慧, B2B企業ブランド評価と株価の価値関連性の実証研究, 経営情報学会誌, 2020, 29 巻, 2 号, p. 87-104 2. Barabási, A. L., & Albert, R. (1999). Emergence of scaling in random networks. science, 286(5439), 509-512. 3. Bruna, J., Zaremba, W., Szlam, A., & Lecun, Y. (2014). Spectral networks and locally connected networks on graphs. In International Conference on Learning Representations (ICLR2014), CBLS, April 2014 [http://openreview.net/document/d332e77d- 459a-4af8-b3ed-55ba9662182c, http://arxiv.org/abs/1312.6203] 4. Cao, S., Lu, W., & Xu, Q. (2016, February). Deep neural networks for learning graph representations. In AAAI (Vol. 16, pp. 1145-1152). 5. Erdős, P., & Rényi, A. (1960). On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci, 5(1), 17-60. 6. Grover, A., & Leskovec, J. (2016, August). node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 855-864). 7. Grover, A., Zweig, A., & Ermon, S. (2019, May). Graphite: Iterative generative modeling of graphs. In International conference on machine learning (pp. 2434- 2444). PMLR. 8. Hamilton, W., Ying, Z., & Leskovec, J. (2017). Inductive representation learning on large graphs. In Advances in neural information processing systems (pp. 1024-1034). 9. Holland, P. W., & Leinhardt, S. (1981). An exponential family of probability distributions for directed graphs. Journal of the american Statistical association, 76(373), 33-50. 10. Kipf, T. N., & Welling, M. (2016). Variational graph auto-encoders. arXiv preprint arXiv:1611.07308. 11. Lerer, A., Wu, L., Shen, J., Lacroix, T., Wehrstedt, L., Bose, A., & Peysakhovich, A. (2019). Pytorch-biggraph: A large-scale graph embedding system. arXiv preprint arXiv:1903.12287.
K. (2020). Identification of B2B Brand Components and their Performanceʼs Relevance Using a Business Card Exchange Network, Pacific Rim Knowledge Acquisition Workshop, PKAW 2020. 13. Massey, K. (1997). Statistical models applied to the rating of sports teams. Bluefield College. 14. Newman, M. E., Strogatz, S. H., & Watts, D. J. (2001). Random graphs with arbitrary degree distributions and their applications. Physical review E, 64(2), 026118. 15. Perozzi, B., Al-Rfou, R., & Skiena, S. (2014, August). Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 701-710). 16. Robins, G., Pattison, P., Kalish, Y., & Lusher, D. (2007). An introduction to exponential random graph (p*) models for social networks. Social networks, 29(2), 173-191. 17. Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., & Monfardini, G. (2008). The graph neural network model. IEEE Transactions on Neural Networks, 20(1), 61-80. 18. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., & Mei, Q. (2015, May). Line: Large-scale information network embedding. In Proceedings of the 24th international conference on world wide web (pp. 1067-1077). 19. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2017). Graph attention networks. arXiv preprint arXiv:1710.10903. 20. Wang, D., Cui, P., & Zhu, W. (2016, August). Structural deep network embedding. In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 1225-1234). 21. Wasserman, S., & Pattison, P. (1996). Logit models and logistic regressions for social networks: I. An introduction to Markov graphs andp. Psychometrika, 61(3), 401-425. 22. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ʻsmall-worldʼnetworks. nature, 393(6684), 440-442.