIf3ouxVLcQxIuic2+Amiq/aPlMCdednc6489UZ/pqYzjj17SSQM3OBB6B+HMGQhdTm7jkuiB0yxAr2mGDZOF7YZSxCeznl1cWx2Wy3mu3De1sPvk3Lcav0aenzklFql74sPSg9KR2UuiV746eNXzZ+2/i98nPl18oflT8T1Zs3UptPSoVP5a9/ATs93Fc=</latexit>
  13. 15 HODLR MATRICES – SIMPLE 2 LEVEL EXAMPLE If we

    can obtain a k-level HODLR approximation of the original matrix K, we can factorize it into a product of k+1 matrices where one of them is block diagonally dense, and the rest are low-rank updates to the identity matrix (easy inversion by SMW formula). Dense block Low-rank block Zero block Identity block
  14. 16 APPLICATION TO GPR There are 3 parts that need

    to be addressed: 1. How to efficiently construct the low rank blocks? 2. How to construct the factorization? 3. How to exploit the factorization to compute the covariance matrix inverse and determinant?
  15. 17 CONSTRUCTION OF LOW-RANK BLOCKS For any n x n

    matrix A, the optimal low-rank approximation is estimated from the SVD which costs O(rn2). we can do better ! HOW: 1. Approximation theoretic techniques – eigenfunction expansion, Taylor series expansion of the covariance kernel function (suitable for simple, stationary covariance kernels). 2. Linear algebraic methods – Rank-revealing LU factorization, rank-revealing QR factorization, partial-pivoted LU decomposition.
  16. 18 HODLR FACTORIZATION K = KK 1 . . .

    K1K0,  = O(log2 n) <latexit sha1_base64="yU/9iixVMQ3qdvnH2D7BsyYnghU=">AAAOYnictVfdbxtFEHcLhWKSNKGP8DAQOblrbcu+VgJRWSq0lKI0IamSNFIuttbnPXvr+3Dv1q2jzf6TvPHEC38Is/fh27OdkgewlHhvdnbmNzO/mT33Jx6Leav1563bn3x657PP735R/XJtfePe5tZXp3E4jRx64oReGJ31SUw9FtATzrhHzyYRJX7fo2/642dq/817GsUsDI755YRe+GQYMJc5hKOot7U2q9k+4SOHeOK5hJ0O2AKMRNR3xUx2hcFMWYdccplJTLBlT7BOG58P1L4NxSHYsVmQPffFa1R5jrqBLNmBFTrhlEtZrbk/rjgLdsSGI06iKPxwzTl7RLhwpWE7g5A/AZuPKCcmoiGTSRTOwE13TITB6YyLuMmbCfZqDeZntdAfyNVGSipmXYu8+wDsIOR5ZGlWEZiAsx6HJGcc7CF9By1ZQgGQ6Ajea+NGsrCUhsIbZ4Kx0sI8xMwvzB8UkH0tv3vSRLf+FL125sJf5DnCuFBV9o0kDRi5E743UJr62MXC4u7CiWzrAhpLpkrPqVIHxgaa47tmEyEk6VN5UjimwQC5SLlIxVIkxyNfkGjop0V2I+KItsS4MNCpX3CsCPlVEfJlQdC0fsvcnZfQhIdge9gaA1LYeo220u1qLScVxuIqxFflQtf1mmZJXKACehgbK0/h85lqGo+63ACtTApUzIY+6YkAD1hyvvdbTnmzKxptLTLsnYbmG+1mpcwDOL1pAP8f2I9a7h5jj2NHlYj866E0XLgqJRXjGhuzOsx2nxSKL+fxuthuV3pQK22mSpx5A4otUraeicdypZdmtaY99+Zs3f/pUC7wuVBbQWrVN144hIlWwqsiH/WSV/R5Y13E0Jh3jFYNbItjEHZyPYiIDmRey6KUWTSJ0WKFzLpZgXVfKjwNRBprnoQB5f+p97mzgzRi5cuyJyxnf0LTDhwddY/zAQsfRjSidZBwtHTpHCgK+DSGd+pC8vHKxXV67AWJObAguz0hdEHadhaJMj9vBoVUIV6FNkMwjVkwhH3CIzbTbL6ivk+a6oJgAS/1jH6p7KKZyYjhKCyxt0ixLKSKlemM67GVp+p4UWu0v9ZjpzR+VXbKZlkZyqJoF3m8Ext26NMhMfM7SNH2hcSbbmxE6g1CyTHynmiob5ercZ4tUhWKZEOHiRWIpBZyVAdMW6pVsp7QE10Uzj/up9BDZ9f6UuNmp0hb6jQn/b5cSpYT5nYxYZHZBCgI+iytUjpcb9AUNx261ZqAUs/nSfldGgfdR5gI+BZkFWp7S20Q5G0QoJU9hIdo+3TIAtH3E9JKlOz1hArPaJs4aOFEexKnxQN+HcskX6e6xomucYzn0ZqV76I3GgzmvsquPg7GKoGxdDDWKjCWDsZaBGMtg6mnzqx/hfOoBMfS4Vir4Fg6HGsRzuNr4CTvVGqmzIfaiWpxVH6rXoNOi4elIqd8DXBudt/KvOCK6Im9OpCIAiee1yDBoMFHeDrx6dAYR9SOYoUCZo/xRZjIYokTGS98W72oQlIV9T95vU23OyUiqoHdsyAwe5vbrWYr+cDyop0ttivZ57C3+Qf6cKY+DbjjkTg+b7cm/AJvWc4cj8qqPY3phDhjMqTnuAwIhnchkn6QUEPJANwwwj8ctYlUPyGIH8eXfh81Fdh4cU8JV+2dT7n7wwX+QJlMOQ2c1JE79YCHoH5vwYBF1OHeJS6IEzHECs6IYCE43gFVTEJ7MeTlxanVbLea7aPH209/ztJxt/J15buKUWlXvq88rbysHFZOKs7aX+t31jfW763/vVHd2Nq4n6revpWduV8pfTa++Qd4TfOF</latexit> <latexit sha1_base64="yU/9iixVMQ3qdvnH2D7BsyYnghU=">AAAOYnictVfdbxtFEHcLhWKSNKGP8DAQOblrbcu+VgJRWSq0lKI0IamSNFIuttbnPXvr+3Dv1q2jzf6TvPHEC38Is/fh27OdkgewlHhvdnbmNzO/mT33Jx6Leav1563bn3x657PP735R/XJtfePe5tZXp3E4jRx64oReGJ31SUw9FtATzrhHzyYRJX7fo2/642dq/817GsUsDI755YRe+GQYMJc5hKOot7U2q9k+4SOHeOK5hJ0O2AKMRNR3xUx2hcFMWYdccplJTLBlT7BOG58P1L4NxSHYsVmQPffFa1R5jrqBLNmBFTrhlEtZrbk/rjgLdsSGI06iKPxwzTl7RLhwpWE7g5A/AZuPKCcmoiGTSRTOwE13TITB6YyLuMmbCfZqDeZntdAfyNVGSipmXYu8+wDsIOR5ZGlWEZiAsx6HJGcc7CF9By1ZQgGQ6Ajea+NGsrCUhsIbZ4Kx0sI8xMwvzB8UkH0tv3vSRLf+FL125sJf5DnCuFBV9o0kDRi5E743UJr62MXC4u7CiWzrAhpLpkrPqVIHxgaa47tmEyEk6VN5UjimwQC5SLlIxVIkxyNfkGjop0V2I+KItsS4MNCpX3CsCPlVEfJlQdC0fsvcnZfQhIdge9gaA1LYeo220u1qLScVxuIqxFflQtf1mmZJXKACehgbK0/h85lqGo+63ACtTApUzIY+6YkAD1hyvvdbTnmzKxptLTLsnYbmG+1mpcwDOL1pAP8f2I9a7h5jj2NHlYj866E0XLgqJRXjGhuzOsx2nxSKL+fxuthuV3pQK22mSpx5A4otUraeicdypZdmtaY99+Zs3f/pUC7wuVBbQWrVN144hIlWwqsiH/WSV/R5Y13E0Jh3jFYNbItjEHZyPYiIDmRey6KUWTSJ0WKFzLpZgXVfKjwNRBprnoQB5f+p97mzgzRi5cuyJyxnf0LTDhwddY/zAQsfRjSidZBwtHTpHCgK+DSGd+pC8vHKxXV67AWJObAguz0hdEHadhaJMj9vBoVUIV6FNkMwjVkwhH3CIzbTbL6ivk+a6oJgAS/1jH6p7KKZyYjhKCyxt0ixLKSKlemM67GVp+p4UWu0v9ZjpzR+VXbKZlkZyqJoF3m8Ext26NMhMfM7SNH2hcSbbmxE6g1CyTHynmiob5ercZ4tUhWKZEOHiRWIpBZyVAdMW6pVsp7QE10Uzj/up9BDZ9f6UuNmp0hb6jQn/b5cSpYT5nYxYZHZBCgI+iytUjpcb9AUNx261ZqAUs/nSfldGgfdR5gI+BZkFWp7S20Q5G0QoJU9hIdo+3TIAtH3E9JKlOz1hArPaJs4aOFEexKnxQN+HcskX6e6xomucYzn0ZqV76I3GgzmvsquPg7GKoGxdDDWKjCWDsZaBGMtg6mnzqx/hfOoBMfS4Vir4Fg6HGsRzuNr4CTvVGqmzIfaiWpxVH6rXoNOi4elIqd8DXBudt/KvOCK6Im9OpCIAiee1yDBoMFHeDrx6dAYR9SOYoUCZo/xRZjIYokTGS98W72oQlIV9T95vU23OyUiqoHdsyAwe5vbrWYr+cDyop0ttivZ57C3+Qf6cKY+DbjjkTg+b7cm/AJvWc4cj8qqPY3phDhjMqTnuAwIhnchkn6QUEPJANwwwj8ctYlUPyGIH8eXfh81Fdh4cU8JV+2dT7n7wwX+QJlMOQ2c1JE79YCHoH5vwYBF1OHeJS6IEzHECs6IYCE43gFVTEJ7MeTlxanVbLea7aPH209/ztJxt/J15buKUWlXvq88rbysHFZOKs7aX+t31jfW763/vVHd2Nq4n6revpWduV8pfTa++Qd4TfOF</latexit> <latexit sha1_base64="yU/9iixVMQ3qdvnH2D7BsyYnghU=">AAAOYnictVfdbxtFEHcLhWKSNKGP8DAQOblrbcu+VgJRWSq0lKI0IamSNFIuttbnPXvr+3Dv1q2jzf6TvPHEC38Is/fh27OdkgewlHhvdnbmNzO/mT33Jx6Leav1563bn3x657PP735R/XJtfePe5tZXp3E4jRx64oReGJ31SUw9FtATzrhHzyYRJX7fo2/642dq/817GsUsDI755YRe+GQYMJc5hKOot7U2q9k+4SOHeOK5hJ0O2AKMRNR3xUx2hcFMWYdccplJTLBlT7BOG58P1L4NxSHYsVmQPffFa1R5jrqBLNmBFTrhlEtZrbk/rjgLdsSGI06iKPxwzTl7RLhwpWE7g5A/AZuPKCcmoiGTSRTOwE13TITB6YyLuMmbCfZqDeZntdAfyNVGSipmXYu8+wDsIOR5ZGlWEZiAsx6HJGcc7CF9By1ZQgGQ6Ajea+NGsrCUhsIbZ4Kx0sI8xMwvzB8UkH0tv3vSRLf+FL125sJf5DnCuFBV9o0kDRi5E743UJr62MXC4u7CiWzrAhpLpkrPqVIHxgaa47tmEyEk6VN5UjimwQC5SLlIxVIkxyNfkGjop0V2I+KItsS4MNCpX3CsCPlVEfJlQdC0fsvcnZfQhIdge9gaA1LYeo220u1qLScVxuIqxFflQtf1mmZJXKACehgbK0/h85lqGo+63ACtTApUzIY+6YkAD1hyvvdbTnmzKxptLTLsnYbmG+1mpcwDOL1pAP8f2I9a7h5jj2NHlYj866E0XLgqJRXjGhuzOsx2nxSKL+fxuthuV3pQK22mSpx5A4otUraeicdypZdmtaY99+Zs3f/pUC7wuVBbQWrVN144hIlWwqsiH/WSV/R5Y13E0Jh3jFYNbItjEHZyPYiIDmRey6KUWTSJ0WKFzLpZgXVfKjwNRBprnoQB5f+p97mzgzRi5cuyJyxnf0LTDhwddY/zAQsfRjSidZBwtHTpHCgK+DSGd+pC8vHKxXV67AWJObAguz0hdEHadhaJMj9vBoVUIV6FNkMwjVkwhH3CIzbTbL6ivk+a6oJgAS/1jH6p7KKZyYjhKCyxt0ixLKSKlemM67GVp+p4UWu0v9ZjpzR+VXbKZlkZyqJoF3m8Ext26NMhMfM7SNH2hcSbbmxE6g1CyTHynmiob5ercZ4tUhWKZEOHiRWIpBZyVAdMW6pVsp7QE10Uzj/up9BDZ9f6UuNmp0hb6jQn/b5cSpYT5nYxYZHZBCgI+iytUjpcb9AUNx261ZqAUs/nSfldGgfdR5gI+BZkFWp7S20Q5G0QoJU9hIdo+3TIAtH3E9JKlOz1hArPaJs4aOFEexKnxQN+HcskX6e6xomucYzn0ZqV76I3GgzmvsquPg7GKoGxdDDWKjCWDsZaBGMtg6mnzqx/hfOoBMfS4Vir4Fg6HGsRzuNr4CTvVGqmzIfaiWpxVH6rXoNOi4elIqd8DXBudt/KvOCK6Im9OpCIAiee1yDBoMFHeDrx6dAYR9SOYoUCZo/xRZjIYokTGS98W72oQlIV9T95vU23OyUiqoHdsyAwe5vbrWYr+cDyop0ttivZ57C3+Qf6cKY+DbjjkTg+b7cm/AJvWc4cj8qqPY3phDhjMqTnuAwIhnchkn6QUEPJANwwwj8ctYlUPyGIH8eXfh81Fdh4cU8JV+2dT7n7wwX+QJlMOQ2c1JE79YCHoH5vwYBF1OHeJS6IEzHECs6IYCE43gFVTEJ7MeTlxanVbLea7aPH209/ztJxt/J15buKUWlXvq88rbysHFZOKs7aX+t31jfW763/vVHd2Nq4n6revpWduV8pfTa++Qd4TfOF</latexit> dense