Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
DeepRacer for learning RL
Search
Sponsored
·
SiteGround - Reliable hosting with speed, security, and support you can count on.
→
貞松政史
April 06, 2019
Technology
0
1.4k
DeepRacer for learning RL
2019.4.6 Developers.IO at OKAYAMA.
貞松政史
April 06, 2019
Tweet
Share
More Decks by 貞松政史
See All by 貞松政史
Amazon Forecast亡き今、我々がマネージドサービスに頼らず時系列予測を実行する方法
sadynitro
0
1.2k
今日のハイライトをシステマティックに
sadynitro
1
82
はじめてのレコメンド〜Amazon Personalizeを使った推薦システム超超超入門〜
sadynitro
2
2.5k
予知保全利用を目指した外観検査AIの開発 〜画像処理AIを用いた外観画像に対する異常検知〜
sadynitro
0
1.2k
20230904_GoogleCloudNext23_Recap_AI_ML
sadynitro
0
920
Foundation Model全盛時代を生きるAI/MLエンジニアの生存戦略
sadynitro
0
1k
Amazon SageMakerが存在しない世界線 のAWS上で実現する機械学習基盤
sadynitro
0
300
Amazon SageMakerが存在しない世界線のAWS上で実現する機械学習基盤
sadynitro
0
2.1k
みんな大好き強化学習
sadynitro
0
1.3k
Other Decks in Technology
See All in Technology
ClickHouseはどのように大規模データを活用したAIエージェントを全社展開しているのか
mikimatsumoto
0
230
GitLab Duo Agent Platform × AGENTS.md で実現するSpec-Driven Development / GitLab Duo Agent Platform × AGENTS.md
n11sh1
0
130
SREが向き合う大規模リアーキテクチャ 〜信頼性とアジリティの両立〜
zepprix
0
450
SREじゃなかった僕らがenablingを通じて「SRE実践者」になるまでのリアル / SRE Kaigi 2026
aeonpeople
6
2.3k
Amazon Bedrock Knowledge Basesチャンキング解説!
aoinoguchi
0
140
What happened to RubyGems and what can we learn?
mikemcquaid
0
290
Introduction to Sansan for Engineers / エンジニア向け会社紹介
sansan33
PRO
6
68k
名刺メーカーDevグループ 紹介資料
sansan33
PRO
0
1k
Introduction to Sansan, inc / Sansan Global Development Center, Inc.
sansan33
PRO
0
3k
SREのプラクティスを用いた3領域同時 マネジメントへの挑戦 〜SRE・情シス・セキュリティを統合した チーム運営術〜
coconala_engineer
2
640
Claude_CodeでSEOを最適化する_AI_Ops_Community_Vol.2__マーケティングx_AIはここまで進化した.pdf
riku_423
2
560
学生・新卒・ジュニアから目指すSRE
hiroyaonoe
2
600
Featured
See All Featured
The Impact of AI in SEO - AI Overviews June 2024 Edition
aleyda
5
730
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
287
14k
Embracing the Ebb and Flow
colly
88
5k
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.7k
Product Roadmaps are Hard
iamctodd
PRO
55
12k
Bridging the Design Gap: How Collaborative Modelling removes blockers to flow between stakeholders and teams @FastFlow conf
baasie
0
450
Making Projects Easy
brettharned
120
6.6k
Done Done
chrislema
186
16k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.2k
My Coaching Mixtape
mlcsv
0
48
Visualization
eitanlees
150
17k
The Language of Interfaces
destraynor
162
26k
Transcript
4 D 29 26 1 . 0 I 1
& .-* (2 ,0'/4"# 51 83;7 +)
!&%$9( 6: Attention
3 #cmdevio2019
4 os t m ( L @S g E b
i _d L rMI D @ E ( ( ( ) ( e a n k AWS E
5 DeepRacer
6 D
7 ) (
8 …
9 DeepRacer 4 D 26 9 01 .
10 DeepRacer A A A
11
1 2 3
12 DeepRacer
13
14 DeepRacer 1/18
3D AWS DeepRacer League
15 DeepRacer https://aws.amazon.com/jp/deepracer/
16 DeepRacer ! &%$ +)*2 1 '/*2
(#-, 0. "
17 3D AWS RoboMaker Robot Operating System (ROS) Gazebo rqt
18 AWS DeepRacer League ⁻ 0 1 : 9 A
⁻ 9 2 R ⁻ ⁻ D I ⁻ 1 2 ⁻ https://aws.amazon.com/jp/deepracer/league/
19
20 (Artificial Intelligence, AI) (Machine Learning, ML)
NeuralNetwork DeepLearning
21
22 = 1 (
) ( (
23 L N - ) ( - D Q
24 DeepRacer Cliped PPO PPO (Proximal
Policy Optimization) OpenAI2017
25 ( ( )
)
26 1
27 ) () (
28 DeepRacer
29 DeepRacer + + +
30 DeepRacer
31 DeepRacer …
32 DeepRacer
33 orz
34 DeepRacer + + +
35 DeepRacer D A D
36 $ ' + (# &!
%"
37 ( ) ) https://docs.aws.amazon.com/ja_jp /deepracer/latest/developerguide/ deepracer-train-models-define- reward-function.html
38
39 ⁻ 10 ⁻
:
40 SageMaker RL + RoboMaker
41 SageMeker RLRoboMakerGA
42 SageMaker “RL” ⁻ ⁻ M ⁻ M M
⁻ M ⁻ ⁻ ⁻ J M S
43 DeepRacer ) D ( ) ) ( )
44 SageMaker
https://dev.classmethod.jp/machine -learning/sagemaker-robomaker- deepracer-sample/
45 $# "
! https://github.com/awslabs/amazon-sagemaker-examples
46 Jupyter !
47 ( ( )
48
49 2 1
50 2 2
51 (. ( )(
52 $2# " /1(+ $2#,- ! https://docs.aws.amazon.com/ja_jp/deepracer/latest/developerguide/deepracer -iteratively-enhance-reward-functions.html *
$2%) '.0& )
53 Best Practices when training with PPO
(Unity Technologies) https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Training-PPO.md
54 DeepRacer "% ! "%
$# ! !
55 DeepRacer
56 DeepRacer
57 DeepRacer
58 DeepRacer
59 DeepRacer
60
61 • g • + + • M D c
• R S D a k • b • LL e
62 DeepRacer
None