Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Speaker Deck
PRO
Sign in
Sign up for free
ペチコン2019資料
Senoue
January 28, 2019
Technology
1
120
ペチコン2019資料
Senoue
January 28, 2019
Tweet
Share
More Decks by Senoue
See All by Senoue
GoでMecab
senoue
0
120
GKEとGoでエフェメラルなサービス
senoue
0
210
GAEのlogはStackDriverがいろいろやってくれている
senoue
1
320
GCPUG 仙台
senoue
1
230
Other Decks in Technology
See All in Technology
A3-1 IBM Championが本音で語る「IBM Cloud」
kolinz
0
300
IBM Cloud Festa Online 2022 Summer
1ftseabass
PRO
0
190
EC/CRMの自社サービス開発をマネジメントするようになって1年でやってきたこととこれから / devio2022-takano-sho-road-to-good-development-team-management
masaru_b_cl
0
400
DMMプラットフォーム ゼロから始めるKubernetes運用 課題と改善
pospome
0
400
SBOMを利用したソフトウェアサプライチェーンの保護
masahiro331
1
190
ログ集約基盤をCloudWatchからOpenSearchに変えてみた
yuhta28
0
130
MySQL v5.7 勉強会/study-mysql-ver-5-7
andpad
0
2k
Istioを活用したセキュアなマイクロサービスの実現/Secure Microservices with Istio
ido_kara_deru
3
390
ログラスを支える技術的投資の仕組み / loglass-technical-investment
urmot
9
1.9k
ECS on EC2 で Auto Scaling やってみる!
sayjoy
1
140
やってみたLT会 Fleet Managerのススメ
yukiiiiikuma
PRO
0
380
今 SLI/SLO の監視をするなら Sloth が良さそうという話
shotakitazawa
1
270
Featured
See All Featured
Done Done
chrislema
174
14k
Bash Introduction
62gerente
598
210k
What's new in Ruby 2.0
geeforr
335
30k
A Philosophy of Restraint
colly
192
15k
Designing for Performance
lara
597
63k
Streamline your AJAX requests with AmplifyJS and jQuery
dougneiner
127
8.5k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
212
20k
Become a Pro
speakerdeck
PRO
3
900
How STYLIGHT went responsive
nonsquared
85
4k
Rebuilding a faster, lazier Slack
samanthasiow
62
7.3k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
29
4.4k
Designing for humans not robots
tammielis
241
24k
Transcript
DWH (データウェアハウス) つくってみた、くらべてみた 株式会社ビデオマーケット 瀬上 祐匡 2019/1/26 PHPカンファレンス仙台2019
瀬上 祐匡(せのうえ ひろまさ) 株式会社ビデオマーケット サーバサイドエンジニア 現在、GAE/Go で、サービス開発をおこなってます。 直近は、AppleTVのサーバサイド、バックオフィスシステムの構築・改修(Laravel) 仙台市出身 ビデオマーケット入社3年目。
前職は、受託開発+自社サービスの開発・運営(LAPP+cakePHP) 好きなサービスは、Cloud Function 茂庭台中学校のPTA会長やってます モノノフです。ハリネズミ飼ってます Twitter @senoue Facebook senoue.hiromasa 自己紹介
株式会社ビデオマーケット 2005年6月 フィーチャーフォン向け、Video On Demand(VOD)事業を開始 2011年8月 スマートフォン向け開始 2014年6月 PC向け配信開始 2016年3月 仙台オフィス開設 2017年8月 配信作品本数 20万本達成 海外・国内ドラマ、アニメ、バラエティ番組など20万本以上を配信
最新作品ほぼあります。 自社サービス以外にも、 music.jp、dmm.com とも 業務連携中 沿革
DHW構築にあたって つくってみた くらべてみた
DHWってなに? データウェアハウスとは、直訳すれば「データの倉庫」である。利用者により定義範囲は異なるが、一般に時 系列に整理された大量の統合業務データ、もしくはその管理システムを指す。 参考:Wikipedia 自分の理解 BIを利用するのに、分析情報(顧客情報、購買履歴)などを 適切な形で、運用に影響の出ないようにデータを貯めておくもの で、取り出しやすいように、データの整理をしておけば、 どんな形でもOK データレイク、データマートなるものもある?