block diagonal Identity + low rank update 1 LEVEL EXAMPLE: K =  A11 UV T V UT A22 =  A11 0 0 A22  In 2 A 1 11 UV T A 1 22 V UT In 2 <latexit sha1_base64="Bgh98nRQoaB6UbEZ6fUdPjm6m4E=">AAAPRHictVdbc9tEFHbLrRgSWnjk5UDHiVRsj6V2BoaOZ1paSjtpQ9KJ3QxRrFnLK1u1Lq60bpNR9sfxwg/gjV/ACw8wDK8MZ3clS7KdkAfwTOLds+fyneuuhzPfS1in88uVq2+9/c677117v/7BhxubH12/8XE/ieaxQ3tO5Efx4ZAk1PdC2mMe8+nhLKYkGPr0xXD6QJy/eE3jxIvCA3Y6o8cBGYee6zmEIcm+sfFDwwoImzjETx9y2OqClYImSUM3PeGDVPN03oSccppRdLC4nXpdA/e74tyCQgi2LC/M9sP0ObI8RN6QV/TAGp5ozjivN9yv18iCFXvjCSNxHL05R86aEJa6XLOcUcTugsUmlBEd0ZDZLI5OwFUnOsJg9ISlSZu1JfZ6AxayJddv8fVKKix6s+T54BZYYcRyz1RUEVgKhzYDGTMG1pi+gg6voACQPCmzDTyQC1NwCLxJRpgKLoxD4gWF+t0CclCK7w7X0WwwR6vdBfFbfoQwjkWWA02GAT13otcaUpWNbUwsni5JZEfH0FpRVdkrpi5MNVTHtvU2QpDhE3ESOObhCGuRslSReSrF4yAl8ThQSXZj4qQGR7/Q0XlQ1Fjh8tPC5dOiQFX+Vmt3kUIdvgDLx9YYkULXc9SljuuNvKjQF1cgPqsmulnOaRbEpVJAC1NtrRTuD0XT+NRlGpTSJEAl3jggdhqigMkXZ0/yktcHacsoeYa90yrZRr1ZKnMH+pd14P8De6HmwQH2OHZUpZC/2+OaC2eVoKJfU+2kCSfbdwvGxwt/XWy3s7JTa3UqJub5I4otUtWekad8rZV2vVHa24tqfXZ/jy/Vc8G2pqhF3/jRGGalFJ4V8WhWrKLNS/MihtaiY0rZwLY4gNSS10Ma0xHPc1mkMvNGKi1WWFmXS3DZlnCvBEL5mgdhRNl/an1hbFd5LGyZ1szLq1+WaRf29wcH+YCFNxMa0yZw2F+5dHZFCQQ0gVfiQgrwysW1EntEEgZemN2eELnALSvzRKhfNINAKhCvQ5shmCdeOIZnhMXeSUnnUxoEpC0uCC9klZ4pXyrbqGY28XAUVqq3CDEvqKIq1YyzvbVSTbyoS2V/rsVuZfyK6FTVelUoy6RtrOOtRLOigI6Jnt9BomwfcbzpplosXhCCjp7baUt8u0yM82yhWCgWGxqUWiDmJZfjJmDYFFdFuyxPNFEYv9hOwYfGzrUlxs1WETZlNC/6Z3wlWE6U68WAxXoboCjQBypLarheoikuO3TrjRQqPZ8H5Xuu7Q5uYyDgM+B1aOystEGYt0GIWnYQHqId0rEXpsNAFi1Hyo6dCvc0Q8dBC73SLu0XG/w64DJe/TJHr8xxgPKozcxP0RoNRwtbVVMXgzErYMwyGHMdGLMMxlwGY66CaSpj5r/CuV2BY5bhmOvgmGU45jKcO+fAkW8qMVMWQ60nWhyZX4pnUL/YrCRZ1WuIc3PwkucJF4Uu9TWBxBQY8f0WCUctNkFpadOhiRhRW6IsBDJrii9hwosljmS88S3xUgWZFvFfvm/VcbdSiWJi2yaEel3W2VIo6/dRgSFj2MdQYKj6PRkSpJsmr1frpHu+eEfIds4TXBZ7Ypeiw7kSMww1THIkSpN632SoluSqVuzrNzvtjvzA6sLIFjdr2WfPvv4zBtGZBzRkjk+S5MjozNgxviOY5/gUtc8TOiPOlIzpES5Dggk8TmXHc2ggZQRuFOMfXiaSWpZISZAkp8EQOUU2kuUzQVx3djRn7lfH+BNsNmc0dJQhd+4Di0D8ooSRF1OH+ae4IE7sIVZwJgSDwvCWq2MQjGWXVxd9s2102sb+nZv3vsnCca32ae3zmlYzal/W7tUe1/ZqvZqz8ePGrxu/b/yx+dPmb5t/bv6lWK9eyWQ+qVU+m3//A1GtRRE=</latexit> <latexit sha1_base64="Bgh98nRQoaB6UbEZ6fUdPjm6m4E=">AAAPRHictVdbc9tEFHbLrRgSWnjk5UDHiVRsj6V2BoaOZ1paSjtpQ9KJ3QxRrFnLK1u1Lq60bpNR9sfxwg/gjV/ACw8wDK8MZ3clS7KdkAfwTOLds+fyneuuhzPfS1in88uVq2+9/c677117v/7BhxubH12/8XE/ieaxQ3tO5Efx4ZAk1PdC2mMe8+nhLKYkGPr0xXD6QJy/eE3jxIvCA3Y6o8cBGYee6zmEIcm+sfFDwwoImzjETx9y2OqClYImSUM3PeGDVPN03oSccppRdLC4nXpdA/e74tyCQgi2LC/M9sP0ObI8RN6QV/TAGp5ozjivN9yv18iCFXvjCSNxHL05R86aEJa6XLOcUcTugsUmlBEd0ZDZLI5OwFUnOsJg9ISlSZu1JfZ6AxayJddv8fVKKix6s+T54BZYYcRyz1RUEVgKhzYDGTMG1pi+gg6voACQPCmzDTyQC1NwCLxJRpgKLoxD4gWF+t0CclCK7w7X0WwwR6vdBfFbfoQwjkWWA02GAT13otcaUpWNbUwsni5JZEfH0FpRVdkrpi5MNVTHtvU2QpDhE3ESOObhCGuRslSReSrF4yAl8ThQSXZj4qQGR7/Q0XlQ1Fjh8tPC5dOiQFX+Vmt3kUIdvgDLx9YYkULXc9SljuuNvKjQF1cgPqsmulnOaRbEpVJAC1NtrRTuD0XT+NRlGpTSJEAl3jggdhqigMkXZ0/yktcHacsoeYa90yrZRr1ZKnMH+pd14P8De6HmwQH2OHZUpZC/2+OaC2eVoKJfU+2kCSfbdwvGxwt/XWy3s7JTa3UqJub5I4otUtWekad8rZV2vVHa24tqfXZ/jy/Vc8G2pqhF3/jRGGalFJ4V8WhWrKLNS/MihtaiY0rZwLY4gNSS10Ma0xHPc1mkMvNGKi1WWFmXS3DZlnCvBEL5mgdhRNl/an1hbFd5LGyZ1szLq1+WaRf29wcH+YCFNxMa0yZw2F+5dHZFCQQ0gVfiQgrwysW1EntEEgZemN2eELnALSvzRKhfNINAKhCvQ5shmCdeOIZnhMXeSUnnUxoEpC0uCC9klZ4pXyrbqGY28XAUVqq3CDEvqKIq1YyzvbVSTbyoS2V/rsVuZfyK6FTVelUoy6RtrOOtRLOigI6Jnt9BomwfcbzpplosXhCCjp7baUt8u0yM82yhWCgWGxqUWiDmJZfjJmDYFFdFuyxPNFEYv9hOwYfGzrUlxs1WETZlNC/6Z3wlWE6U68WAxXoboCjQBypLarheoikuO3TrjRQqPZ8H5Xuu7Q5uYyDgM+B1aOystEGYt0GIWnYQHqId0rEXpsNAFi1Hyo6dCvc0Q8dBC73SLu0XG/w64DJe/TJHr8xxgPKozcxP0RoNRwtbVVMXgzErYMwyGHMdGLMMxlwGY66CaSpj5r/CuV2BY5bhmOvgmGU45jKcO+fAkW8qMVMWQ60nWhyZX4pnUL/YrCRZ1WuIc3PwkucJF4Uu9TWBxBQY8f0WCUctNkFpadOhiRhRW6IsBDJrii9hwosljmS88S3xUgWZFvFfvm/VcbdSiWJi2yaEel3W2VIo6/dRgSFj2MdQYKj6PRkSpJsmr1frpHu+eEfIds4TXBZ7Ypeiw7kSMww1THIkSpN632SoluSqVuzrNzvtjvzA6sLIFjdr2WfPvv4zBtGZBzRkjk+S5MjozNgxviOY5/gUtc8TOiPOlIzpES5Dggk8TmXHc2ggZQRuFOMfXiaSWpZISZAkp8EQOUU2kuUzQVx3djRn7lfH+BNsNmc0dJQhd+4Di0D8ooSRF1OH+ae4IE7sIVZwJgSDwvCWq2MQjGWXVxd9s2102sb+nZv3vsnCca32ae3zmlYzal/W7tUe1/ZqvZqz8ePGrxu/b/yx+dPmb5t/bv6lWK9eyWQ+qVU+m3//A1GtRRE=</latexit> <latexit sha1_base64="Bgh98nRQoaB6UbEZ6fUdPjm6m4E=">AAAPRHictVdbc9tEFHbLrRgSWnjk5UDHiVRsj6V2BoaOZ1paSjtpQ9KJ3QxRrFnLK1u1Lq60bpNR9sfxwg/gjV/ACw8wDK8MZ3clS7KdkAfwTOLds+fyneuuhzPfS1in88uVq2+9/c677117v/7BhxubH12/8XE/ieaxQ3tO5Efx4ZAk1PdC2mMe8+nhLKYkGPr0xXD6QJy/eE3jxIvCA3Y6o8cBGYee6zmEIcm+sfFDwwoImzjETx9y2OqClYImSUM3PeGDVPN03oSccppRdLC4nXpdA/e74tyCQgi2LC/M9sP0ObI8RN6QV/TAGp5ozjivN9yv18iCFXvjCSNxHL05R86aEJa6XLOcUcTugsUmlBEd0ZDZLI5OwFUnOsJg9ISlSZu1JfZ6AxayJddv8fVKKix6s+T54BZYYcRyz1RUEVgKhzYDGTMG1pi+gg6voACQPCmzDTyQC1NwCLxJRpgKLoxD4gWF+t0CclCK7w7X0WwwR6vdBfFbfoQwjkWWA02GAT13otcaUpWNbUwsni5JZEfH0FpRVdkrpi5MNVTHtvU2QpDhE3ESOObhCGuRslSReSrF4yAl8ThQSXZj4qQGR7/Q0XlQ1Fjh8tPC5dOiQFX+Vmt3kUIdvgDLx9YYkULXc9SljuuNvKjQF1cgPqsmulnOaRbEpVJAC1NtrRTuD0XT+NRlGpTSJEAl3jggdhqigMkXZ0/yktcHacsoeYa90yrZRr1ZKnMH+pd14P8De6HmwQH2OHZUpZC/2+OaC2eVoKJfU+2kCSfbdwvGxwt/XWy3s7JTa3UqJub5I4otUtWekad8rZV2vVHa24tqfXZ/jy/Vc8G2pqhF3/jRGGalFJ4V8WhWrKLNS/MihtaiY0rZwLY4gNSS10Ma0xHPc1mkMvNGKi1WWFmXS3DZlnCvBEL5mgdhRNl/an1hbFd5LGyZ1szLq1+WaRf29wcH+YCFNxMa0yZw2F+5dHZFCQQ0gVfiQgrwysW1EntEEgZemN2eELnALSvzRKhfNINAKhCvQ5shmCdeOIZnhMXeSUnnUxoEpC0uCC9klZ4pXyrbqGY28XAUVqq3CDEvqKIq1YyzvbVSTbyoS2V/rsVuZfyK6FTVelUoy6RtrOOtRLOigI6Jnt9BomwfcbzpplosXhCCjp7baUt8u0yM82yhWCgWGxqUWiDmJZfjJmDYFFdFuyxPNFEYv9hOwYfGzrUlxs1WETZlNC/6Z3wlWE6U68WAxXoboCjQBypLarheoikuO3TrjRQqPZ8H5Xuu7Q5uYyDgM+B1aOystEGYt0GIWnYQHqId0rEXpsNAFi1Hyo6dCvc0Q8dBC73SLu0XG/w64DJe/TJHr8xxgPKozcxP0RoNRwtbVVMXgzErYMwyGHMdGLMMxlwGY66CaSpj5r/CuV2BY5bhmOvgmGU45jKcO+fAkW8qMVMWQ60nWhyZX4pnUL/YrCRZ1WuIc3PwkucJF4Uu9TWBxBQY8f0WCUctNkFpadOhiRhRW6IsBDJrii9hwosljmS88S3xUgWZFvFfvm/VcbdSiWJi2yaEel3W2VIo6/dRgSFj2MdQYKj6PRkSpJsmr1frpHu+eEfIds4TXBZ7Ypeiw7kSMww1THIkSpN632SoluSqVuzrNzvtjvzA6sLIFjdr2WfPvv4zBtGZBzRkjk+S5MjozNgxviOY5/gUtc8TOiPOlIzpES5Dggk8TmXHc2ggZQRuFOMfXiaSWpZISZAkp8EQOUU2kuUzQVx3djRn7lfH+BNsNmc0dJQhd+4Di0D8ooSRF1OH+ae4IE7sIVZwJgSDwvCWq2MQjGWXVxd9s2102sb+nZv3vsnCca32ae3zmlYzal/W7tUe1/ZqvZqz8ePGrxu/b/yx+dPmb5t/bv6lWK9eyWQ+qVU+m3//A1GtRRE=</latexit> 2 LEVEL EXAMPLE: K = 2 6 6 4 A11 0 0 0 0 A22 0 0 0 0 A22 0 0 0 0 A44 3 7 7 5 2 6 6 6 6 6 4 In 4 A 1 11 U(2) 1 V (2) 1 T 0 0 A 1 22 V (2) 1 U(2) 1 T In 4 0 0 0 0 In 4 A 1 11 U(2) 2 V (2) 2 T 0 0 A 1 11 V (2) 2 U(2) 2 T In 4 3 7 7 7 7 7 5 <latexit