Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Seminar talk at Cold Spring Harbor Laboratory (CSHL)

Seminar talk at Cold Spring Harbor Laboratory (CSHL)

Rohit Tripathy

January 15, 2020
Tweet

More Decks by Rohit Tripathy

Other Decks in Research

Transcript

  1. HIGH-DIMENSIONAL SURROGATE MODELING FOR EXPENSIVE COMPUTER CODES A machine learning

    approach Rohit Tripathy PhD candidate, Predictive Science Lab Purdue University, West Lafayette, IN https://rohittripathy.netlify.com/ (Advised by Prof. Ilias Bilionis)
  2. OUTLINE 1. What is uncertainty quantification (UQ) ? 2. UQ

    for expensive, high-dimensional systems. 3. Approach 1 – Linear low-rank structure within Gaussian processes. 4. Approach 2 – Linear low-rank structure within deep neural networks. 5. Approach 3 – Generalized nonlinear reduction 6. Concluding remarks.
  3. • Identifying and describing sources of uncertainties. • Calibrating models/experiments.

    • Propagating uncertainties in the inputs. • Optimizing the output of scientific/engineering processes characterized by uncertain parameters. INTRODUCTION WHAT IS UQ?
  4. Hertzian contact model dynamical system EXAMPLES Ref. - Tripathy, Rohit,

    Ilias Bilionis, and Marcial Gonzalez. "Gaussian processes with built-in dimensionality reduction: Applications to high-dimensional uncertainty propagation." Journal of Computational Physics 321 (2016): 191-223. Fig.: Propagation of solitary waves (solitons) in granular crystals
  5. NACA12 airfoil Turbulent flow CFD solver O ptim ization under

    uncertainty Ref. - Seshadri, Pranay, et al. "A density-matching approach for optimization under uncertainty." Computer Methods in Applied Mechanics and Engineering 305 (2016): 562-578. EXAMPLES
  6. Catalytic conversion of nitrate to nitrogen – calibration of reaction

    rate coefficients Identification of pollutant source– calibration of source term in system of PDEs Ref. - Tsilifis, Panagiotis, et al. "Computationally efficient variational approximations for Bayesian inverse problems." Journal of Verification, Validation and Uncertainty Quantification 1.3 (2016): 031004. EXAMPLES
  7. NUMERICAL SIMULATOR INPUT PARAMETERS QUANTITY OF INTEREST f q 8

    MATHEMATICAL SETUP • f is expensive to evaluate. • is high-dimensional, i.e. ∈ ℝ!, D ≫ 1. • q is scalar.
  8. THE SURROGATE APPROACH • Perform a finite number of simulations.

    • Solve the UQ problem with the surrogate. • Replace model with an approximation: 11 • Repeated evaluation of the likelihood is expensive. THIS IS DIFFICULT IN HIGH- DIMENSIONS !
  9. 14 GAUSSIAN PROCESS REGRESSION Statistical model: Prior GP: Data: Posterior

    GP: Posterior mean: Posterior variance: Prior GP Bayes rule Posterior GP
  10. 15 GPR - INFERENCE INFERENCE PROBLEM – Estimate the posterior

    distribution of the hyperparameters. Ref. - Rasmussen, Carl Edward. "Gaussian processes in machine learning." Advanced lectures on machine learning. Springer, Berlin, Heidelberg, 2004. 63-71.. Hyperparameter prior: Hyperparameter posterior: Approximation of the posterior at the mode: Marginal likelihood:
  11. CLASSICAL ACTIVE SUBSPACE Ref. - Constantine, Paul G., Eric Dow,

    and Qiqi Wang. "Active subspace methods in theory and practice: applications to kriging surfaces." SIAM Journal on Scientific Computing 36.4 (2014): A1500-A1524. Probability Measure: Sample gradients: Centered covariance: Spectral decomposition: Final surrogate: How do we get these? 16
  12. GRADIENT-FREE ACTIVE SUBSPACE RECOVERY Data: Surrogate: Optimize: 17 Tripathy, Rohit,