単純にコピーするだけでなく、データの整形なんかも必要そう
データベースの把握 会員情報:数百万件・・・ログインID 利用履歴:数千万件・・・操作ログ 購入情報:数千万件 作品情報:数十万件 データベースは、負荷分散のため、 3つに分かれています。 毎日DWHに差分を、保存する必要がある
くらべるもの GCP AWS
なにで作る? 1.世の中的にPythonがいいらしいから、Pythonを使おう 2.管理画面とか作りたくないから、Jupyter Notebook でごまかそ う 3.GCPとかいろいろ使ってみたいな 4.あとでAIとかつかってごにょごにょしたいな さて、方向性は決まったので、 どうやって実現するかを、
メンバーと考えました。
最初に考えたアーキテクチャ
まず検証環境構築 コンテナ環境:mariadb-columnstore-docker/columnstore-jupyter $docker-compose up -d http://localhost:8888 5分で完成しました。 コンテナ素晴らしいですね でしょ
作って動かしてみた pandas,matplotlib, google.cloud, boto3のパッケージを利用。 Jupyter なので、簡単に作成できます。 テーブルは、3つに分散されているので、 CSVは3ファイルづつ作成されます。
データレイクの確認 データレイク(S3 or GCP) にCSVファイルで保存されました。 これを毎日、動かせば、 差分のデータ作成は終了です。 Pandasで、CSVの作成もラクラクです。 ※3行で出来ちゃいます。 でしょ
パンダ最高
ETLの検証 Extract/Transform/Load(略称:ETL)とは、データウェアハウスにおける以下のような 工程を指す。 Extract - 外部の情報源からデータを抽出 Transform - 抽出したデータをビジネスでの必要に応じて変換・加工 Load
- 最終的ターゲット(すなわちデータウェアハウス)に変換・加工済みのデータをロード 参考:Wekipedia AWS・・・Athena、Glue GCP・・・Dataflow こちらも早速使ってみましたが。高い・・・あっという間に、無料枠を使っちゃいまし た。 しかも、使い勝手よくない!ということで・・・
ETLの設計 というわけで、作りました。 AWS・・・Lambda GCP・・・CloudFunction こちらも、Pythonで作りました S3もGCPも、イベント駆動が簡単にできます 特定のディレクトリにファイルが入ったら、 データをマージするように設計します ※サンプルは、Lambdaです
定時バッチの仕様 データの差分取り込み - upsert,margeを実行 - 作品データなどは小さいので洗い替え - 毎日5:00に可動
フロー図
実際の計測結果 CSV・・・自社DBから、CSVの作成 StagingDB・・・TempDBへのCSVインサート UPSERT・・・TempDBから、MasterDBへのDELETE&INSERT、もしくはマージ データの送信は、GCSが早い、 マージはRedshift速いですね、GCPの3倍近く早い。 AWS GCP AWS GCP
AWS GCP CSV StagingDB UPSERT 会員情報 14.00 4.22 5.87 35.41 6.30 18.09 操作ログ 50.50 9.07 8.95 56.31 9.65 29.98 購入履歴 30.24 7.80 8.47 46.18 8.98 22.18 単位:秒
金額でくらべてみました【AWS】 - Redshift・・・時間課金( 0.314USD/時間) - Lambda・・・実行数課金 (無料枠:1,000,000件リクエスト有 - S3・・・データ量課金 (当初3年分保管予定)
金額でくらべてみました【GCP】 - BigQuery・・・クエリからデータ取得料で金額が変わる、 *だと無駄になる。 同じクエリならキャッシュされるので、比較的安価(スト レージ+クエリ数) - Cloud Function・・・実行数課金 (無料枠:200万回)
- GCS・・・データ量+データのアクセス頻度で課金 (Nearline Storage:$0.01/GB)
金額でくらべてみました Service DWH ETL ストレージ 合計 条件 21GB/月 300万回 30GB/月
AWS 25,094.0 22.2 2.8 25,119円 GCP 1,509.0 44.4 33.3 1,586円 GCP 圧勝
最終的に現在の構成はこうなった 最終的に、、、、 AWSでリザーブドの環境を準備することになりました。 - 定額である+年払いするとやすかった - Tableauとの相性がBigQueryが悪かった - 他社実績なども考慮 ということで、現在運用中です
できたこと □負荷低減[Load reduction] 単純作業なので、サーバへの負荷0kcal □コスト削減[Cost reduction] バッチを作りつつ、管理画面も作れた。 その上でベンチマークも取れる。 現在も、4ヶ月になりますが、順調に動作しています。
できなかったこと ▪Notebook→pyへは、変換作業が必要 直接実行ファイルにすることはできなかった。 ▪バッチのトリガーは結果、Shellにしてしまった cronで実行するにあたって、エラー処理も含め、結果shellに なった この辺は、今後の課題です。
結果的に何がよかった? 仙台出身のしがないエンジニアですが、今回のようなデータ分析など の業務に携わることができています。 自由な言語で開発をしてみましょう。 趣味でもいいです、とりあえず、触ってみましょう。 PHPを否定しているわけではないです。 他の言語にふれることで、PHPの新たな発見もあります。
時代はデータドリブンである - データを見ることでわかることがたくさんある - 実際にやってみることで、新しいキヅキがある - 最初は小さなデータでもいいので、集めてみよう - 継続的に確認できるサービスにすべきである
ビデオマーケット宣伝 本日、ビデオマーケットブースにて、 VODサービスの利用状況の調査を 行っています。 お答え頂いた方にステッカーをプレゼント していますので、ぜひお立ち寄りください。 当社のVP of Engineering も会場におります
「Googleアシスタントアプリ開発入門」という 本もスタンプラリーでプレゼントしています。
ご清聴ありがとうございました。 ビデオマーケット仙台オフィスでは、エンジニアの採用を行っております。 新しいことにも積極的にチャレンジしています。 ジョブボードも、掲載していますので、 ぜひ、一度オフィスに遊びにいらっしゃってください。 ・コーポレートサイト https://www.videomarket.co.jp/recruit-form/ ・Green https://www.green-japan.com/job/76539?case=login