sha1_base64="fGeCveRs6ifmMFgxKkIVASjwgS8=">AAARg3ictVhbbxpHFCZp06b0Emgf+3LaCHtJgMLGUqtGSLGSpomcuHYExJLXoGGZhQ17IbtDYms9P6R/q2/9Nz0zu8vOLmBbVYtkM3PmXL5znbHHC8cOWbv9963bn3x657PP735R/vKrr7+5V6l+Owj9ZWDSvuk7fnAyJiF1bI/2mc0cerIIKHHHDn07nj8V528/0CC0fa/HLhb0zCVTz7ZskzAkjar3/qwZLmEzkzjRMw47XTAi0CRpbEXnfBhpdp03IKVcJJQ6GHwU2d0O7g/FuQGZEOwYtpfsx9EbZHmGvB7P6YENPP6ScV6uWb9ukAUjsKczRoLA/7hFzpgRFllcM8yJzx6DwWaUkTqiIYtF4J+DFZ/UEQaj5ywKW6wlsZdrsJJVXH/ANyvJsdQbiufDB2B4Pks9i6OKwCI4GTGQMWNgTOl7aPMcCgDJE7FRBw/kQhccAm+YEOaCC+MQ2m6m/jCD7CrxPeB1NOsu0Wp3RfyNnyKMM5FlV5NhQM9N/4OG1NjGLiYWTwsSydEZNNdU5fYxUxfmGqpju/UWQpDhE3ESOJbeBGuRsigm80iKB25EgqkbJ9kKiBl1OPqFji7drMYyl19lLl9kBRrnb712Vymsw0MwHGyNCcl0vUFd8XG5lhYV+mIJxJf5RDfUnCZBLJQCWphrG6VwfyKaxqEW00BJkwAV2lOXjCIPBXS+OnuZlnx9GDU7imfYO03FNupNUpk6MLipA/8f2Cs1D3vY49hRuUL+/YhrFlzmgop+zbXzBpzvPs4YX6z8tbDdLlWnNuqMmZjtTCi2SF57Qp7zjVZa5ZqyH62q9fX+ES/Uc8a2oahF3zj+FBZKCi+zeDRyVtHmjXkRQ3PVMUo2sC16EBnyeogCOuFpLrNUJt5IpdkKK+tmCVZtCfcUELGvaRAmlP2n1lfGDmOPhS3dWNhp9csy7cLx8bCXDlj4OKMBbQCH47VL51CUgEtDeC8uJBevXFzHYs9JyMD2ktsTfAu4YSSeCPWrZhBIBeJNaBMEy9D2pvCasMA+V3S+oq5LWuKCsD2W6xn1UtlFNYuZjaMwV71ZiHlGFVUZz7iRvVGqgRe1UvZbLXZz41dEJ6/WzkMpknaxjndCzfBdOiX19A4SZfuc40031wLxghB09HwUNcW3xcQ4TxYxC8ViQ4NSCwRccTloAIYt5sppl+WJJjLjV9vJ+NDYVlti3OxkYYuNpkX/mq8Fy/RTvRiwoN4CyAr0aZyleLjeoCluOnTLtQhyPZ8G5Q+uHQ4fYSDgB+BlqB2stYGXtoGHWg4QHqId06ntRWNXFi1HysEoEu5pnToOWugru2iQbfCrx2W8BipHX+XooTxq09NTtEa9ycpW3tTVYPQcGF0Fo28Co6tg9CIYfR1MIzamXwvnUQ6OrsLRN8HRVTh6Ec7eFjjyTSVmymqo9UWLI/M78QwaZJu1JMf16uHcHL7jacJFoUt9DSABBUYcp0m8SZPNUFraNGkoRtSOKAuBzJjjS5jwbIkjGW98Q7xUQaZF/Jbv2/i4m6tEMbFHOnj1LYVWru2jjo4M4wCjIaPVl2HBA13na8XSvUpHWypob5deE305UiLFeSzZ6cSDZQUp1hY/dhJ4BcGiJelt0ZqCM/1B7RncIrVwolCTk709Xs7bLZpUYe4V/buik3oqlpz7V7bWurk1h65FtKWZeoWorESu7q6CufK/K4ikHq6dgvuxeTVQgvn6ehlV7rdbbfmB9UUnWdwvJZ+jUeUv7EFz6VKPmQ4Jw9NOe8HO8BnKbNOh6OcypAtizsmUnuLSI9j/Z5G8MDjUkDIByw/wB98ikqpKRMQNwwt3jJyimcPimSBuOjtdMuuXM/wLfrFk1DNjQ9bSAeaD+IcETOyAmsy5wAUxAxuxgjkjGBaGjyQRhE7R5fXFQG912q3O8d79J3tJOO6Wvi/9WNJKndLPpSelF6WjUr9kVkqVncpPlXb1TvVhVa8mvLdvJTLflXKfavcfDMnwSA==</latexit> <latexit sha1_base64="fGeCveRs6ifmMFgxKkIVASjwgS8=">AAARg3ictVhbbxpHFCZp06b0Emgf+3LaCHtJgMLGUqtGSLGSpomcuHYExJLXoGGZhQ17IbtDYms9P6R/q2/9Nz0zu8vOLmBbVYtkM3PmXL5znbHHC8cOWbv9963bn3x657PP735R/vKrr7+5V6l+Owj9ZWDSvuk7fnAyJiF1bI/2mc0cerIIKHHHDn07nj8V528/0CC0fa/HLhb0zCVTz7ZskzAkjar3/qwZLmEzkzjRMw47XTAi0CRpbEXnfBhpdp03IKVcJJQ6GHwU2d0O7g/FuQGZEOwYtpfsx9EbZHmGvB7P6YENPP6ScV6uWb9ukAUjsKczRoLA/7hFzpgRFllcM8yJzx6DwWaUkTqiIYtF4J+DFZ/UEQaj5ywKW6wlsZdrsJJVXH/ANyvJsdQbiufDB2B4Pks9i6OKwCI4GTGQMWNgTOl7aPMcCgDJE7FRBw/kQhccAm+YEOaCC+MQ2m6m/jCD7CrxPeB1NOsu0Wp3RfyNnyKMM5FlV5NhQM9N/4OG1NjGLiYWTwsSydEZNNdU5fYxUxfmGqpju/UWQpDhE3ESOJbeBGuRsigm80iKB25EgqkbJ9kKiBl1OPqFji7drMYyl19lLl9kBRrnb712Vymsw0MwHGyNCcl0vUFd8XG5lhYV+mIJxJf5RDfUnCZBLJQCWphrG6VwfyKaxqEW00BJkwAV2lOXjCIPBXS+OnuZlnx9GDU7imfYO03FNupNUpk6MLipA/8f2Cs1D3vY49hRuUL+/YhrFlzmgop+zbXzBpzvPs4YX6z8tbDdLlWnNuqMmZjtTCi2SF57Qp7zjVZa5ZqyH62q9fX+ES/Uc8a2oahF3zj+FBZKCi+zeDRyVtHmjXkRQ3PVMUo2sC16EBnyeogCOuFpLrNUJt5IpdkKK+tmCVZtCfcUELGvaRAmlP2n1lfGDmOPhS3dWNhp9csy7cLx8bCXDlj4OKMBbQCH47VL51CUgEtDeC8uJBevXFzHYs9JyMD2ktsTfAu4YSSeCPWrZhBIBeJNaBMEy9D2pvCasMA+V3S+oq5LWuKCsD2W6xn1UtlFNYuZjaMwV71ZiHlGFVUZz7iRvVGqgRe1UvZbLXZz41dEJ6/WzkMpknaxjndCzfBdOiX19A4SZfuc40031wLxghB09HwUNcW3xcQ4TxYxC8ViQ4NSCwRccTloAIYt5sppl+WJJjLjV9vJ+NDYVlti3OxkYYuNpkX/mq8Fy/RTvRiwoN4CyAr0aZyleLjeoCluOnTLtQhyPZ8G5Q+uHQ4fYSDgB+BlqB2stYGXtoGHWg4QHqId06ntRWNXFi1HysEoEu5pnToOWugru2iQbfCrx2W8BipHX+XooTxq09NTtEa9ycpW3tTVYPQcGF0Fo28Co6tg9CIYfR1MIzamXwvnUQ6OrsLRN8HRVTh6Ec7eFjjyTSVmymqo9UWLI/M78QwaZJu1JMf16uHcHL7jacJFoUt9DSABBUYcp0m8SZPNUFraNGkoRtSOKAuBzJjjS5jwbIkjGW98Q7xUQaZF/Jbv2/i4m6tEMbFHOnj1LYVWru2jjo4M4wCjIaPVl2HBA13na8XSvUpHWypob5deE305UiLFeSzZ6cSDZQUp1hY/dhJ4BcGiJelt0ZqCM/1B7RncIrVwolCTk709Xs7bLZpUYe4V/buik3oqlpz7V7bWurk1h65FtKWZeoWorESu7q6CufK/K4ikHq6dgvuxeTVQgvn6ehlV7rdbbfmB9UUnWdwvJZ+jUeUv7EFz6VKPmQ4Jw9NOe8HO8BnKbNOh6OcypAtizsmUnuLSI9j/Z5G8MDjUkDIByw/wB98ikqpKRMQNwwt3jJyimcPimSBuOjtdMuuXM/wLfrFk1DNjQ9bSAeaD+IcETOyAmsy5wAUxAxuxgjkjGBaGjyQRhE7R5fXFQG912q3O8d79J3tJOO6Wvi/9WNJKndLPpSelF6WjUr9kVkqVncpPlXb1TvVhVa8mvLdvJTLflXKfavcfDMnwSA==</latexit> <latexit sha1_base64="fGeCveRs6ifmMFgxKkIVASjwgS8=">AAARg3ictVhbbxpHFCZp06b0Emgf+3LaCHtJgMLGUqtGSLGSpomcuHYExJLXoGGZhQ17IbtDYms9P6R/q2/9Nz0zu8vOLmBbVYtkM3PmXL5znbHHC8cOWbv9963bn3x657PP735R/vKrr7+5V6l+Owj9ZWDSvuk7fnAyJiF1bI/2mc0cerIIKHHHDn07nj8V528/0CC0fa/HLhb0zCVTz7ZskzAkjar3/qwZLmEzkzjRMw47XTAi0CRpbEXnfBhpdp03IKVcJJQ6GHwU2d0O7g/FuQGZEOwYtpfsx9EbZHmGvB7P6YENPP6ScV6uWb9ukAUjsKczRoLA/7hFzpgRFllcM8yJzx6DwWaUkTqiIYtF4J+DFZ/UEQaj5ywKW6wlsZdrsJJVXH/ANyvJsdQbiufDB2B4Pks9i6OKwCI4GTGQMWNgTOl7aPMcCgDJE7FRBw/kQhccAm+YEOaCC+MQ2m6m/jCD7CrxPeB1NOsu0Wp3RfyNnyKMM5FlV5NhQM9N/4OG1NjGLiYWTwsSydEZNNdU5fYxUxfmGqpju/UWQpDhE3ESOJbeBGuRsigm80iKB25EgqkbJ9kKiBl1OPqFji7drMYyl19lLl9kBRrnb712Vymsw0MwHGyNCcl0vUFd8XG5lhYV+mIJxJf5RDfUnCZBLJQCWphrG6VwfyKaxqEW00BJkwAV2lOXjCIPBXS+OnuZlnx9GDU7imfYO03FNupNUpk6MLipA/8f2Cs1D3vY49hRuUL+/YhrFlzmgop+zbXzBpzvPs4YX6z8tbDdLlWnNuqMmZjtTCi2SF57Qp7zjVZa5ZqyH62q9fX+ES/Uc8a2oahF3zj+FBZKCi+zeDRyVtHmjXkRQ3PVMUo2sC16EBnyeogCOuFpLrNUJt5IpdkKK+tmCVZtCfcUELGvaRAmlP2n1lfGDmOPhS3dWNhp9csy7cLx8bCXDlj4OKMBbQCH47VL51CUgEtDeC8uJBevXFzHYs9JyMD2ktsTfAu4YSSeCPWrZhBIBeJNaBMEy9D2pvCasMA+V3S+oq5LWuKCsD2W6xn1UtlFNYuZjaMwV71ZiHlGFVUZz7iRvVGqgRe1UvZbLXZz41dEJ6/WzkMpknaxjndCzfBdOiX19A4SZfuc40031wLxghB09HwUNcW3xcQ4TxYxC8ViQ4NSCwRccTloAIYt5sppl+WJJjLjV9vJ+NDYVlti3OxkYYuNpkX/mq8Fy/RTvRiwoN4CyAr0aZyleLjeoCluOnTLtQhyPZ8G5Q+uHQ4fYSDgB+BlqB2stYGXtoGHWg4QHqId06ntRWNXFi1HysEoEu5pnToOWugru2iQbfCrx2W8BipHX+XooTxq09NTtEa9ycpW3tTVYPQcGF0Fo28Co6tg9CIYfR1MIzamXwvnUQ6OrsLRN8HRVTh6Ec7eFjjyTSVmymqo9UWLI/M78QwaZJu1JMf16uHcHL7jacJFoUt9DSABBUYcp0m8SZPNUFraNGkoRtSOKAuBzJjjS5jwbIkjGW98Q7xUQaZF/Jbv2/i4m6tEMbFHOnj1LYVWru2jjo4M4wCjIaPVl2HBA13na8XSvUpHWypob5deE305UiLFeSzZ6cSDZQUp1hY/dhJ4BcGiJelt0ZqCM/1B7RncIrVwolCTk709Xs7bLZpUYe4V/buik3oqlpz7V7bWurk1h65FtKWZeoWorESu7q6CufK/K4ikHq6dgvuxeTVQgvn6ehlV7rdbbfmB9UUnWdwvJZ+jUeUv7EFz6VKPmQ4Jw9NOe8HO8BnKbNOh6OcypAtizsmUnuLSI9j/Z5G8MDjUkDIByw/wB98ikqpKRMQNwwt3jJyimcPimSBuOjtdMuuXM/wLfrFk1DNjQ9bSAeaD+IcETOyAmsy5wAUxAxuxgjkjGBaGjyQRhE7R5fXFQG912q3O8d79J3tJOO6Wvi/9WNJKndLPpSelF6WjUr9kVkqVncpPlXb1TvVhVa8mvLdvJTLflXKfavcfDMnwSA==</latexit> 2 4 In 2 A 1 1 U(1) 1 V (1) 1 T A 1 2 V (1) 1 U(1) 1 T In 2 3 5 <latexit