    Ilias Bilionis, and Marcial Gonzalez. "Gaussian processes with built-in dimensionality reduction: Applications to high-dimensional uncertainty propagation." Journal of Computational Physics 321 (2016): 191-223.
  13. GRADIENT-FREE ACTIVE SUBSPACE RECOVERY Data: Surrogate: Hyperparameters Gaussian Process Bayes

    rule Modified kernel Any standard kernel Likelihood noise Negative log marginal likelihood 18
  14. PDE: Uncertainty: Quantity of interest: Ω Γ1 Γ2 19 Tripathy,

    Rohit, Ilias Bilionis, and Marcial Gonzalez. "Gaussian processes with built-in dimensionality reduction: Applications to high-dimensional uncertainty propagation." Journal of Computational Physics 321 (2016): 191-223. STOCHASTIC ELLIPTIC PDE
  15. Surrogate modelling task: We need to construct the map that

    links the vector of uncertain parameters to the quantity of interest q. Find: With data**: High dimensional inputs, small sample set. **Data source: https://github.com/paulcon/as-data-sets/tree/master/Elliptic_PDE STOCHASTIC ELLIPTIC PDE 20 Tripathy, Rohit, Ilias Bilionis, and Marcial Gonzalez. "Gaussian processes with built-in dimensionality reduction: Applications to high-dimensional uncertainty propagation." Journal of Computational Physics 321 (2016): 191-223.
  16. Fig: Comparison of 1-d active subspace from gradient-based and gradient-free

    approach. Active subspace recovered using gradients Active subspace recovered without access to gradients (our approach) NOTICE : We recover the right active subspace upto arbitrary rotations ! 21 Tripathy, Rohit, Ilias Bilionis, and Marcial Gonzalez. "Gaussian processes with built-in dimensionality reduction: Applications to high-dimensional uncertainty propagation." Journal of Computational Physics 321 (2016): 191-223. STOCHASTIC ELLIPTIC PDE
  17. Fig: Comparison of predictive accuracy between gradient-based and gradient-free approach.

    Surrogate model predicted vs observed values on test dataset (gradient-based approach) Surrogate model predicted vs observed values on test dataset (gradient-free approach) 22 Tripathy, Rohit, Ilias Bilionis, and Marcial Gonzalez. "Gaussian processes with built-in dimensionality reduction: Applications to high-dimensional uncertainty propagation." Journal of Computational Physics 321 (2016): 191-223. STOCHASTIC ELLIPTIC PDE
  18. Fig.: Schematic of a DNN DEEP NEURAL NETWORKS Trainable parameters:

    Training data: Mini-batch data loss: Discrepancy / log likelihood Regularizer / Log prior Stochastic Gradient descent update: 25
  19. ACTIVE SUBSPACE - REVISITED Ref. - Constantine, Paul G., Eric

    Dow, and Qiqi Wang. "Active subspace methods in theory and practice: applications to kriging surfaces." SIAM Journal on Scientific Computing 36.4 (2014): A1500-A1524. Probability Measure: Sample gradients: Centered covariance: Spectral decomposition: Final surrogate: 26
  20. ACTIVE SUBSPACE RECOVERY Orthogonal projection GRAM-SCHMIDT ORTHOGONALIZATION W = h(Q)

