Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ペチコン2019資料
Search
Senoue
January 28, 2019
Technology
1
210
ペチコン2019資料
Senoue
January 28, 2019
Tweet
Share
More Decks by Senoue
See All by Senoue
App_RunnerとRDSを活用したスケーラブルなWebAPI構築とインフラの自動化.pdf
senoue
1
45
チャンネルを完全に理解する
senoue
0
35
Real-time Communication in Go with Melody and WebSockets
senoue
0
130
Adobeの生成AIのこと を調べてみた
senoue
0
170
ソフトウェア開発におけるAI :CopilotとGenie
senoue
0
160
Sendai.go x GDG Cloud 仙台 ハンズオン
senoue
0
48
GoでMecab
senoue
0
350
GKEとGoでエフェメラルなサービス
senoue
0
370
GAEのlogはStackDriverがいろいろやってくれている
senoue
1
540
Other Decks in Technology
See All in Technology
マーケットプレイス版Oracle WebCenter Content For OCI
oracle4engineer
PRO
3
550
OPENLOGI Company Profile for engineer
hr01
1
20k
DevinでAI AWSエンジニア製造計画 序章 〜CDKを添えて〜/devin-load-to-aws-engineer
tomoki10
0
230
20250307_エンジニアじゃないけどAzureはじめてみた
ponponmikankan
2
200
どうすると生き残れないのか/how-not-to-survive
hanhan1978
2
940
事業を差別化する技術を生み出す技術
pyama86
2
550
Pwned Labsのすゝめ
ken5scal
2
580
CSPMとのつきあい方
nantokanare
0
100
ABWG2024採択者が語るエンジニアとしての自分自身の見つけ方〜発信して、つながって、世界を広げていく〜
maimyyym
1
230
Oracle Database Technology Night #87-1 : Exadata Database Service on Exascale Infrastructure(ExaDB-XS)サービス詳細
oracle4engineer
PRO
1
230
開発者のための FinOps/FinOps for Engineers
oracle4engineer
PRO
2
270
大規模アジャイルフレームワークから学ぶエンジニアマネジメントの本質
staka121
PRO
3
1.7k
Featured
See All Featured
Writing Fast Ruby
sferik
628
61k
Six Lessons from altMBA
skipperchong
27
3.6k
A Modern Web Designer's Workflow
chriscoyier
693
190k
Site-Speed That Sticks
csswizardry
4
420
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
Designing Experiences People Love
moore
140
23k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
46
2.4k
Thoughts on Productivity
jonyablonski
69
4.5k
GraphQLとの向き合い方2022年版
quramy
44
14k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
45
9.4k
A Philosophy of Restraint
colly
203
16k
Transcript
DWH (データウェアハウス) つくってみた、くらべてみた 株式会社ビデオマーケット 瀬上 祐匡 2019/1/26 PHPカンファレンス仙台2019
瀬上 祐匡(せのうえ ひろまさ) 株式会社ビデオマーケット サーバサイドエンジニア 現在、GAE/Go で、サービス開発をおこなってます。 直近は、AppleTVのサーバサイド、バックオフィスシステムの構築・改修(Laravel) 仙台市出身 ビデオマーケット入社3年目。
前職は、受託開発+自社サービスの開発・運営(LAPP+cakePHP) 好きなサービスは、Cloud Function 茂庭台中学校のPTA会長やってます モノノフです。ハリネズミ飼ってます Twitter @senoue Facebook senoue.hiromasa 自己紹介
株式会社ビデオマーケット 2005年6月 フィーチャーフォン向け、Video On Demand(VOD)事業を開始 2011年8月 スマートフォン向け開始 2014年6月 PC向け配信開始 2016年3月 仙台オフィス開設 2017年8月 配信作品本数 20万本達成 海外・国内ドラマ、アニメ、バラエティ番組など20万本以上を配信
最新作品ほぼあります。 自社サービス以外にも、 music.jp、dmm.com とも 業務連携中 沿革
DHW構築にあたって つくってみた くらべてみた
DHWってなに? データウェアハウスとは、直訳すれば「データの倉庫」である。利用者により定義範囲は異なるが、一般に時 系列に整理された大量の統合業務データ、もしくはその管理システムを指す。 参考:Wikipedia 自分の理解 BIを利用するのに、分析情報(顧客情報、購買履歴)などを 適切な形で、運用に影響の出ないようにデータを貯めておくもの で、取り出しやすいように、データの整理をしておけば、 どんな形でもOK データレイク、データマートなるものもある?