sha1_base64="q9VJ/c2tYCqXoLqw631swrZpcEQ=">AAARnXictVjpbxpHFCfpldIj0H5rP/S1EfaSAGI3llo1QkqUo0mduHYExJLXRsMyCxv2ILtDYms9f1X/k37rf9M3e19gV2qRbGbevOP3zhl7ujINj/X7f9+4+dHHn3z62a3P6198+dXXtxvNb8aes3Y1OtIc03GPp8SjpmHTETOYSY9XLiXW1KRvpsvH4vzNe+p6hmMP2cWKnlpkbhu6oRGGpEnz9p8t1SJsoRHTf8JhZwCqD1JAmur+OT/zJaPNOxBTLiJKG1Q+8Y2BjPsDca5CKgQ7qmFH+6n/GlmeIK/Nc3qggsdZM87rLf3XCllQXWO+YMR1nQ8b5NQFYb7OJVWbOewBqGxBGWkjGrJauc456OFJG2Ewes58r8d6AfZ6CxLZjOt3ebWSHEu7k/H87C6otsNiz8KoIjAfjicMgpgxUOf0HfR5DgVAwOOziYwHwUIRHAKvFxGWggvj4BlWqv4ghWxl4rvP22jWWqPVQUJ8yk8QxqnIsiUFYUDPNee9hNTQxi4mFk8LEtHRKXRLqnL7kGkASwnVsd12DyEE4RNxEjjW9gxrkTI/JHM/EHctn7hzK0yy7hLNlzn6hY6urbTGUpdfpi5fpAUa5q9cu0kK23APVBNbY0ZSXa9RV3hcb8VFhb7oAvFlPtGdbE6jIBZKAS0spUop3B+LpjGpziTIpEmA8oy5RSa+jQIKT85exCXfPvO7csYz7J1uxjbqjVIZOzC+rgP/H9itms+G2OPYUblC/u2QSzpc5oKKfi2l8w6c7z5IGZ8n/urYbpdZpyp1hkzMMGcUWySvPSIveaWVXr2V2U+San316JAX6jllqyhq0TemM4dVJoWXaTw6Oato89q8iKGbdEwmG9gWQ/DV4HrwXTrjcS7TVEbeBErTFVbW9RKctSXcy4AIfY2DMKPsP7WeGDsIPRa2FHVlxNUflOkAjo7OhvGAhQ8L6tIOcDgqXToHogQs6sE7cSFZeOXiOhR7RjwGhh3dnuDowFU18kSoT5pBIBWIq9BGCNaeYc/hFWGucZ7R+ZJaFumJC8KwWa5nspfKLqpZLQwchbnqTUPMU6qoynDGTYxKqQ5e1Jmy32hxkBu/Ijp5tUYeSpG0i3W840mqY9E5acd3kCjbZxxvuqXkiheEoKPnE78rvnUmxnm0CFkoFhsaDLSAyzMuux3AsIVcOe1BeaKJ1Ph2OykfGttoS4ybnTRsodG46F/xUrA0J9aLAXPbPYC0QB+HWQqH6zWa4rpDt97yIdfzcVD+4NLB2X0MBPwIvA6t/VIb2HEb2KhlH+Eh2imdG7Y/tYKi5UjZn/jCPUlu46CFUWbnj9MNfg15EK9xlmOU5RiiPGpT4lO0Ru1ZYitvajsYJQdGyYJRqsAoWTBKEYxSBtMJjSlXwrmfg6Nk4ShVcJQsHKUIZ28DnOBNJWZKMtRGosWR+a14Bo3TTSnJYb3aODfP3vI44aLQA30dIC4FRkyzS+xZly1QOrCpUU+MqB1RFgKZusSXMOHpEkcy3viqeKlCkBbxO3jfhseDXCWKiT1RwG5vKLR66xHqkIMwjjEaQbRGQVjwQFF4qVgG23T0AwX9zdIl0ReTTKQ4DyVlORwsCaRQW/jYieAVBMtFfYW7/eQnD7lELhxlydHR3t6/dHSv6OiWlhrmAOUCsbXJyvbKbl2JaUNfDYvBSWS2d1rBXjFoxZhV10ZUGlcNxEehcWTdPBkFa0Up5VFNGnf6vX7wgfJCjhZ3atHncNL4C7tTW1vUZppJPO9E7q/YKT5QmaGZFNWvPboi2pLM6QkubYKT4dQPrhIOLaTMQHdc/MFXSkDNSvjE8rwLa4qcos294pkgVp2drJn+yyn+bb9aM2proSF9bQJzQPyrAmaGSzVmXuCCaK6BWEFbEIwKw+eTCIJcdLm8GCs9ud+Tj/buPNyLwnGr9n3tp5pUk2s/1x7WntcOa6Oa1viu8bDxovF784fm0+bL5kHIevNGJPNtLfdpvvkHLtL48A==</latexit> <latexit sha1_base64="q9VJ/c2tYCqXoLqw631swrZpcEQ=">AAARnXictVjpbxpHFCfpldIj0H5rP/S1EfaSAGI3llo1QkqUo0mduHYExJLXRsMyCxv2ILtDYms9f1X/k37rf9M3e19gV2qRbGbevOP3zhl7ujINj/X7f9+4+dHHn3z62a3P6198+dXXtxvNb8aes3Y1OtIc03GPp8SjpmHTETOYSY9XLiXW1KRvpsvH4vzNe+p6hmMP2cWKnlpkbhu6oRGGpEnz9p8t1SJsoRHTf8JhZwCqD1JAmur+OT/zJaPNOxBTLiJKG1Q+8Y2BjPsDca5CKgQ7qmFH+6n/GlmeIK/Nc3qggsdZM87rLf3XCllQXWO+YMR1nQ8b5NQFYb7OJVWbOewBqGxBGWkjGrJauc456OFJG2Ewes58r8d6AfZ6CxLZjOt3ebWSHEu7k/H87C6otsNiz8KoIjAfjicMgpgxUOf0HfR5DgVAwOOziYwHwUIRHAKvFxGWggvj4BlWqv4ghWxl4rvP22jWWqPVQUJ8yk8QxqnIsiUFYUDPNee9hNTQxi4mFk8LEtHRKXRLqnL7kGkASwnVsd12DyEE4RNxEjjW9gxrkTI/JHM/EHctn7hzK0yy7hLNlzn6hY6urbTGUpdfpi5fpAUa5q9cu0kK23APVBNbY0ZSXa9RV3hcb8VFhb7oAvFlPtGdbE6jIBZKAS0spUop3B+LpjGpziTIpEmA8oy5RSa+jQIKT85exCXfPvO7csYz7J1uxjbqjVIZOzC+rgP/H9itms+G2OPYUblC/u2QSzpc5oKKfi2l8w6c7z5IGZ8n/urYbpdZpyp1hkzMMGcUWySvPSIveaWVXr2V2U+San316JAX6jllqyhq0TemM4dVJoWXaTw6Oato89q8iKGbdEwmG9gWQ/DV4HrwXTrjcS7TVEbeBErTFVbW9RKctSXcy4AIfY2DMKPsP7WeGDsIPRa2FHVlxNUflOkAjo7OhvGAhQ8L6tIOcDgqXToHogQs6sE7cSFZeOXiOhR7RjwGhh3dnuDowFU18kSoT5pBIBWIq9BGCNaeYc/hFWGucZ7R+ZJaFumJC8KwWa5nspfKLqpZLQwchbnqTUPMU6qoynDGTYxKqQ5e1Jmy32hxkBu/Ijp5tUYeSpG0i3W840mqY9E5acd3kCjbZxxvuqXkiheEoKPnE78rvnUmxnm0CFkoFhsaDLSAyzMuux3AsIVcOe1BeaKJ1Ph2OykfGttoS4ybnTRsodG46F/xUrA0J9aLAXPbPYC0QB+HWQqH6zWa4rpDt97yIdfzcVD+4NLB2X0MBPwIvA6t/VIb2HEb2KhlH+Eh2imdG7Y/tYKi5UjZn/jCPUlu46CFUWbnj9MNfg15EK9xlmOU5RiiPGpT4lO0Ru1ZYitvajsYJQdGyYJRqsAoWTBKEYxSBtMJjSlXwrmfg6Nk4ShVcJQsHKUIZ28DnOBNJWZKMtRGosWR+a14Bo3TTSnJYb3aODfP3vI44aLQA30dIC4FRkyzS+xZly1QOrCpUU+MqB1RFgKZusSXMOHpEkcy3viqeKlCkBbxO3jfhseDXCWKiT1RwG5vKLR66xHqkIMwjjEaQbRGQVjwQFF4qVgG23T0AwX9zdIl0ReTTKQ4DyVlORwsCaRQW/jYieAVBMtFfYW7/eQnD7lELhxlydHR3t6/dHSv6OiWlhrmAOUCsbXJyvbKbl2JaUNfDYvBSWS2d1rBXjFoxZhV10ZUGlcNxEehcWTdPBkFa0Up5VFNGnf6vX7wgfJCjhZ3atHncNL4C7tTW1vUZppJPO9E7q/YKT5QmaGZFNWvPboi2pLM6QkubYKT4dQPrhIOLaTMQHdc/MFXSkDNSvjE8rwLa4qcos294pkgVp2drJn+yyn+bb9aM2proSF9bQJzQPyrAmaGSzVmXuCCaK6BWEFbEIwKw+eTCIJcdLm8GCs9ud+Tj/buPNyLwnGr9n3tp5pUk2s/1x7WntcOa6Oa1viu8bDxovF784fm0+bL5kHIevNGJPNtLfdpvvkHLtL48A==</latexit> <latexit sha1_base64="q9VJ/c2tYCqXoLqw631swrZpcEQ=">AAARnXictVjpbxpHFCfpldIj0H5rP/S1EfaSAGI3llo1QkqUo0mduHYExJLXRsMyCxv2ILtDYms9f1X/k37rf9M3e19gV2qRbGbevOP3zhl7ujINj/X7f9+4+dHHn3z62a3P6198+dXXtxvNb8aes3Y1OtIc03GPp8SjpmHTETOYSY9XLiXW1KRvpsvH4vzNe+p6hmMP2cWKnlpkbhu6oRGGpEnz9p8t1SJsoRHTf8JhZwCqD1JAmur+OT/zJaPNOxBTLiJKG1Q+8Y2BjPsDca5CKgQ7qmFH+6n/GlmeIK/Nc3qggsdZM87rLf3XCllQXWO+YMR1nQ8b5NQFYb7OJVWbOewBqGxBGWkjGrJauc456OFJG2Ewes58r8d6AfZ6CxLZjOt3ebWSHEu7k/H87C6otsNiz8KoIjAfjicMgpgxUOf0HfR5DgVAwOOziYwHwUIRHAKvFxGWggvj4BlWqv4ghWxl4rvP22jWWqPVQUJ8yk8QxqnIsiUFYUDPNee9hNTQxi4mFk8LEtHRKXRLqnL7kGkASwnVsd12DyEE4RNxEjjW9gxrkTI/JHM/EHctn7hzK0yy7hLNlzn6hY6urbTGUpdfpi5fpAUa5q9cu0kK23APVBNbY0ZSXa9RV3hcb8VFhb7oAvFlPtGdbE6jIBZKAS0spUop3B+LpjGpziTIpEmA8oy5RSa+jQIKT85exCXfPvO7csYz7J1uxjbqjVIZOzC+rgP/H9itms+G2OPYUblC/u2QSzpc5oKKfi2l8w6c7z5IGZ8n/urYbpdZpyp1hkzMMGcUWySvPSIveaWVXr2V2U+San316JAX6jllqyhq0TemM4dVJoWXaTw6Oato89q8iKGbdEwmG9gWQ/DV4HrwXTrjcS7TVEbeBErTFVbW9RKctSXcy4AIfY2DMKPsP7WeGDsIPRa2FHVlxNUflOkAjo7OhvGAhQ8L6tIOcDgqXToHogQs6sE7cSFZeOXiOhR7RjwGhh3dnuDowFU18kSoT5pBIBWIq9BGCNaeYc/hFWGucZ7R+ZJaFumJC8KwWa5nspfKLqpZLQwchbnqTUPMU6qoynDGTYxKqQ5e1Jmy32hxkBu/Ijp5tUYeSpG0i3W840mqY9E5acd3kCjbZxxvuqXkiheEoKPnE78rvnUmxnm0CFkoFhsaDLSAyzMuux3AsIVcOe1BeaKJ1Ph2OykfGttoS4ybnTRsodG46F/xUrA0J9aLAXPbPYC0QB+HWQqH6zWa4rpDt97yIdfzcVD+4NLB2X0MBPwIvA6t/VIb2HEb2KhlH+Eh2imdG7Y/tYKi5UjZn/jCPUlu46CFUWbnj9MNfg15EK9xlmOU5RiiPGpT4lO0Ru1ZYitvajsYJQdGyYJRqsAoWTBKEYxSBtMJjSlXwrmfg6Nk4ShVcJQsHKUIZ28DnOBNJWZKMtRGosWR+a14Bo3TTSnJYb3aODfP3vI44aLQA30dIC4FRkyzS+xZly1QOrCpUU+MqB1RFgKZusSXMOHpEkcy3viqeKlCkBbxO3jfhseDXCWKiT1RwG5vKLR66xHqkIMwjjEaQbRGQVjwQFF4qVgG23T0AwX9zdIl0ReTTKQ4DyVlORwsCaRQW/jYieAVBMtFfYW7/eQnD7lELhxlydHR3t6/dHSv6OiWlhrmAOUCsbXJyvbKbl2JaUNfDYvBSWS2d1rBXjFoxZhV10ZUGlcNxEehcWTdPBkFa0Up5VFNGnf6vX7wgfJCjhZ3atHncNL4C7tTW1vUZppJPO9E7q/YKT5QmaGZFNWvPboi2pLM6QkubYKT4dQPrhIOLaTMQHdc/MFXSkDNSvjE8rwLa4qcos294pkgVp2drJn+yyn+bb9aM2proSF9bQJzQPyrAmaGSzVmXuCCaK6BWEFbEIwKw+eTCIJcdLm8GCs9ud+Tj/buPNyLwnGr9n3tp5pUk2s/1x7WntcOa6Oa1viu8bDxovF784fm0+bL5kHIevNGJPNtLfdpvvkHLtL48A==</latexit> A1 = " A11 U(2) 1 V (2) 1 T V (2) 1 U(2) 1 T A22 # , A2 = " A33 U(2) 2 V (2) 2 T V (2) 2 U(2) 2 T A44 # <latexit sha1_base64="fRFjKiIJzPUUlSuQRtPxzdU/g2M=">AAASknictVjbbttGEFXSW6peYrt968u0gWwqlQSJdtEigdoYSdMETlw7kBQDpi2sqKXEiBeFXCU26P2ffk/f+jed5fJOSXaL1oDj5e5czsycmV1kNLdMn7Xbf926/cGHH338yZ1Pq599/sWXdzc2twa+u/B02tddy/VORsSnlunQPjOZRU/mHiX2yKKvR7PH4vz1O+r5puv02OWcntlk4piGqROGW8PNjT9qmk3YVCdW8ITDdhe0AJRwa2QEF/w8UMw6b0C8cxnt1EHjw8DsdvD7UJxrkCrBtmY60fcoeIUiT1DW4Tk7sETGXTDOqzXjwRJd0DxzMmXE89z3K/S0KWGBwRVNH7vsIWhsShmpIxoyn3vuBRjypI4wGL1ggd9irRB7tQaJbib0+3y5kZxIvZGJ/Pw+aI7L4shkVhFYACdDBmHOGGgT+hbaPIcCIJQJ2LCDB+FCFRICrx9tzIQU5sE37dT8YQrZzuT3gNfRrb1Ar91k81d+ijDORJVtJUwDRq677xTclT52sLB4WtCIjs6gWTKV+5ZCXZgpaI7t1FsIIUyfyJPAsXDGyEXKArnNg1DdswPiTWxZZMMjetDhGBcGurBTjqUhv0hDvkwJKutX5m5Swjp8D5qFrTEmqa1XaEseV2sxqTAWQyC+yhe6ka1plMQCFdDDTFmqhd8nomksajAFMmUSoHxzYpNh4KCCypOz5zHl6+dBs5OJDHunmfGNdqNSxgEMbhrA/wd2reXzHvY4dlSOyL8dccWAq1xSMa6ZctGAi52HqeCzJF4D2+0qG9RSm1KImdaYYovkrUfbM77US6tay3wPE7a+3D/iBT6nYktILfrGcicwz5TwKs1HI+cVfd5YFjE0k47JVAPbogeBFl4PgUfHPK5lWsoomtBoukJm3azAWV8ivAwIGWuchDFl/6n3xNmhjFj4UrW5GbM/pGkXjo/Pe/GAhfdT6tEGcDguXTqHggI29eGtuJBsvHJxLdWeEp+B6US3J7gGcE2LIhHmk2YQSAXiZWgjBAvfdCbwkjDPvMjYfEFtm7TEBWE6LNcz2UtlB83MpyaOwhx70xTzdFewUs64oblUq4EXdYb2Kz12c+NXZCdv1sxDKW7tII+3fUVzbToh9fgOErR9yvGmmymeeEGIfYx8GDTFX4OJcR4tpAhFsqHD0Ap4PBOy1wBMm5TKWQ/piS5S5+v9pHLobKUvMW6207RJpzHpX/JSsnQ3tosJ8+otgJSgj2WV5HC9QVPcdOhWawHkej5Oyu9cOTzfxUTAt8CrUDsotYETt4GDVg4QHqId0YnpBCM7JC3HnYNhIMJTOnUctNDPfAWD9AP/9HiYr0FWop+V6KE+WlPjU/RGnXHiK+9qPRg1B0bNglGXgVGzYNQiGLUMpiGdqdfC2c3BUbNw1GVw1CwctQhnbwWc8E0lZkoy1PqixVH4jXgGDdKPUpElXx2cm+dveFxwQfTQXgOIR4ERy2oSZ9xkU9QOferUFyNqW9BCINNm+BImPF3iSMYbXxMvVQjLIv4N37fyuJtjopjYQxWc+gqiVWv7aKMTpnGA2Qiz1Q/Tggeqyktk6a6z0Q4NtFdrl1SfDzOZ4lxqdjpysCSQpDX52IngFRTLpL4m3Hbym4dc2i4cZbejo729fxjoXjHQNS3VywHKJWJtk5X9lcO6FtOKvuoVk5PorO+0gr9/y46IHNeOxH3pH2VXD0chez2bQq/dahFfRCbUv34mrq6WEEgaJj8N0YMqeLzE8e5u4nj99FtdksSxIHA+4OHGvXarHf5AedGJFvcq0c/RcONPHEn6wqYO0y3i+6ed9pyd4aucmbpF0fzCp3Oiz8iEnuLSITgOz4Lw/uRQw50xGK6Hv/g0C3ezGgGxff/SHqGkmG1+8UxsLjs7XTDjp7PAdOYLRh1dOjIWFjAXxP/PwNj0qM6sS1wQ3TMRK+hTgjxg+GYUSegUQy4vBmqr0251jvfuPdqL0nGn8k3lu4pS6VR+rDyqPKscVfoVffPu5g+bP2/+svX11oOt/a3HUvT2rUjnq0ruZ+vF37d2STQ=</latexit> <latexit