    2 RD⇥d <latexit sha1_base64="9S+6LBM+NNL49YKd9aan/pE89oE=">AAACH3icbVBNS8NAEN3Ur1q/oh69LBahXkoiol6Egh701or9gCaWzXbTLt1swu5GKCH/xIt/xYsHRcRb/42bNoK2Phh482aGmXlexKhUljUxCkvLK6trxfXSxubW9o65u9eSYSwwaeKQhaLjIUkY5aSpqGKkEwmCAo+Rtje6yurtRyIkDfm9GkfEDdCAU59ipLTUM8+cAKmh5yftFF7CYeUnbaTH0KEcznIvuUsfkmvoKBoQCftpzyxbVWsKuEjsnJRBjnrP/HL6IY4DwhVmSMqubUXKTZBQFDOSlpxYkgjhERqQrqYc6T1uMv0vhUda6UM/FDq4glP190SCAinHgac7s3PlfC0T/6t1Y+VfuAnlUawIx7NFfsygCmFmFuxTQbBiY00QFlTfCvEQCYSVtrSkTbDnX14krZOqbVXtxmm5dpvbUQQH4BBUgA3OQQ3cgDpoAgyewAt4A+/Gs/FqfBifs9aCkc/sgz8wJt83TKJ7</latexit> <latexit sha1_base64="9S+6LBM+NNL49YKd9aan/pE89oE=">AAACH3icbVBNS8NAEN3Ur1q/oh69LBahXkoiol6Egh701or9gCaWzXbTLt1swu5GKCH/xIt/xYsHRcRb/42bNoK2Phh482aGmXlexKhUljUxCkvLK6trxfXSxubW9o65u9eSYSwwaeKQhaLjIUkY5aSpqGKkEwmCAo+Rtje6yurtRyIkDfm9GkfEDdCAU59ipLTUM8+cAKmh5yftFF7CYeUnbaTH0KEcznIvuUsfkmvoKBoQCftpzyxbVWsKuEjsnJRBjnrP/HL6IY4DwhVmSMqubUXKTZBQFDOSlpxYkgjhERqQrqYc6T1uMv0vhUda6UM/FDq4glP190SCAinHgac7s3PlfC0T/6t1Y+VfuAnlUawIx7NFfsygCmFmFuxTQbBiY00QFlTfCvEQCYSVtrSkTbDnX14krZOqbVXtxmm5dpvbUQQH4BBUgA3OQQ3cgDpoAgyewAt4A+/Gs/FqfBifs9aCkc/sgz8wJt83TKJ7</latexit> <latexit sha1_base64="9S+6LBM+NNL49YKd9aan/pE89oE=">AAACH3icbVBNS8NAEN3Ur1q/oh69LBahXkoiol6Egh701or9gCaWzXbTLt1swu5GKCH/xIt/xYsHRcRb/42bNoK2Phh482aGmXlexKhUljUxCkvLK6trxfXSxubW9o65u9eSYSwwaeKQhaLjIUkY5aSpqGKkEwmCAo+Rtje6yurtRyIkDfm9GkfEDdCAU59ipLTUM8+cAKmh5yftFF7CYeUnbaTH0KEcznIvuUsfkmvoKBoQCftpzyxbVWsKuEjsnJRBjnrP/HL6IY4DwhVmSMqubUXKTZBQFDOSlpxYkgjhERqQrqYc6T1uMv0vhUda6UM/FDq4glP190SCAinHgac7s3PlfC0T/6t1Y+VfuAnlUawIx7NFfsygCmFmFuxTQbBiY00QFlTfCvEQCYSVtrSkTbDnX14krZOqbVXtxmm5dpvbUQQH4BBUgA3OQQ3cgDpoAgyewAt4A+/Gs/FqfBifs9aCkc/sgz8wJt83TKJ7</latexit> 1. 2. 3. 4. Deep Neural Network Network weights/biases 27
  21. STOCHASTIC ELLIPTIC PDE Table : Test set RMSE comparison for

    long and short correlation length cases. Short correlation length ( 0.01 ) Long correlation length ( 1.0 ) 29
  22. To be determined from data: • L: number of layers

    • d: number of nodes in last layer before output PARAMETERIZED ARCHITECTURE 31 Width of kth layer: Uniquely determined by L and d Deep Neural Network Network weights/biases D
  23. MODEL SELECTION - WORKFLOW 32 Generate grid of L and

    d Bayesian global optimization for λ at all grid locations Use best estimate of λ, L and d to train final network. EMBARASSINGLY PARALLELIZABLE ! We need to pick: 1. The number of layers, L. 2. The size of the active subspace encoding, d. 3. The regularization constant, λ.
  24. 33 u = 0, 8x1 = 1, u = 1,

    8x1 = 0, @u @n = 0, 8x2 = 1. PDE: Boundary conditions: Uncertain diffusion: log Exponential covariance: STOCHASTIC ELLIPTIC PDE SETUP
  25. 35 o2000 random conductivities generated by: • Sampling length-scales [1].

