Upgrade to Pro — share decks privately, control downloads, hide ads and more …

hpc170_slide.pdf

 hpc170_slide.pdf

My slide at "第170回HPC研究会 (SWoPP2019)".
http://id.nii.ac.jp/1001/00198056/

Kazuhiro Serizawa

July 24, 2019
Tweet

More Decks by Kazuhiro Serizawa

Other Decks in Research

Transcript

  1. ධՁ࣮ݧ؀ڥ w ຊݚڀͰͷධՁ͸ஜ೾େֶܭࢉՊֶηϯλʔʹͯӡ ༻͞Ε͍ͯΔ)1$Ϋϥελʮ$ZHOVTʯΛ࢖༻ͨ͠ $16 *OUFM9FPO(PME1SPDFTTPS  $()[ Y .FNPSZ

    (J#  (J#%%3&$$3%*..Y ϊʔυϩʔΧϧ ετϨʔδ *OUFM44%1$14FSJFT5# ڞ༗ετϨʔδ -VTUSF %%/&9"4DBMFS (16 /7*%*"5FTMB7(J#)#.1$*F Y 04 $FOU04-JOVYSFMFBTF $ZHOVT֎؍ 13
  2. ධՁ࣮ݧ̍ʢ̍̎ʣ w ϝϞϦ্ʹϛχόονΩϡʔ͔ΒϛχόονΛ ݸ MPBE͢Δ·Ͱͷ࣌ؒΛܭଌ w ճܭଌͨ͠ฏۉ஋Λൺֱ͢Δ w ࢖༻͢Δσʔλ͸*NBHF/FUͷը૾໿ສຕΛ࢖༻͠ɼϛχ όοναΠζ͸ݻఆ

    ධՁύλʔϯ ࢖༻ετϨʔδ ख๏ ֤ॲཧͷ ੜ੒ϓϩηε਺ ϊʔυϩʔΧϧ ετϨʔδ 44% ैདྷख๏      ڞ༗ετϨʔδ -VTUSF ैདྷख๏ ఏҊख๏ -VTUSF 44% ఏҊख๏ 14
  3. ධՁ࣮ݧ̍ʢ̎̎ʣ w ఏҊख๏͸܇࿅σʔλϓϦϑΣονϓϩηε਺ʹൺྫͯ͠ੑೳ͕޲্͍ͯ͠Δ͕ɼϛχόον ੜ੒ϓϩηε਺ͱ͸΄΅૬͕ؔͳ͍ w ڞ༗ετϨʔδɼϊʔυϩʔΧϧετϨʔδڞʹϛχόονੜ੒ϓϩηε਺ʹൺྫͯ͠ੑೳ͕ ޲্͍ͯ͠Δɽ ఏҊख๏ ڞ༗ετϨʔδ ϊʔυϩʔΧϧετϨʔδ

    ఏҊख๏ ϓϦϑΣονϓϩηε਺ ϛχόονੜ੒ϓϩηε ఏҊख๏ʹ͓͍ͯϓϦϑΣονϓϩηε਺Λ มԽͤͨ͞ͱ͖ͷ݁Ռ શύλʔϯʹ͓͍ͯϛχόονੜ੒ϓϩηεΛ มԽͤͨ͞ͱ͖ͷ݁Ռ ʢఏҊख๏ͷϓϦϑΣονϓϩηε਺ʣ 'BTUFS 'BTUFS 15
  4. ධՁ࣮ݧ̍ͷ ੑೳʹؔ͢Δߟ࡯ ࠷଎஋<TFD> JUFSBUJPOTFD όϯυ෯ <.#T> ߹ܭ࢖༻ϓϩηε਺ ϊʔυϩʔΧϧ ετϨʔδ 