sha1_base64="fRFjKiIJzPUUlSuQRtPxzdU/g2M=">AAASknictVjbbttGEFXSW6peYrt968u0gWwqlQSJdtEigdoYSdMETlw7kBQDpi2sqKXEiBeFXCU26P2ffk/f+jed5fJOSXaL1oDj5e5czsycmV1kNLdMn7Xbf926/cGHH338yZ1Pq599/sWXdzc2twa+u/B02tddy/VORsSnlunQPjOZRU/mHiX2yKKvR7PH4vz1O+r5puv02OWcntlk4piGqROGW8PNjT9qmk3YVCdW8ITDdhe0AJRwa2QEF/w8UMw6b0C8cxnt1EHjw8DsdvD7UJxrkCrBtmY60fcoeIUiT1DW4Tk7sETGXTDOqzXjwRJd0DxzMmXE89z3K/S0KWGBwRVNH7vsIWhsShmpIxoyn3vuBRjypI4wGL1ggd9irRB7tQaJbib0+3y5kZxIvZGJ/Pw+aI7L4shkVhFYACdDBmHOGGgT+hbaPIcCIJQJ2LCDB+FCFRICrx9tzIQU5sE37dT8YQrZzuT3gNfRrb1Ar91k81d+ijDORJVtJUwDRq677xTclT52sLB4WtCIjs6gWTKV+5ZCXZgpaI7t1FsIIUyfyJPAsXDGyEXKArnNg1DdswPiTWxZZMMjetDhGBcGurBTjqUhv0hDvkwJKutX5m5Swjp8D5qFrTEmqa1XaEseV2sxqTAWQyC+yhe6ka1plMQCFdDDTFmqhd8nomksajAFMmUSoHxzYpNh4KCCypOz5zHl6+dBs5OJDHunmfGNdqNSxgEMbhrA/wd2reXzHvY4dlSOyL8dccWAq1xSMa6ZctGAi52HqeCzJF4D2+0qG9RSm1KImdaYYovkrUfbM77US6tay3wPE7a+3D/iBT6nYktILfrGcicwz5TwKs1HI+cVfd5YFjE0k47JVAPbogeBFl4PgUfHPK5lWsoomtBoukJm3azAWV8ivAwIGWuchDFl/6n3xNmhjFj4UrW5GbM/pGkXjo/Pe/GAhfdT6tEGcDguXTqHggI29eGtuJBsvHJxLdWeEp+B6US3J7gGcE2LIhHmk2YQSAXiZWgjBAvfdCbwkjDPvMjYfEFtm7TEBWE6LNcz2UtlB83MpyaOwhx70xTzdFewUs64oblUq4EXdYb2Kz12c+NXZCdv1sxDKW7tII+3fUVzbToh9fgOErR9yvGmmymeeEGIfYx8GDTFX4OJcR4tpAhFsqHD0Ap4PBOy1wBMm5TKWQ/piS5S5+v9pHLobKUvMW6207RJpzHpX/JSsnQ3tosJ8+otgJSgj2WV5HC9QVPcdOhWawHkej5Oyu9cOTzfxUTAt8CrUDsotYETt4GDVg4QHqId0YnpBCM7JC3HnYNhIMJTOnUctNDPfAWD9AP/9HiYr0FWop+V6KE+WlPjU/RGnXHiK+9qPRg1B0bNglGXgVGzYNQiGLUMpiGdqdfC2c3BUbNw1GVw1CwctQhnbwWc8E0lZkoy1PqixVH4jXgGDdKPUpElXx2cm+dveFxwQfTQXgOIR4ERy2oSZ9xkU9QOferUFyNqW9BCINNm+BImPF3iSMYbXxMvVQjLIv4N37fyuJtjopjYQxWc+gqiVWv7aKMTpnGA2Qiz1Q/Tggeqyktk6a6z0Q4NtFdrl1SfDzOZ4lxqdjpysCSQpDX52IngFRTLpL4m3Hbym4dc2i4cZbejo729fxjoXjHQNS3VywHKJWJtk5X9lcO6FtOKvuoVk5PorO+0gr9/y46IHNeOxH3pH2VXD0chez2bQq/dahFfRCbUv34mrq6WEEgaJj8N0YMqeLzE8e5u4nj99FtdksSxIHA+4OHGvXarHf5AedGJFvcq0c/RcONPHEn6wqYO0y3i+6ed9pyd4aucmbpF0fzCp3Oiz8iEnuLSITgOz4Lw/uRQw50xGK6Hv/g0C3ezGgGxff/SHqGkmG1+8UxsLjs7XTDjp7PAdOYLRh1dOjIWFjAXxP/PwNj0qM6sS1wQ3TMRK+hTgjxg+GYUSegUQy4vBmqr0251jvfuPdqL0nGn8k3lu4pS6VR+rDyqPKscVfoVffPu5g+bP2/+svX11oOt/a3HUvT2rUjnq0ruZ+vF37d2STQ=</latexit> <latexit sha1_base64="fRFjKiIJzPUUlSuQRtPxzdU/g2M=">AAASknictVjbbttGEFXSW6peYrt968u0gWwqlQSJdtEigdoYSdMETlw7kBQDpi2sqKXEiBeFXCU26P2ffk/f+jed5fJOSXaL1oDj5e5czsycmV1kNLdMn7Xbf926/cGHH338yZ1Pq599/sWXdzc2twa+u/B02tddy/VORsSnlunQPjOZRU/mHiX2yKKvR7PH4vz1O+r5puv02OWcntlk4piGqROGW8PNjT9qmk3YVCdW8ITDdhe0AJRwa2QEF/w8UMw6b0C8cxnt1EHjw8DsdvD7UJxrkCrBtmY60fcoeIUiT1DW4Tk7sETGXTDOqzXjwRJd0DxzMmXE89z3K/S0KWGBwRVNH7vsIWhsShmpIxoyn3vuBRjypI4wGL1ggd9irRB7tQaJbib0+3y5kZxIvZGJ/Pw+aI7L4shkVhFYACdDBmHOGGgT+hbaPIcCIJQJ2LCDB+FCFRICrx9tzIQU5sE37dT8YQrZzuT3gNfRrb1Ar91k81d+ijDORJVtJUwDRq677xTclT52sLB4WtCIjs6gWTKV+5ZCXZgpaI7t1FsIIUyfyJPAsXDGyEXKArnNg1DdswPiTWxZZMMjetDhGBcGurBTjqUhv0hDvkwJKutX5m5Swjp8D5qFrTEmqa1XaEseV2sxqTAWQyC+yhe6ka1plMQCFdDDTFmqhd8nomksajAFMmUSoHxzYpNh4KCCypOz5zHl6+dBs5OJDHunmfGNdqNSxgEMbhrA/wd2reXzHvY4dlSOyL8dccWAq1xSMa6ZctGAi52HqeCzJF4D2+0qG9RSm1KImdaYYovkrUfbM77US6tay3wPE7a+3D/iBT6nYktILfrGcicwz5TwKs1HI+cVfd5YFjE0k47JVAPbogeBFl4PgUfHPK5lWsoomtBoukJm3azAWV8ivAwIGWuchDFl/6n3xNmhjFj4UrW5GbM/pGkXjo/Pe/GAhfdT6tEGcDguXTqHggI29eGtuJBsvHJxLdWeEp+B6US3J7gGcE2LIhHmk2YQSAXiZWgjBAvfdCbwkjDPvMjYfEFtm7TEBWE6LNcz2UtlB83MpyaOwhx70xTzdFewUs64oblUq4EXdYb2Kz12c+NXZCdv1sxDKW7tII+3fUVzbToh9fgOErR9yvGmmymeeEGIfYx8GDTFX4OJcR4tpAhFsqHD0Ap4PBOy1wBMm5TKWQ/piS5S5+v9pHLobKUvMW6207RJpzHpX/JSsnQ3tosJ8+otgJSgj2WV5HC9QVPcdOhWawHkej5Oyu9cOTzfxUTAt8CrUDsotYETt4GDVg4QHqId0YnpBCM7JC3HnYNhIMJTOnUctNDPfAWD9AP/9HiYr0FWop+V6KE+WlPjU/RGnXHiK+9qPRg1B0bNglGXgVGzYNQiGLUMpiGdqdfC2c3BUbNw1GVw1CwctQhnbwWc8E0lZkoy1PqixVH4jXgGDdKPUpElXx2cm+dveFxwQfTQXgOIR4ERy2oSZ9xkU9QOferUFyNqW9BCINNm+BImPF3iSMYbXxMvVQjLIv4N37fyuJtjopjYQxWc+gqiVWv7aKMTpnGA2Qiz1Q/Tggeqyktk6a6z0Q4NtFdrl1SfDzOZ4lxqdjpysCSQpDX52IngFRTLpL4m3Hbym4dc2i4cZbejo729fxjoXjHQNS3VywHKJWJtk5X9lcO6FtOKvuoVk5PorO+0gr9/y46IHNeOxH3pH2VXD0chez2bQq/dahFfRCbUv34mrq6WEEgaJj8N0YMqeLzE8e5u4nj99FtdksSxIHA+4OHGvXarHf5AedGJFvcq0c/RcONPHEn6wqYO0y3i+6ed9pyd4aucmbpF0fzCp3Oiz8iEnuLSITgOz4Lw/uRQw50xGK6Hv/g0C3ezGgGxff/SHqGkmG1+8UxsLjs7XTDjp7PAdOYLRh1dOjIWFjAXxP/PwNj0qM6sS1wQ3TMRK+hTgjxg+GYUSegUQy4vBmqr0251jvfuPdqL0nGn8k3lu4pS6VR+rDyqPKscVfoVffPu5g+bP2/+svX11oOt/a3HUvT2rUjnq0ruZ+vF37d2STQ=</latexit>
  17. 19 COMPLEXITY ANALYSIS § Number of levels, = O(log n)

    § Number of low-rank blocks in level j = n/2j § Cost of computing low-rank approximation per off-diagonal block = O(rn/2j) § Total number of off-diagonal blocks = O(log n) § Total cost of all off-diagonal low-rank approximations = O(n log n) COST OF COMPUTING ALL THE LOW RANK OFF DIAGONAL BLOCKS COST OF PERFORMING THE HODLR FACTORIZATION § Number of levels, = O(log n) § Cost of inverting the first block diagonally dense block – O(p3) § Cost of applying the inverses to the low-rank blocks in the next factor – O(prn/2j) § Total number of times the inverse application product has to be performed – O(2) § Cost for obtaining the 1st factorization level – O(prn log n) § Total cost of estimating all factors – O(prn log2n) ≅ O(n log2n) § Total cost of estimating all factors = O(n log n) (Assuming p, r << n)
  18. 20 COMPLEXITY ANALYSIS INVERSE COMPUTATION COST OF PERFORMING THE HODLR

    FACTORIZATION § Cost of inverting first block diagonally dense matrix – None (Done in previous step) § Cost of inverting each of the remaining factors – O(n) (By SMW formula) § Total cost of inversion – O(n log n) § Cost of computing the determinant of each factor – O(n) (By Sylvester’s Determinant Theorem) § Total cost of computing determinant - O(n log n)
  19. 21 EXPERIMENTAL RESULTS Fig. : Time required to compute the

    HODLR covariance matrix inversion when the input is 1,2,3 dimensional. The scaling of inversion of the HODLR factors is dimension size dependent whereas the direct inversion of K does not dependent on the dimensionality of x but has cubic scaling. These results are for the RBF kernel.