    • Sampling the conductivity on a 32x32 grid. oFor each one of the sampled conductivities, we solved the PDE on a 32x32 grid. u(x, ✓) <latexit sha1_base64="ErE6xeO1oqTds87eAIYJzhu3d/o=">AAACJXicbVDLSgMxFM3UV62vqks3wSIoSJkRQRcuim5cKlgtdErJZO60oZkHyR2xDPMzbvwVNy4sIrjyV8zUgtp6IOTk3EfuPV4ihUbb/rBKc/MLi0vl5crK6tr6RnVz61bHqeLQ5LGMVctjGqSIoIkCJbQSBSz0JNx5g4sifncPSos4usFhAp2Q9SIRCM7QSN3q2Z4bMux7QfaQV9L9n8chzdxx+0yBn1PXi6Wvh6G5Mhf7gCzPD7rVml23x6CzxJmQGpngqlsduX7M0xAi5JJp3XbsBDsZUyi4hLziphoSxgesB21DIxaC7mTjMXK6ZxSfBrEyJ0I6Vn9XZCzUxYQms9hCT8cK8b9YO8XgtJOJKEkRIv79UZBKijEtLKO+UMBRDg1hXAkzK+V9phhHY2zFmOBMrzxLbo/qjl13ro9rjfOJHWWyQ3bJPnHICWmQS3JFmoSTR/JMXsnIerJerDfr/Tu1ZE1qtskfWJ9fggumgw==</latexit> <latexit sha1_base64="ErE6xeO1oqTds87eAIYJzhu3d/o=">AAACJXicbVDLSgMxFM3UV62vqks3wSIoSJkRQRcuim5cKlgtdErJZO60oZkHyR2xDPMzbvwVNy4sIrjyV8zUgtp6IOTk3EfuPV4ihUbb/rBKc/MLi0vl5crK6tr6RnVz61bHqeLQ5LGMVctjGqSIoIkCJbQSBSz0JNx5g4sifncPSos4usFhAp2Q9SIRCM7QSN3q2Z4bMux7QfaQV9L9n8chzdxx+0yBn1PXi6Wvh6G5Mhf7gCzPD7rVml23x6CzxJmQGpngqlsduX7M0xAi5JJp3XbsBDsZUyi4hLziphoSxgesB21DIxaC7mTjMXK6ZxSfBrEyJ0I6Vn9XZCzUxYQms9hCT8cK8b9YO8XgtJOJKEkRIv79UZBKijEtLKO+UMBRDg1hXAkzK+V9phhHY2zFmOBMrzxLbo/qjl13ro9rjfOJHWWyQ3bJPnHICWmQS3JFmoSTR/JMXsnIerJerDfr/Tu1ZE1qtskfWJ9fggumgw==</latexit> <latexit sha1_base64="ErE6xeO1oqTds87eAIYJzhu3d/o=">AAACJXicbVDLSgMxFM3UV62vqks3wSIoSJkRQRcuim5cKlgtdErJZO60oZkHyR2xDPMzbvwVNy4sIrjyV8zUgtp6IOTk3EfuPV4ihUbb/rBKc/MLi0vl5crK6tr6RnVz61bHqeLQ5LGMVctjGqSIoIkCJbQSBSz0JNx5g4sifncPSos4usFhAp2Q9SIRCM7QSN3q2Z4bMux7QfaQV9L9n8chzdxx+0yBn1PXi6Wvh6G5Mhf7gCzPD7rVml23x6CzxJmQGpngqlsduX7M0xAi5JJp3XbsBDsZUyi4hLziphoSxgesB21DIxaC7mTjMXK6ZxSfBrEyJ0I6Vn9XZCzUxYQms9hCT8cK8b9YO8XgtJOJKEkRIv79UZBKijEtLKO+UMBRDg1hXAkzK+V9phhHY2zFmOBMrzxLbo/qjl13ro9rjfOJHWWyQ3bJPnHICWmQS3JFmoSTR/JMXsnIerJerDfr/Tu1ZE1qtskfWJ9fggumgw==</latexit> STOCHASTIC ELLIPTIC PDE DATA [1] - Rohit K Tripathy and Ilias Bilionis. Deep UQ: Learning deep neural network surrogate models for high dimensional uncertainty quantification. Journal of Computational Physics, 375:565–588, 2018.
  26. 36 STOCHASTIC ELLIPTIC PDE MODEL SELECTION Lowest Validation error (and

