$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Image recognition of handwritten digits in MNIS...
Search
Dimitris Spathis
January 17, 2016
Research
0
400
Image recognition of handwritten digits in MNIST and flower classification in IRIS dataset
Code available here
https://github.com/sdimi/handwritten-digits-recognition
Dimitris Spathis
January 17, 2016
Tweet
Share
More Decks by Dimitris Spathis
See All by Dimitris Spathis
Song analysis "Jueves - La Oreja de Van Gogh "
sdimi
0
720
Wikipedia graph network analysis
sdimi
0
150
Character level LSTM Recurrent Neural Networks for language and music modeling
sdimi
0
310
Topic modeling and summarization of live TV shows via Twitter
sdimi
0
140
Diagnosing respiratory diseases with machine learning
sdimi
0
170
Detecting Irony on Greek Political Tweets: A Text Mining Approach
sdimi
0
120
Greece Unknown Facts
sdimi
1
190
Glocal News - Discover Top Local News, Globally.
sdimi
0
200
Responsive Web - Mobile First. An overview.
sdimi
1
190
Other Decks in Research
See All in Research
国際論文を出そう!ICRA / IROS / RA-L への論文投稿の心構えとノウハウ / RSJ2025 Luncheon Seminar
koide3
11
6.4k
大学見本市2025 JSTさきがけ事業セミナー「顔の見えないセンシング技術:多様なセンサにもとづく個人情報に配慮した人物状態推定」
miso2024
0
190
まずはここから:Overleaf共同執筆・CopilotでAIコーディング入門・Codespacesで独立環境
matsui_528
2
930
競合や要望に流されない─B2B SaaSでミニマム要件を決めるリアルな取り組み / Don't be swayed by competitors or requests - A real effort to determine minimum requirements for B2B SaaS
kaminashi
0
350
製造業主導型経済からサービス経済化における中間層形成メカニズムのパラダイムシフト
yamotty
0
310
Tiaccoon: Unified Access Control with Multiple Transports in Container Networks
hiroyaonoe
0
160
Aurora Serverless からAurora Serverless v2への課題と知見を論文から読み解く/Understanding the challenges and insights of moving from Aurora Serverless to Aurora Serverless v2 from a paper
bootjp
5
830
湯村研究室の紹介2025 / yumulab2025
yumulab
0
270
J-RAGBench: 日本語RAGにおける Generator評価ベンチマークの構築
koki_itai
0
1.1k
AIスパコン「さくらONE」のLLM学習ベンチマークによる性能評価 / SAKURAONE LLM Training Benchmarking
yuukit
2
900
"主観で終わらせない"定性データ活用 ― プロダクトディスカバリーを加速させるインサイトマネジメント / Utilizing qualitative data that "doesn't end with subjectivity" - Insight management that accelerates product discovery
kaminashi
15
17k
AlphaEarth Foundations: An embedding field model for accurate and efficient global mapping from sparse label data
satai
3
570
Featured
See All Featured
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
Code Review Best Practice
trishagee
74
19k
Chasing Engaging Ingredients in Design
codingconduct
0
78
Facilitating Awesome Meetings
lara
57
6.7k
How GitHub (no longer) Works
holman
316
140k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.8k
The Cost Of JavaScript in 2023
addyosmani
55
9.4k
The untapped power of vector embeddings
frankvandijk
1
1.5k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
122
21k
The Language of Interfaces
destraynor
162
25k
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.3k
Embracing the Ebb and Flow
colly
88
4.9k
Transcript
Αναγνώριση χειρόγραφων χαρακτήρων στο MNIST dataset & φυτών στο IRIS
dataset με μεθόδους μηχανικής μάθησης Δημήτρης Σπαθής Εξαμηνιαία εργασία – Ιαν 2016 Υπολογιστική Νοημοσύνη – Στατιστική Μάθηση Καθ.: Αναστάσιος Τέφας
MNIST dataset 70.000 εικόνες 28 x 28 pixel 784 διαστάσεις
60.000 train 10.000 test {0,1,2,..9} multi-class
Εργαλεία Python python.org Scikit – learn scikit-learn.org Matplotlib matplotlib.org Numpy
numpy.org
Προεπεξεργασία δεδομένων Ανακάτεμα δειγμάτων X, y = shuffle(mnist.data, mnist.target) Κανονικοποίηση
pixels [0,1] X_train, y_train = np.float32(X[:60000])/ 255., np.float32(y[:60000])
Κρατάμε 90 components 90,3% της αρχικής πληροφορίας PCA – Μείωση
Διάστασης (784 → 90)
Εκπαίδευση SVM fitting classifier = svm.SVC(gamma=0.01, C=3, kernel='rbf') 5 Cross
validation cross_validation.cross_val_score(classifier, X_train, y_train, cv=5)
Αποτελέσματα εκπαίδευσης
Παραδείγματα ταξινόμησης
Μείωση Διάστασης Kernel PCA (784 → 300) kpca = KernelPCA(kernel="rbf",n_components=300
, gamma=1) LDA (300 → 9) lda = LDA() #should keep [classes – 1] components
Nearest Classifier K Nearest Neighbor clf = neighbors.KNeighborsClassifier(n_neighbors=5) Nearest Centroid
classifier = NearestCentroid(metric='euclidean', shrink_threshold=None)
Αποτελέσματα εκπαίδευσης
Embedding για Μείωση Διάστασης (784 → 2) Spectral Embedding manifold.SpectralEmbedding
(n_components=2, affinity='nearest_neighbors', gamma=None, random_state=None, eigen_solver=None, n_neighbors=5) Isomap Embedding manifold.Isomap(n_neighbors=5, n_components=2)
Spectral Clustering Kρατάμε 5000 δείγματα για οπτικοποίηση Spectral Clustering cluster.SpectralClustering(n_clusters=10,
eigen_solver='arpack', affinity="nearest_neighbors")
None
None
Αποτελέσματα clustering
IRIS dataset 150 λουλούδια 4 διαστάσεις sepal length sepal width
petal length petal width 3 κλάσεις Iris Setosa Iris Versicolour Iris Virginica
Αποτελέσματα SVM εκπαίδευσης
SVM fine-tuning C
SVM fine-tuning Degree
SVM fine-tuning Gamma
Μείωση Διάστασης
None
Αποτελέσματα clustering & embedding
None
None
Further work Kernel PCA – Memory Errors Incremental PCA Grid
Search Deep Architectures Distributed / Parallel MapReduce / Spark Κώδικας σύντομα στο github.com/sdimi