  20. 22 EXPERIMENTAL RESULTS Fig. : Time required to compute the

    HODLR covariance matrix inversion for 1d x data, and for different types of covariance kernels. k(x1, x2) = 1 + (x1 + x2)2 1 2 <latexit sha1_base64="h03m33EtJUKGWJCz44xy+0capiU=">AAAS2HictVhbbxtFFHbLrZhbEh55GaicrItteTeRQFRGjVpKq7Qhqew0IhuvxutZe+u9uLvj1tFmJB5AiFd+Gm/8CX4DZ2Zvs17bCQUsJd49cy7fOfOdM5MMpo4d0nb7zxs333r7nXffu/V+9YMPP/r4k43NrZPQnwUm6Zm+4wenAxwSx/ZIj9rUIafTgGB34JDng8l9vv78FQlC2/e69GJKzl088mzLNjEFkbG58VdNdzEdm9iJHjC03UF6hBQhGljRnPUjxa6zBkolF4mkjnRmRHZHhfdDvq6j3Aht67aXvA+iZ6DyAHQ9VvCDluj4M8pYtWZ9s8QW6YE9GlMcBP7rFXb6GNPIYopuDn16F+l0TCiuAxo8nQb+HFnxSh1gUDKnUdiiLYG9WkOZrZT6HbbcSUGl3pAy799BuufTNLO4qgAsQqcGRaJmFOkj8hK1WQEFQkInooYKC+JB4xocb5gIJlwL6hDabu7+MIfsSvU9YHUI684gaicTfsfOAMY532VXEWWAzE3/lQLSOMYObCysLlgkS+eoWXJVeI+VOmiigDu6U28BBFE+XieOY+YNgYuERrGYRcI8cCMcjNx4k60Am5HKIC9IdObmHMtTfpKnfJETNN6/MnezLayjL5HuQGsMce7rGfiKl6u1lFSQi8URXxY3uiHvaVLEBSpAhImy1AreT3nTOMSiCpK2iYMK7ZGLjcgDA41la49Tytf7UVOVMoPeaUqxwW+ylWkCJ9dN4P8Du9Zzvws9Dh1VIPL3R0yx0GWhqJDXRJk30Hznbq74KMvXgna7lJNa6jNWorYzJNAiRe+JeMKWRmlVa9K7kbH16f4RW+BzrraE1LxvHH+EptIWXub1aBSiQsxr6wKGZtYx0m5AW3RRpIvjIQrIkKV7mW9lko1wmj8Bs663wXIsnp4EIs41LcKQ0P80ehbsMM6Yx9L0qZ2yX9C0g46P+910wKLXYxKQBmLouHToHHIKuCREL/mB5MKRC8+x2UMcUmR7yemJfAsxXU8y4e6zZuBIOeJlaBMEs9D2RugppoE9l3w+Ia6LW/yAsD1a6Bn5UNkBN9OxDaOwwN68xCyXclbGM86wl1o14KCWaL8yYqcwfnl1im7tIpRF0Q7weDtUdN8lI1xPzyBO24cMTrqJEvAbBJdD5kbU5N8W5eM8eYhVCJANAgovKGBSykEDQdlirYJ3QU8IkQdfHyfXg2ArY/Fxs52XLQ6akv4pKxXL9FO/ULCg3kIoJ+j9eJfi4XqNprju0K3WIlTo+bQoPzDlsL8LhUCfI1ZFtYNSG3hpG3jg5QDgAdoBGdleNHAFaRlIDoyIp6eodRi0qCe9RSf5C3x1majXiazRkzW6YA/etHQVohFvmMUqhloPRiuA0WQw2jIwmgxGWwSjlcE04mDalXB2C3A0GY62DI4mw9EW4eytgCPuVHymZEOtx1sclF/wa9BJ/lLa5JivHszN/guWbjgnuvDXQDggiGLHaWJv2KRjsBYxTRLyEbXNacGR6RO4CWOWP8JIhhNf5zdVJLaF/xb323i5U2Ain9iGhrz6CqJVa/vgQxVlPIFqiGr1RFlgQdNYiSyddT7awkF7tXXJ9LEhVYqx2FJV48GSQYq9xZedBN6CYZnUV6Tbzn6KkEvihSVZnCzt7f3DRPcWE13TUt0CoEIh1jZZOV45rSsxreir7mJxMpv1nbYQ703ZkZDjypG4H8cH3dXDketeg00i7Brqg4t/NRa5xoqmafAg2ko27+5m0d94CmbRlzAZ/iQw1Mbc0Or5OarCKcnF8MUX+pp0MkqXU2Zs3G632uKDyg9q8nC7knyOjI0/YLCZM5d41HRwGJ6p7Sk9h7s9tU2HsKo+C8kUmxM8Imfw6GEYqueROIUZqoFkiCw/gB+44AmpbBFhNwwv3AFo8gkZLq5x4bK1sxm1vj6PbG86o8Qz40DWzEHUR/y/PGhoB8SkzgU8YDOwASsyxxjKQOHmWYUiqIsplx9OtJbabqnHe7fvfZuU41bls8oXFaWiVr6q3Ks8qhxVehVzs7cZbf68+cvWj1s/bf269VusevNGYvNppfDZ+v1v8FJfuw==</latexit> <latexit sha1_base64="h03m33EtJUKGWJCz44xy+0capiU=">AAAS2HictVhbbxtFFHbLrZhbEh55GaicrItteTeRQFRGjVpKq7Qhqew0IhuvxutZe+u9uLvj1tFmJB5AiFd+Gm/8CX4DZ2Zvs17bCQUsJd49cy7fOfOdM5MMpo4d0nb7zxs333r7nXffu/V+9YMPP/r4k43NrZPQnwUm6Zm+4wenAxwSx/ZIj9rUIafTgGB34JDng8l9vv78FQlC2/e69GJKzl088mzLNjEFkbG58VdNdzEdm9iJHjC03UF6hBQhGljRnPUjxa6zBkolF4mkjnRmRHZHhfdDvq6j3Aht67aXvA+iZ6DyAHQ9VvCDluj4M8pYtWZ9s8QW6YE9GlMcBP7rFXb6GNPIYopuDn16F+l0TCiuAxo8nQb+HFnxSh1gUDKnUdiiLYG9WkOZrZT6HbbcSUGl3pAy799BuufTNLO4qgAsQqcGRaJmFOkj8hK1WQEFQkInooYKC+JB4xocb5gIJlwL6hDabu7+MIfsSvU9YHUI684gaicTfsfOAMY532VXEWWAzE3/lQLSOMYObCysLlgkS+eoWXJVeI+VOmiigDu6U28BBFE+XieOY+YNgYuERrGYRcI8cCMcjNx4k60Am5HKIC9IdObmHMtTfpKnfJETNN6/MnezLayjL5HuQGsMce7rGfiKl6u1lFSQi8URXxY3uiHvaVLEBSpAhImy1AreT3nTOMSiCpK2iYMK7ZGLjcgDA41la49Tytf7UVOVMoPeaUqxwW+ylWkCJ9dN4P8Du9Zzvws9Dh1VIPL3R0yx0GWhqJDXRJk30Hznbq74KMvXgna7lJNa6jNWorYzJNAiRe+JeMKWRmlVa9K7kbH16f4RW+BzrraE1LxvHH+EptIWXub1aBSiQsxr6wKGZtYx0m5AW3RRpIvjIQrIkKV7mW9lko1wmj8Bs663wXIsnp4EIs41LcKQ0P80ehbsMM6Yx9L0qZ2yX9C0g46P+910wKLXYxKQBmLouHToHHIKuCREL/mB5MKRC8+x2UMcUmR7yemJfAsxXU8y4e6zZuBIOeJlaBMEs9D2RugppoE9l3w+Ia6LW/yAsD1a6Bn5UNkBN9OxDaOwwN68xCyXclbGM86wl1o14KCWaL8yYqcwfnl1im7tIpRF0Q7weDtUdN8lI1xPzyBO24cMTrqJEvAbBJdD5kbU5N8W5eM8eYhVCJANAgovKGBSykEDQdlirYJ3QU8IkQdfHyfXg2ArY/Fxs52XLQ6akv4pKxXL9FO/ULCg3kIoJ+j9eJfi4XqNprju0K3WIlTo+bQoPzDlsL8LhUCfI1ZFtYNSG3hpG3jg5QDgAdoBGdleNHAFaRlIDoyIp6eodRi0qCe9RSf5C3x1majXiazRkzW6YA/etHQVohFvmMUqhloPRiuA0WQw2jIwmgxGWwSjlcE04mDalXB2C3A0GY62DI4mw9EW4eytgCPuVHymZEOtx1sclF/wa9BJ/lLa5JivHszN/guWbjgnuvDXQDggiGLHaWJv2KRjsBYxTRLyEbXNacGR6RO4CWOWP8JIhhNf5zdVJLaF/xb323i5U2Ain9iGhrz6CqJVa/vgQxVlPIFqiGr1RFlgQdNYiSyddT7awkF7tXXJ9LEhVYqx2FJV48GSQYq9xZedBN6CYZnUV6Tbzn6KkEvihSVZnCzt7f3DRPcWE13TUt0CoEIh1jZZOV45rSsxreir7mJxMpv1nbYQ703ZkZDjypG4H8cH3dXDketeg00i7Brqg4t/NRa5xoqmafAg2ko27+5m0d94CmbRlzAZ/iQw1Mbc0Or5OarCKcnF8MUX+pp0MkqXU2Zs3G632uKDyg9q8nC7knyOjI0/YLCZM5d41HRwGJ6p7Sk9h7s9tU2HsKo+C8kUmxM8Imfw6GEYqueROIUZqoFkiCw/gB+44AmpbBFhNwwv3AFo8gkZLq5x4bK1sxm1vj6PbG86o8Qz40DWzEHUR/y/PGhoB8SkzgU8YDOwASsyxxjKQOHmWYUiqIsplx9OtJbabqnHe7fvfZuU41bls8oXFaWiVr6q3Ks8qhxVehVzs7cZbf68+cvWj1s/bf269VusevNGYvNppfDZ+v1v8FJfuw==</latexit> <latexit sha1_base64="h03m33EtJUKGWJCz44xy+0capiU=">AAAS2HictVhbbxtFFHbLrZhbEh55GaicrItteTeRQFRGjVpKq7Qhqew0IhuvxutZe+u9uLvj1tFmJB5AiFd+Gm/8CX4DZ2Zvs17bCQUsJd49cy7fOfOdM5MMpo4d0nb7zxs333r7nXffu/V+9YMPP/r4k43NrZPQnwUm6Zm+4wenAxwSx/ZIj9rUIafTgGB34JDng8l9vv78FQlC2/e69GJKzl088mzLNjEFkbG58VdNdzEdm9iJHjC03UF6hBQhGljRnPUjxa6zBkolF4mkjnRmRHZHhfdDvq6j3Aht67aXvA+iZ6DyAHQ9VvCDluj4M8pYtWZ9s8QW6YE9GlMcBP7rFXb6GNPIYopuDn16F+l0TCiuAxo8nQb+HFnxSh1gUDKnUdiiLYG9WkOZrZT6HbbcSUGl3pAy799BuufTNLO4qgAsQqcGRaJmFOkj8hK1WQEFQkInooYKC+JB4xocb5gIJlwL6hDabu7+MIfsSvU9YHUI684gaicTfsfOAMY532VXEWWAzE3/lQLSOMYObCysLlgkS+eoWXJVeI+VOmiigDu6U28BBFE+XieOY+YNgYuERrGYRcI8cCMcjNx4k60Am5HKIC9IdObmHMtTfpKnfJETNN6/MnezLayjL5HuQGsMce7rGfiKl6u1lFSQi8URXxY3uiHvaVLEBSpAhImy1AreT3nTOMSiCpK2iYMK7ZGLjcgDA41la49Tytf7UVOVMoPeaUqxwW+ylWkCJ9dN4P8Du9Zzvws9Dh1VIPL3R0yx0GWhqJDXRJk30Hznbq74KMvXgna7lJNa6jNWorYzJNAiRe+JeMKWRmlVa9K7kbH16f4RW+BzrraE1LxvHH+EptIWXub1aBSiQsxr6wKGZtYx0m5AW3RRpIvjIQrIkKV7mW9lko1wmj8Bs663wXIsnp4EIs41LcKQ0P80ehbsMM6Yx9L0qZ2yX9C0g46P+910wKLXYxKQBmLouHToHHIKuCREL/mB5MKRC8+x2UMcUmR7yemJfAsxXU8y4e6zZuBIOeJlaBMEs9D2RugppoE9l3w+Ia6LW/yAsD1a6Bn5UNkBN9OxDaOwwN68xCyXclbGM86wl1o14KCWaL8yYqcwfnl1im7tIpRF0Q7weDtUdN8lI1xPzyBO24cMTrqJEvAbBJdD5kbU5N8W5eM8eYhVCJANAgovKGBSykEDQdlirYJ3QU8IkQdfHyfXg2ArY/Fxs52XLQ6akv4pKxXL9FO/ULCg3kIoJ+j9eJfi4XqNprju0K3WIlTo+bQoPzDlsL8LhUCfI1ZFtYNSG3hpG3jg5QDgAdoBGdleNHAFaRlIDoyIp6eodRi0qCe9RSf5C3x1majXiazRkzW6YA/etHQVohFvmMUqhloPRiuA0WQw2jIwmgxGWwSjlcE04mDalXB2C3A0GY62DI4mw9EW4eytgCPuVHymZEOtx1sclF/wa9BJ/lLa5JivHszN/guWbjgnuvDXQDggiGLHaWJv2KRjsBYxTRLyEbXNacGR6RO4CWOWP8JIhhNf5zdVJLaF/xb323i5U2Ain9iGhrz6CqJVa/vgQxVlPIFqiGr1RFlgQdNYiSyddT7awkF7tXXJ9LEhVYqx2FJV48GSQYq9xZedBN6CYZnUV6Tbzn6KkEvihSVZnCzt7f3DRPcWE13TUt0CoEIh1jZZOV45rSsxreir7mJxMpv1nbYQ703ZkZDjypG4H8cH3dXDketeg00i7Brqg4t/NRa5xoqmafAg2ko27+5m0d94CmbRlzAZ/iQw1Mbc0Or5OarCKcnF8MUX+pp0MkqXU2Zs3G632uKDyg9q8nC7knyOjI0/YLCZM5d41HRwGJ6p7Sk9h7s9tU2HsKo+C8kUmxM8Imfw6GEYqueROIUZqoFkiCw/gB+44AmpbBFhNwwv3AFo8gkZLq5x4bK1sxm1vj6PbG86o8Qz40DWzEHUR/y/PGhoB8SkzgU8YDOwASsyxxjKQOHmWYUiqIsplx9OtJbabqnHe7fvfZuU41bls8oXFaWiVr6q3Ks8qhxVehVzs7cZbf68+cvWj1s/bf269VusevNGYvNppfDZ+v1v8FJfuw==</latexit> k(x1, x2) = exp ( |x1 x2 |) <latexit