    selected DNN) Bayesian Global Optimization Negative Validation Error A different DNN trained with ADAM.
  27. 37 STOCHASTIC ELLIPTIC PDE PREDICTION Fig.: (From left column to

    right) (a) Input random field; (b) True (FEM) solution; (c) Predicted solution. Fig.: (Top) Histogram of R2 across test dataset. (Bottom) Histogram of relative errors across test dataset.
  28. PROPAGATING INPUT UNCERTAINTY SPDE WITH FIXED LENGTHSCALE 38 Fig.: Comparison

    of solution pdf at x = (0.484,0.484) obtained from MCS* and DNN surrogate. Fig. : Comparison of Monte Carlo* (left) mean and variance and surrogate (right) mean and variance for the PDE solution. FEM Surrogate
  29. PROPAGATING INPUT UNCERTAINTY SPDE WITH RANDOM LENGTHSCALE 39 Fig.: Comparison

    of solution pdf at x = (0.484,0.484) obtained from MCS* and DNN surrogate. Fig. : Comparison of Monte Carlo* (left) mean and variance and surrogate (right) mean and variance for the PDE solution.
  30. CONCLUDING REMARKS § Monte Carlo approach to UQ – infeasible

    due to slow convergence. § Surrogate approach to UQ – constrained by high-dimensionality and cost of numerical simulator. § Strategy – find suitable low-rank approximation of the stochastic parameter space: • Optimal linear projections for capturing directions of maximal variation of QoI gradient (active subspace). • Nonlinear manifold capturing QoI variability (deep neural networks). § Limitations with proposed approaches – • Scalability concerns with GPs. • Incorporation of rigorous priors (continuity/smoothness etc.) in DNNs. • Incorporation of physical constraints. 40
  31. CONCLUDING REMARKS § Ongoing/future work – • Encoding physical laws

    into statistical models (physics-informed machine learning). • Synthesizing information from multiple sources of varying levels of fidelity (multifidelity surrogate modeling & uncertainty quantification). • Exploiting group-theoretic structure in dynamical systems. • Developing surrogates robust to non-stationarities, discontinuities etc. 41
  32. REFERENCES 42 [1] Rohit Tripathy, Ilias Bilionis, and Marcial Gonzalez.

    Gaussian processes with built-in dimensionality re- duction: Applications to high-dimensional uncertainty propagation. Journal of Computational Physics, 321:191–223, 2016. [2] Rohit K Tripathy and Ilias Bilionis. Deep UQ: Learning deep neural network surrogate models for high dimensional uncertainty quantification. Journal of Computational Physics, 375:565–588, 2018. [3] Rohit Tripathy and Ilias Bilionis. Deep active subspaces–a scalable method for high-dimensional uncertainty propagation. arXiv preprint arXiv:1902.10527, 2019. [4] Rohit Tripathy and Ilias Bilionis. Learning deep neural network (DNN) surrogate models for UQ. SIAM UQ, 2018. [5] Sharmila Karumuri, Rohit Tripathy, Ilias Bilionis, and Jitesh Panchal. Simulator-free solution of high- dimensional stochastic elliptic partial differential equations using deep neural networks. arXiv preprint arXiv:1902.05200, 2019.