       ڞ༗ετϨʔδ     ఏҊख๏     w ૝ఆ௨Γɼ࠷΋ετϨʔδσόΠεͱͯ͠ͷੑೳ͕ߴ͍44%͕࠷΋ߴ଎ w ఏҊख๏͸ڞ༗ετϨʔδΑΓ΋ߴ଎ͳ݁Ռ͕ಘΒΕɼϓϦϑΣονͷޮՌ͕֬ ೝͰ͖Δ w ڞ༗ετϨʔδͱఏҊख๏Λൺֱ͢ΔͱɼఏҊख๏ͷํ͕ΑΓগͳ͍ϓϩηε਺ Ͱڞ༗ετϨʔδΑΓ΋ߴ͍SFBE*0Λୡ੒͍ͯ͠Δ 16
  5. ධՁ࣮ݧ̎ʢ̍̏ʣ w ࣮ΞϓϦέʔγϣϯͰͷධՁͱͯ͠$IBJOFSΛ༻͍ͯσʔλฒྻ܇࿅Λߦ͍ɼҎ ԼΛධՁ͢Δ w FQPDIͷσʔλฒྻ܇࿅ʹཁͨ͠߹ܭ࣌ؒ w ॲཧ಺༰ʹ͓͚Δϛχόονͷϩʔυ࣌ؒ w ධՁύλʔϯ͸ධՁ࣮ݧ̍ಉ༷ɼϊʔυ਺͸

       ʢ113ݻఆʣ w Ϟσϧ͸3FT/FUͱ͍͏৞ΈࠐΈχϡʔϥϧωοτϫʔΫͷҰछΛ࢖༻ɼ࢖༻ ͢ΔσʔλɼϛχόοναΠζ͸ධՁ࣮ݧ̍ͱಉ͡ 17 w ˞༧ߘʹܝࡌͨ͠ʮFQPDIσʔλฒྻ܇࿅ʯͷධՁ݁Ռͱ͸ҎԼͷ఺͕ҟͳΓ·͢ w ॲཧ։࢝લʹESPQDBDIFTΛ༻͍ͯ1BHF$BDIFΛ࡟আ w ܇࿅͢ΔFQPDI਺Λ͔ΒʹมߋʢFQPDI໨Ҏ߱ͷ݁ՌʹมԽ͕ͳ͔ͬͨͨΊʣ w ίʔυͷ࠷దԽʢQSJOUσόοάʹΑΔΦʔόʔϔουΛۃྗ࡟আʣ
  6. w ϊʔυ਺ͷ૿Ճͱͱ΋ʹͲͷख๏΋ੑೳ͕΄΅ઢܗʹεέʔϧ͍ͯ͠Δ w ఏҊख๏͸ͲͷέʔεͰ΋ڞ༗ετϨʔδΑΓ΋ߴ଎Ͱ͋Δͱ͍͏݁Ռ͕ಘ ΒΕͨ w ఏҊख๏ͷϊʔυϩʔΧϧετϨʔδʹର͢Δࠩ͸ ࠷େͰ໿ ඵࠩʢϊʔυʣɼ࠷খͰ໿ඵࠩʢϊʔυʣ ධՁ࣮ݧ̎ʢ̏̏ʣ

    ڞ༗ετϨʔδ ϊʔυϩʔΧϧετϨʔδ ఏҊख๏ ڞ༗ετϨʔδ ϊʔυϩʔΧϧετϨʔδ ఏҊख๏ 'BTUFS #FUUFS FQPDIͷσʔλฒྻ܇࿅ʹཁͨ͠ॲཧ࣌ؒ ϊʔυ਺ผͷ ̍ඵ͋ͨΓʹ܇࿅ॲཧͨ͠ը૾ͷຕ਺ 19
  7. ؔ࿈ݚڀ w ܇࿅σʔλઐ༻ͷ෼ࢄΩϟογϡαʔόΛઃܭ͠ɼ܇࿅ σʔλΛ͢΂ͯϝϞϦ্ʹΩϟογϡ͢Δ͜ͱͰSFBE࣌ ؒΛߴ଎Խ͢Δख๏ͷఏҊ<> w 5FOTPS'MPXʹ͓͍ͯ܇࿅σʔλͷฒྻSFBEͱϛχόον ͷόοϑΝϦϯάͷޮՌΛܭଌ͠ɼͦͷ༗ޮੑΛใࠂ<> [1] Zhu,

    Y., Chowdhury, F.,et al. “Entropy-Aware I/O Pipelining for Large-Scale Deep Learning on HPC Systems”, MASCOTS.2018.00023, pp.145-146 (2018) [2] X. Lu, H. Shi, M. H. Javed,et al. “Characterizing Deep Learning over Big Data (DLoBD) Stacks on RDMA-Capable Networks," 2017 IEEE 25th Annual Symposium on High- Performance Interconnects (HOTI), pp. 87-94 (2017) 25