sha1_base64="M2FxIZvRjZzdqOWwIPQtsd1Tx88=">AAATCHictVhLb9tGEFbSV6q+LPdYoJg2kE2lkiDSBlo0UJEgaZrAiWsHsmPAtAiKWkqM+FDIVSKD3mMv/Su99NCi6LU/obf+m87yuRQl2U1bAbbI2Xl8M/vN7NqDqW0FtNP569r1N9586+13brxbfe/9Dz78aKO2eRx4M98gR4Zne/7JQA+IbbnkiFrUJidTn+jOwCbPBpN7fP3ZS+IHluf26PmUnDn6yLVMy9ApirRa7dO66uh0bOh2eJ/BVhfUEKRINDDDOeuHktVgTUgl54mkASrTQqsr4/s+X1chN4It1XKT90H4FFXuo67LCn5giY43o4xV6+bXS2xB9a3RmOq+771aYaeOdRqaTFKNoUdvg0rHhOoNRKNPp743BzNeaSAMSuY0DNq0HWGv1iGzFVK/xZY7Kag0mkLm/Vuguh5NM4urisBCONEoRDWjoI7IC+iwAgqASCekmowL0YPCNTjeIBFMuBbWIbCc3P1+DtkR6rvHGhjWmWHUbib8lp0ijDO+y44UlQEzN7yXEkrjGNu4sbi6YJEsnUGr5KrwHit1YSKhO7rdaCOEqHy8ThzHzB0iFwkNYzELI3PfCXV/5MSbbPq6EcoM88JEZ07OsTzlx3nK5zlB4/0rczfbwgZ8AaqNrTHUc19P0Ve8XK2npMJcTI74orjRTXFPkyIuUAEjTKSlVvh+wpvGJiaVQNgmDiqwRo6uhS4aKCxbe5RSvtEPW7KQGfZOS4iNfpOtTBM4vmoC/x/YtZ77Pexx7KgCkb87YJIJF4WiYl4Tad6E+fbtXPFhlq+J7XYhJrXUZ6xELXtIsEWK3hPxhC2N0q7WhXctY+uTuwdsgc+52hJS876xvRFMhS28yOvRLETFmFfWRQytrGOE3cC26EGoRsdD6JMhS/cy38okm8hp/oTMutoGi7F4egKIONe0CENC/9PoWbD9OGMeS1GnVsr+iKZdODzs99IBC6/GxCdNYHBYOnT2OQUcEsALfiA5eOTic2z2QA8oWG5yeoJnAlPVJBPuPmsGjpQjXoY2QTALLHcET3TqW3PB52PiOHqbHxCWSws9Ix4q2+hmOrZwFBbYm5eY5VLOynjGadZSqyYe1ALtV0bsFsYvr07RrVWEsijaRh5vBZLqOWSkN9IziNP2AcOTbiL5/AbB5Zi5Frb4t0n5OE8eYhWCZMOAkRfwmZCy3wQsW6xV8B7RE0PkwdfHyfUw2MpYfNxs5WWLg6akf8JKxTK81C8WzG+0AXKC3ot3KR6uV2iKqw7daj2EQs+nRfmeSfv9HSwEfAasCvW9Uhu4aRu46GUP4SHaARlZbjhwItIylOxpIU9Pkhs4aOFIeAuP8xf86rGoXseixpGo0UN79KakqxiNuMMsVjHUejBKAYwiglGWgVFEMMoiGKUMphkHUy6Fs1OAo4hwlGVwFBGOsghndwWc6E7FZ0o21I54i6Pyc34NOs5fSpsc89XFudl/ztIN50SP/DVB9wlQ3bZbujts0TFaRzENEvARtcVpwZGpE7wJ6yx/xJGMJ77Kb6oQbQv/Hd1v4+VugYl8YmsKuI0VRKvW76IPOSrjMVYjqtZRVBZcUBRWIkt3nY9O5KCz2rpk+kgTKsVYbCnL8WDJIMXe4stOAm/BsEzqS9LtZD9FyCXxwpIoTpZ2d/9horuLia5pqV4BUKEQa5usHK+c1qWYVvRVb7E4mc36TluI97rsSMhx6Ui8G8dH3dXDketegU1R2DXURxf/aixyjRVN0+RBlJVs3tnJor/2FMyiL2My/k2gyc25pjTyg1TGY5KL8Ysv9BXhaBRup6xaNCbzaeqhBRfcvsXtL1JrbeNmp92JPlB+kJOHm5Xkc6Bt/ImD0Jg5xKWGrQfBqdyZ0jP8W4Bahk1YVZ0FZKobE31ETvHR1XEIn4XRqc2gjpIhmJ6PP3ghjKSiRag7QXDuDFCTT9RgcY0Ll62dzqj51VloudMZJa4RBzJnNlAP+H+FYGj5xKD2OT7ohm8hVjDGOlaN4k21ikWQF1MuPxwrbbnTlg93b975JinHjconlc8rUkWufFm5U3lYOagcVYzaD7Wfar/Uft38cfPnzd82f49Vr19LbD6uFD6bf/wN7Kpu3w==</latexit> <latexit sha1_base64="M2FxIZvRjZzdqOWwIPQtsd1Tx88=">AAATCHictVhLb9tGEFbSV6q+LPdYoJg2kE2lkiDSBlo0UJEgaZrAiWsHsmPAtAiKWkqM+FDIVSKD3mMv/Su99NCi6LU/obf+m87yuRQl2U1bAbbI2Xl8M/vN7NqDqW0FtNP569r1N9586+13brxbfe/9Dz78aKO2eRx4M98gR4Zne/7JQA+IbbnkiFrUJidTn+jOwCbPBpN7fP3ZS+IHluf26PmUnDn6yLVMy9ApirRa7dO66uh0bOh2eJ/BVhfUEKRINDDDOeuHktVgTUgl54mkASrTQqsr4/s+X1chN4It1XKT90H4FFXuo67LCn5giY43o4xV6+bXS2xB9a3RmOq+771aYaeOdRqaTFKNoUdvg0rHhOoNRKNPp743BzNeaSAMSuY0DNq0HWGv1iGzFVK/xZY7Kag0mkLm/Vuguh5NM4urisBCONEoRDWjoI7IC+iwAgqASCekmowL0YPCNTjeIBFMuBbWIbCc3P1+DtkR6rvHGhjWmWHUbib8lp0ijDO+y44UlQEzN7yXEkrjGNu4sbi6YJEsnUGr5KrwHit1YSKhO7rdaCOEqHy8ThzHzB0iFwkNYzELI3PfCXV/5MSbbPq6EcoM88JEZ07OsTzlx3nK5zlB4/0rczfbwgZ8AaqNrTHUc19P0Ve8XK2npMJcTI74orjRTXFPkyIuUAEjTKSlVvh+wpvGJiaVQNgmDiqwRo6uhS4aKCxbe5RSvtEPW7KQGfZOS4iNfpOtTBM4vmoC/x/YtZ77Pexx7KgCkb87YJIJF4WiYl4Tad6E+fbtXPFhlq+J7XYhJrXUZ6xELXtIsEWK3hPxhC2N0q7WhXctY+uTuwdsgc+52hJS876xvRFMhS28yOvRLETFmFfWRQytrGOE3cC26EGoRsdD6JMhS/cy38okm8hp/oTMutoGi7F4egKIONe0CENC/9PoWbD9OGMeS1GnVsr+iKZdODzs99IBC6/GxCdNYHBYOnT2OQUcEsALfiA5eOTic2z2QA8oWG5yeoJnAlPVJBPuPmsGjpQjXoY2QTALLHcET3TqW3PB52PiOHqbHxCWSws9Ix4q2+hmOrZwFBbYm5eY5VLOynjGadZSqyYe1ALtV0bsFsYvr07RrVWEsijaRh5vBZLqOWSkN9IziNP2AcOTbiL5/AbB5Zi5Frb4t0n5OE8eYhWCZMOAkRfwmZCy3wQsW6xV8B7RE0PkwdfHyfUw2MpYfNxs5WWLg6akf8JKxTK81C8WzG+0AXKC3ot3KR6uV2iKqw7daj2EQs+nRfmeSfv9HSwEfAasCvW9Uhu4aRu46GUP4SHaARlZbjhwItIylOxpIU9Pkhs4aOFIeAuP8xf86rGoXseixpGo0UN79KakqxiNuMMsVjHUejBKAYwiglGWgVFEMMoiGKUMphkHUy6Fs1OAo4hwlGVwFBGOsghndwWc6E7FZ0o21I54i6Pyc34NOs5fSpsc89XFudl/ztIN50SP/DVB9wlQ3bZbujts0TFaRzENEvARtcVpwZGpE7wJ6yx/xJGMJ77Kb6oQbQv/Hd1v4+VugYl8YmsKuI0VRKvW76IPOSrjMVYjqtZRVBZcUBRWIkt3nY9O5KCz2rpk+kgTKsVYbCnL8WDJIMXe4stOAm/BsEzqS9LtZD9FyCXxwpIoTpZ2d/9horuLia5pqV4BUKEQa5usHK+c1qWYVvRVb7E4mc36TluI97rsSMhx6Ui8G8dH3dXDketegU1R2DXURxf/aixyjRVN0+RBlJVs3tnJor/2FMyiL2My/k2gyc25pjTyg1TGY5KL8Ysv9BXhaBRup6xaNCbzaeqhBRfcvsXtL1JrbeNmp92JPlB+kJOHm5Xkc6Bt/ImD0Jg5xKWGrQfBqdyZ0jP8W4Bahk1YVZ0FZKobE31ETvHR1XEIn4XRqc2gjpIhmJ6PP3ghjKSiRag7QXDuDFCTT9RgcY0Ll62dzqj51VloudMZJa4RBzJnNlAP+H+FYGj5xKD2OT7ohm8hVjDGOlaN4k21ikWQF1MuPxwrbbnTlg93b975JinHjconlc8rUkWufFm5U3lYOagcVYzaD7Wfar/Uft38cfPnzd82f49Vr19LbD6uFD6bf/wN7Kpu3w==</latexit> <latexit sha1_base64="M2FxIZvRjZzdqOWwIPQtsd1Tx88=">AAATCHictVhLb9tGEFbSV6q+LPdYoJg2kE2lkiDSBlo0UJEgaZrAiWsHsmPAtAiKWkqM+FDIVSKD3mMv/Su99NCi6LU/obf+m87yuRQl2U1bAbbI2Xl8M/vN7NqDqW0FtNP569r1N9586+13brxbfe/9Dz78aKO2eRx4M98gR4Zne/7JQA+IbbnkiFrUJidTn+jOwCbPBpN7fP3ZS+IHluf26PmUnDn6yLVMy9ApirRa7dO66uh0bOh2eJ/BVhfUEKRINDDDOeuHktVgTUgl54mkASrTQqsr4/s+X1chN4It1XKT90H4FFXuo67LCn5giY43o4xV6+bXS2xB9a3RmOq+771aYaeOdRqaTFKNoUdvg0rHhOoNRKNPp743BzNeaSAMSuY0DNq0HWGv1iGzFVK/xZY7Kag0mkLm/Vuguh5NM4urisBCONEoRDWjoI7IC+iwAgqASCekmowL0YPCNTjeIBFMuBbWIbCc3P1+DtkR6rvHGhjWmWHUbib8lp0ijDO+y44UlQEzN7yXEkrjGNu4sbi6YJEsnUGr5KrwHit1YSKhO7rdaCOEqHy8ThzHzB0iFwkNYzELI3PfCXV/5MSbbPq6EcoM88JEZ07OsTzlx3nK5zlB4/0rczfbwgZ8AaqNrTHUc19P0Ve8XK2npMJcTI74orjRTXFPkyIuUAEjTKSlVvh+wpvGJiaVQNgmDiqwRo6uhS4aKCxbe5RSvtEPW7KQGfZOS4iNfpOtTBM4vmoC/x/YtZ77Pexx7KgCkb87YJIJF4WiYl4Tad6E+fbtXPFhlq+J7XYhJrXUZ6xELXtIsEWK3hPxhC2N0q7WhXctY+uTuwdsgc+52hJS876xvRFMhS28yOvRLETFmFfWRQytrGOE3cC26EGoRsdD6JMhS/cy38okm8hp/oTMutoGi7F4egKIONe0CENC/9PoWbD9OGMeS1GnVsr+iKZdODzs99IBC6/GxCdNYHBYOnT2OQUcEsALfiA5eOTic2z2QA8oWG5yeoJnAlPVJBPuPmsGjpQjXoY2QTALLHcET3TqW3PB52PiOHqbHxCWSws9Ix4q2+hmOrZwFBbYm5eY5VLOynjGadZSqyYe1ALtV0bsFsYvr07RrVWEsijaRh5vBZLqOWSkN9IziNP2AcOTbiL5/AbB5Zi5Frb4t0n5OE8eYhWCZMOAkRfwmZCy3wQsW6xV8B7RE0PkwdfHyfUw2MpYfNxs5WWLg6akf8JKxTK81C8WzG+0AXKC3ot3KR6uV2iKqw7daj2EQs+nRfmeSfv9HSwEfAasCvW9Uhu4aRu46GUP4SHaARlZbjhwItIylOxpIU9Pkhs4aOFIeAuP8xf86rGoXseixpGo0UN79KakqxiNuMMsVjHUejBKAYwiglGWgVFEMMoiGKUMphkHUy6Fs1OAo4hwlGVwFBGOsghndwWc6E7FZ0o21I54i6Pyc34NOs5fSpsc89XFudl/ztIN50SP/DVB9wlQ3bZbujts0TFaRzENEvARtcVpwZGpE7wJ6yx/xJGMJ77Kb6oQbQv/Hd1v4+VugYl8YmsKuI0VRKvW76IPOSrjMVYjqtZRVBZcUBRWIkt3nY9O5KCz2rpk+kgTKsVYbCnL8WDJIMXe4stOAm/BsEzqS9LtZD9FyCXxwpIoTpZ2d/9horuLia5pqV4BUKEQa5usHK+c1qWYVvRVb7E4mc36TluI97rsSMhx6Ui8G8dH3dXDketegU1R2DXURxf/aixyjRVN0+RBlJVs3tnJor/2FMyiL2My/k2gyc25pjTyg1TGY5KL8Ysv9BXhaBRup6xaNCbzaeqhBRfcvsXtL1JrbeNmp92JPlB+kJOHm5Xkc6Bt/ImD0Jg5xKWGrQfBqdyZ0jP8W4Bahk1YVZ0FZKobE31ETvHR1XEIn4XRqc2gjpIhmJ6PP3ghjKSiRag7QXDuDFCTT9RgcY0Ll62dzqj51VloudMZJa4RBzJnNlAP+H+FYGj5xKD2OT7ohm8hVjDGOlaN4k21ikWQF1MuPxwrbbnTlg93b975JinHjconlc8rUkWufFm5U3lYOagcVYzaD7Wfar/Uft38cfPnzd82f49Vr19LbD6uFD6bf/wN7Kpu3w==</latexit> k(x1, x2) = (x1 x2)2 log |x1 x2 | <latexit