単純にコピーするだけでなく、データの整形なんかも必要そう
データベースの把握 会員情報:数百万件・・・ログインID 利用履歴:数千万件・・・操作ログ 購入情報:数千万件 作品情報:数十万件 データベースは、負荷分散のため、 3つに分かれています。 毎日DWHに差分を、保存する必要がある
くらべるもの GCP AWS
なにで作る? 1.世の中的にPythonがいいらしいから、Pythonを使おう 2.管理画面とか作りたくないから、Jupyter Notebook でごまかそ う 3.GCPとかいろいろ使ってみたいな 4.あとでAIとかつかってごにょごにょしたいな さて、方向性は決まったので、 どうやって実現するかを、
メンバーと考えました。
最初に考えたアーキテクチャ
まず検証環境構築 コンテナ環境:mariadb-columnstore-docker/columnstore-jupyter $docker-compose up -d http://localhost:8888 5分で完成しました。 コンテナ素晴らしいですね でしょ
作って動かしてみた pandas,matplotlib, google.cloud, boto3のパッケージを利用。 Jupyter なので、簡単に作成できます。 テーブルは、3つに分散されているので、 CSVは3ファイルづつ作成されます。
データレイクの確認 データレイク(S3 or GCP) にCSVファイルで保存されました。 これを毎日、動かせば、 差分のデータ作成は終了です。 Pandasで、CSVの作成もラクラクです。 ※3行で出来ちゃいます。 でしょ
パンダ最高
ETLの検証 Extract/Transform/Load(略称:ETL)とは、データウェアハウスにおける以下のような 工程を指す。 Extract - 外部の情報源からデータを抽出 Transform - 抽出したデータをビジネスでの必要に応じて変換・加工 Load
- 最終的ターゲット(すなわちデータウェアハウス)に変換・加工済みのデータをロード 参考:Wekipedia AWS・・・Athena、Glue GCP・・・Dataflow こちらも早速使ってみましたが。高い・・・あっという間に、無料枠を使っちゃいまし た。 しかも、使い勝手よくない!ということで・・・
ETLの設計 というわけで、作りました。 AWS・・・Lambda GCP・・・CloudFunction こちらも、Pythonで作りました S3もGCPも、イベント駆動が簡単にできます 特定のディレクトリにファイルが入ったら、 データをマージするように設計します ※サンプルは、Lambdaです
定時バッチの仕様 データの差分取り込み - upsert,margeを実行 - 作品データなどは小さいので洗い替え - 毎日5:00に可動
フロー図
実際の計測結果 CSV・・・自社DBから、CSVの作成 StagingDB・・・TempDBへのCSVインサート UPSERT・・・TempDBから、MasterDBへのDELETE&INSERT、もしくはマージ データの送信は、GCSが早い、 マージはRedshift速いですね、GCPの3倍近く早い。 AWS GCP AWS GCP
AWS GCP CSV StagingDB UPSERT 会員情報 14.00 4.22 5.87 35.41 6.30 18.09 操作ログ 50.50 9.07 8.95 56.31 9.65 29.98 購入履歴 30.24 7.80 8.47 46.18 8.98 22.18 単位:秒
金額でくらべてみました【AWS】 - Redshift・・・時間課金( 0.314USD/時間) - Lambda・・・実行数課金 (無料枠:1,000,000件リクエスト有 - S3・・・データ量課金 (当初3年分保管予定)
金額でくらべてみました【GCP】 - BigQuery・・・クエリからデータ取得料で金額が変わる、 *だと無駄になる。 同じクエリならキャッシュされるので、比較的安価(スト レージ+クエリ数) - Cloud Function・・・実行数課金 (無料枠:200万回)
- GCS・・・データ量+データのアクセス頻度で課金 (Nearline Storage:$0.01/GB)
金額でくらべてみました Service DWH ETL ストレージ 合計 条件 21GB/月 300万回 30GB/月
AWS 25,094.0 22.2 2.8 25,119円 GCP 1,509.0 44.4 33.3 1,586円 GCP 圧勝
最終的に現在の構成はこうなった 最終的に、、、、 AWSでリザーブドの環境を準備することになりました。 - 定額である+年払いするとやすかった - Tableauとの相性がBigQueryが悪かった - 他社実績なども考慮 ということで、現在運用中です
できたこと □負荷低減[Load reduction] 単純作業なので、サーバへの負荷0kcal □コスト削減[Cost reduction] バッチを作りつつ、管理画面も作れた。 その上でベンチマークも取れる。 現在も、4ヶ月になりますが、順調に動作しています。
できなかったこと ▪Notebook→pyへは、変換作業が必要 直接実行ファイルにすることはできなかった。 ▪バッチのトリガーは結果、Shellにしてしまった cronで実行するにあたって、エラー処理も含め、結果shellに なった この辺は、今後の課題です。
結果的に何がよかった? 仙台出身のしがないエンジニアですが、今回のようなデータ分析など の業務に携わることができています。 自由な言語で開発をしてみましょう。 趣味でもいいです、とりあえず、触ってみましょう。 PHPを否定しているわけではないです。 他の言語にふれることで、PHPの新たな発見もあります。
時代はデータドリブンである - データを見ることでわかることがたくさんある - 実際にやってみることで、新しいキヅキがある - 最初は小さなデータでもいいので、集めてみよう - 継続的に確認できるサービスにすべきである
ビデオマーケット宣伝 本日、ビデオマーケットブースにて、 VODサービスの利用状況の調査を 行っています。 お答え頂いた方にステッカーをプレゼント していますので、ぜひお立ち寄りください。 当社のVP of Engineering も会場におります
「Googleアシスタントアプリ開発入門」という 本もスタンプラリーでプレゼントしています。
ご清聴ありがとうございました。 ビデオマーケット仙台オフィスでは、エンジニアの採用を行っております。 新しいことにも積極的にチャレンジしています。 ジョブボードも、掲載していますので、 ぜひ、一度オフィスに遊びにいらっしゃってください。 ・コーポレートサイト https://www.videomarket.co.jp/recruit-form/ ・Green https://www.green-japan.com/job/76539?case=login