sha1_base64="jL6WlETjqkH8zuJkto+knja5RrU=">AAATN3ictVhLb9tGEFbSV6q+IvfYy7aBbCqVBJE20KKBigRJ0wSOXTuQHQOmRayopcSID4VcJTLo/Ve99G/01l56aFH02n/Q2eVrKUqyk7YCbJGz8/hm9pvZtQdTxw5pp/PLtetvvf3Ou+/deL/6wYcfffzJzdrGcejPApMcmb7jBycDHBLH9sgRtalDTqYBwe7AIc8Gk/t8/dlLEoS27/Xo+ZScuXjk2ZZtYgoio1bbq+supmMTO9EDhja7SI+QIkQDK5qzfqTYDdZEqeQ8kTSQzozI7qrwvs/XdZQboU3d9pL3QfQUVB6ArscKftASHX9GGavWrW+W2CI9sEdjioPAf7XCTh9jGllM0c2hT+8gnY4JxQ1Ag6fTwJ8jK15pAAxK5jQK27QtsFfrKLOVUr/NljspqDSaUub920j3fJpmFlcVgEXoxKBI1IwifUReoA4roEBI6ETUUGFBPGhcg+MNE8GEa0EdQtvN3e/nkF2pvrusAWHdGUTtZsLv2CnAOOO77CqiDJC56b9UQBrH2IKNhdUFi2TpDLVKrgrvsVIXTRRwR7cabYAgysfrxHHMvCFwkdAoFrNImAduhIORG2+yFWAzUhnkBYnO3JxjecpP8pTPc4LG+1fmbraFDfQl0h1ojSHOfT0FX/FytZ6SCnKxOOKL4kY35T1NirhABYgwUZZawfsJbxqHWFRB0jZxUKE9crEReWCgsWztcUr5Rj9qqVJm0DstKTb4TbYyTeD4qgn8f2DXeu73oMehowpE/v6AKRa6KBQV8poo8yaab93JFR9l+VrQbhdyUkt9xkrUdoYEWqToPRFP2NIo7Wpdejcytu7dO2ALfM7VlpCa943jj9BU2sKLvB7NQlSIeWVdwNDKOkbaDWiLHop0cTxEARmydC/zrUyyEU7zJ2DW1TZYjsXTk0DEuaZFGBL6n0bPgu3HGfNYmj61U/YLmnbR4WG/lw5Y9GpMAtJEDB2WDp19TgGXhOgFP5BcOHLhOTZ7iEOKbC85PZFvIabrSSbcfdYMHClHvAxtgmAW2t4I7WEa2HPJ5xPiurjNDwjbo4WekQ+VLXAzHdswCgvszUvMcilnZTzjDHupVRMOaon2KyN2C+OXV6fo1i5CWRRtAY83Q0X3XTLCjfQM4rR9yOCkmygBv0FwOWRuRC3+bVE+zpOHWIUA2SCg8IICJqUcNBGULdYqeBf0hBB58PVxcj0ItjIWHzebednioCnp91ipWKaf+oWCBY02QjlB78e7FA/XKzTFVYdutR6hQs+nRfmBKfv9bSgE+hyxKqrvltrAS9vAAy+7AA/QDsjI9qKBK0jLQLJrRDw9RW3AoEVH0lt0nL/AV4+Jeh3LGkeyRg/swZuWrkI04g2zWMVQ68FoBTCaDEZbBkaTwWiLYLQymGYcTLsUznYBjibD0ZbB0WQ42iKcnRVwxJ2Kz5RsqB3xFgfl5/wadJy/lDY55qsHc7P/nKUbzoku/DURDgii2HFa2Bu26BisRUyThHxEbXJacGT6BG7CmOWPMJLhxNf5TRWJbeG/xf02Xu4WmMgntqEhr7GCaNX6PfChijIeQzVEtY5EWWBB01iJLN11PjrCQWe1dcn0sSFVirHYUlXjwZJBir3Fl50E3oJhmdSXpNvJfoqQS+KFJVmcLO3svGaiO4uJrmmpXgFQoRBrm6wcr5zWpZhW9FVvsTiZzfpOW4j3puxIyHHpSLwXxwfd1cOR616BTSLsGuqDi381FrnGiqZp8iDaSjZvb2fR33gKZtGXMRn+JjDU5tzQGvlBqsIxycXwxRf6mnQ0SrfTkjWZT1MXLXTBHbS4g4vUvFpQVzIFEYFfPgtGxs1bnXZHfFD5QU0eblWSz4Fx82eYm+bMJR41HRyGp2pnSs/gTwdqmw5hVX0Wkik2J3hETuHRwzCzzyJxyDNUB8kQWX4AP3B/FFLZIsJuGJ67A9DkAzhcXOPCZWunM2p9fRbZ3nRGiWfGgayZg6iP+D+R0NAOiEmdc3jAZmADVmSOMRSZwsW2CkVQF1MuPxxrbbXTVg93bt39NinHjcpnlS8qSkWtfFW5W3lUOagcVczaj7Vfa7/X/tj4aeO3jT83/opVr19LbD6tFD4bf/8DRYZ9TQ==</latexit> <latexit sha1_base64="jL6WlETjqkH8zuJkto+knja5RrU=">AAATN3ictVhLb9tGEFbSV6q+IvfYy7aBbCqVBJE20KKBigRJ0wSOXTuQHQOmRayopcSID4VcJTLo/Ve99G/01l56aFH02n/Q2eVrKUqyk7YCbJGz8/hm9pvZtQdTxw5pp/PLtetvvf3Ou+/deL/6wYcfffzJzdrGcejPApMcmb7jBycDHBLH9sgRtalDTqYBwe7AIc8Gk/t8/dlLEoS27/Xo+ZScuXjk2ZZtYgoio1bbq+supmMTO9EDhja7SI+QIkQDK5qzfqTYDdZEqeQ8kTSQzozI7qrwvs/XdZQboU3d9pL3QfQUVB6ArscKftASHX9GGavWrW+W2CI9sEdjioPAf7XCTh9jGllM0c2hT+8gnY4JxQ1Ag6fTwJ8jK15pAAxK5jQK27QtsFfrKLOVUr/NljspqDSaUub920j3fJpmFlcVgEXoxKBI1IwifUReoA4roEBI6ETUUGFBPGhcg+MNE8GEa0EdQtvN3e/nkF2pvrusAWHdGUTtZsLv2CnAOOO77CqiDJC56b9UQBrH2IKNhdUFi2TpDLVKrgrvsVIXTRRwR7cabYAgysfrxHHMvCFwkdAoFrNImAduhIORG2+yFWAzUhnkBYnO3JxjecpP8pTPc4LG+1fmbraFDfQl0h1ojSHOfT0FX/FytZ6SCnKxOOKL4kY35T1NirhABYgwUZZawfsJbxqHWFRB0jZxUKE9crEReWCgsWztcUr5Rj9qqVJm0DstKTb4TbYyTeD4qgn8f2DXeu73oMehowpE/v6AKRa6KBQV8poo8yaab93JFR9l+VrQbhdyUkt9xkrUdoYEWqToPRFP2NIo7Wpdejcytu7dO2ALfM7VlpCa943jj9BU2sKLvB7NQlSIeWVdwNDKOkbaDWiLHop0cTxEARmydC/zrUyyEU7zJ2DW1TZYjsXTk0DEuaZFGBL6n0bPgu3HGfNYmj61U/YLmnbR4WG/lw5Y9GpMAtJEDB2WDp19TgGXhOgFP5BcOHLhOTZ7iEOKbC85PZFvIabrSSbcfdYMHClHvAxtgmAW2t4I7WEa2HPJ5xPiurjNDwjbo4WekQ+VLXAzHdswCgvszUvMcilnZTzjDHupVRMOaon2KyN2C+OXV6fo1i5CWRRtAY83Q0X3XTLCjfQM4rR9yOCkmygBv0FwOWRuRC3+bVE+zpOHWIUA2SCg8IICJqUcNBGULdYqeBf0hBB58PVxcj0ItjIWHzebednioCnp91ipWKaf+oWCBY02QjlB78e7FA/XKzTFVYdutR6hQs+nRfmBKfv9bSgE+hyxKqrvltrAS9vAAy+7AA/QDsjI9qKBK0jLQLJrRDw9RW3AoEVH0lt0nL/AV4+Jeh3LGkeyRg/swZuWrkI04g2zWMVQ68FoBTCaDEZbBkaTwWiLYLQymGYcTLsUznYBjibD0ZbB0WQ42iKcnRVwxJ2Kz5RsqB3xFgfl5/wadJy/lDY55qsHc7P/nKUbzoku/DURDgii2HFa2Bu26BisRUyThHxEbXJacGT6BG7CmOWPMJLhxNf5TRWJbeG/xf02Xu4WmMgntqEhr7GCaNX6PfChijIeQzVEtY5EWWBB01iJLN11PjrCQWe1dcn0sSFVirHYUlXjwZJBir3Fl50E3oJhmdSXpNvJfoqQS+KFJVmcLO3svGaiO4uJrmmpXgFQoRBrm6wcr5zWpZhW9FVvsTiZzfpOW4j3puxIyHHpSLwXxwfd1cOR616BTSLsGuqDi381FrnGiqZp8iDaSjZvb2fR33gKZtGXMRn+JjDU5tzQGvlBqsIxycXwxRf6mnQ0SrfTkjWZT1MXLXTBHbS4g4vUvFpQVzIFEYFfPgtGxs1bnXZHfFD5QU0eblWSz4Fx82eYm+bMJR41HRyGp2pnSs/gTwdqmw5hVX0Wkik2J3hETuHRwzCzzyJxyDNUB8kQWX4AP3B/FFLZIsJuGJ67A9DkAzhcXOPCZWunM2p9fRbZ3nRGiWfGgayZg6iP+D+R0NAOiEmdc3jAZmADVmSOMRSZwsW2CkVQF1MuPxxrbbXTVg93bt39NinHjcpnlS8qSkWtfFW5W3lUOagcVczaj7Vfa7/X/tj4aeO3jT83/opVr19LbD6tFD4bf/8DRYZ9TQ==</latexit> <latexit sha1_base64="jL6WlETjqkH8zuJkto+knja5RrU=">AAATN3ictVhLb9tGEFbSV6q+IvfYy7aBbCqVBJE20KKBigRJ0wSOXTuQHQOmRayopcSID4VcJTLo/Ve99G/01l56aFH02n/Q2eVrKUqyk7YCbJGz8/hm9pvZtQdTxw5pp/PLtetvvf3Ou+/deL/6wYcfffzJzdrGcejPApMcmb7jBycDHBLH9sgRtalDTqYBwe7AIc8Gk/t8/dlLEoS27/Xo+ZScuXjk2ZZtYgoio1bbq+supmMTO9EDhja7SI+QIkQDK5qzfqTYDdZEqeQ8kTSQzozI7qrwvs/XdZQboU3d9pL3QfQUVB6ArscKftASHX9GGavWrW+W2CI9sEdjioPAf7XCTh9jGllM0c2hT+8gnY4JxQ1Ag6fTwJ8jK15pAAxK5jQK27QtsFfrKLOVUr/NljspqDSaUub920j3fJpmFlcVgEXoxKBI1IwifUReoA4roEBI6ETUUGFBPGhcg+MNE8GEa0EdQtvN3e/nkF2pvrusAWHdGUTtZsLv2CnAOOO77CqiDJC56b9UQBrH2IKNhdUFi2TpDLVKrgrvsVIXTRRwR7cabYAgysfrxHHMvCFwkdAoFrNImAduhIORG2+yFWAzUhnkBYnO3JxjecpP8pTPc4LG+1fmbraFDfQl0h1ojSHOfT0FX/FytZ6SCnKxOOKL4kY35T1NirhABYgwUZZawfsJbxqHWFRB0jZxUKE9crEReWCgsWztcUr5Rj9qqVJm0DstKTb4TbYyTeD4qgn8f2DXeu73oMehowpE/v6AKRa6KBQV8poo8yaab93JFR9l+VrQbhdyUkt9xkrUdoYEWqToPRFP2NIo7Wpdejcytu7dO2ALfM7VlpCa943jj9BU2sKLvB7NQlSIeWVdwNDKOkbaDWiLHop0cTxEARmydC/zrUyyEU7zJ2DW1TZYjsXTk0DEuaZFGBL6n0bPgu3HGfNYmj61U/YLmnbR4WG/lw5Y9GpMAtJEDB2WDp19TgGXhOgFP5BcOHLhOTZ7iEOKbC85PZFvIabrSSbcfdYMHClHvAxtgmAW2t4I7WEa2HPJ5xPiurjNDwjbo4WekQ+VLXAzHdswCgvszUvMcilnZTzjDHupVRMOaon2KyN2C+OXV6fo1i5CWRRtAY83Q0X3XTLCjfQM4rR9yOCkmygBv0FwOWRuRC3+bVE+zpOHWIUA2SCg8IICJqUcNBGULdYqeBf0hBB58PVxcj0ItjIWHzebednioCnp91ipWKaf+oWCBY02QjlB78e7FA/XKzTFVYdutR6hQs+nRfmBKfv9bSgE+hyxKqrvltrAS9vAAy+7AA/QDsjI9qKBK0jLQLJrRDw9RW3AoEVH0lt0nL/AV4+Jeh3LGkeyRg/swZuWrkI04g2zWMVQ68FoBTCaDEZbBkaTwWiLYLQymGYcTLsUznYBjibD0ZbB0WQ42iKcnRVwxJ2Kz5RsqB3xFgfl5/wadJy/lDY55qsHc7P/nKUbzoku/DURDgii2HFa2Bu26BisRUyThHxEbXJacGT6BG7CmOWPMJLhxNf5TRWJbeG/xf02Xu4WmMgntqEhr7GCaNX6PfChijIeQzVEtY5EWWBB01iJLN11PjrCQWe1dcn0sSFVirHYUlXjwZJBir3Fl50E3oJhmdSXpNvJfoqQS+KFJVmcLO3svGaiO4uJrmmpXgFQoRBrm6wcr5zWpZhW9FVvsTiZzfpOW4j3puxIyHHpSLwXxwfd1cOR616BTSLsGuqDi381FrnGiqZp8iDaSjZvb2fR33gKZtGXMRn+JjDU5tzQGvlBqsIxycXwxRf6mnQ0SrfTkjWZT1MXLXTBHbS4g4vUvFpQVzIFEYFfPgtGxs1bnXZHfFD5QU0eblWSz4Fx82eYm+bMJR41HRyGp2pnSs/gTwdqmw5hVX0Wkik2J3hETuHRwzCzzyJxyDNUB8kQWX4AP3B/FFLZIsJuGJ67A9DkAzhcXOPCZWunM2p9fRbZ3nRGiWfGgayZg6iP+D+R0NAOiEmdc3jAZmADVmSOMRSZwsW2CkVQF1MuPxxrbbXTVg93bt39NinHjcpnlS8qSkWtfFW5W3lUOagcVczaj7Vfa7/X/tj4aeO3jT83/opVr19LbD6tFD4bf/8DRYZ9TQ==</latexit>
  21. 23 REFERENCE More results and discussion to be found in:

    Ambikasaran, Sivaram, Daniel Foreman-Mackey, Leslie Greengard, David W. Hogg, and Michael O'Neil. "Fast direct methods for gaussian processes." arXiv preprint arXiv:1403.6015 (2014).