Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Grad-CAMの始まりのお話
Search
Shintaro Yoshida
October 25, 2020
Research
0
85
Grad-CAMの始まりのお話
EAGLYS株式会社 AI 勉強会第4回の資料になります。
Grad-CAMの実装とそのアイデアの元となったCAMやGuided-Back-Propagationについて説明しています。
Shintaro Yoshida
October 25, 2020
Tweet
Share
More Decks by Shintaro Yoshida
See All by Shintaro Yoshida
顔認証・顔識別周りのサーベイ
shintaro202020
6
38
人が注目する箇所を当てるSaliency Detectionの最新モデル UCNet(CVPR2020)
shintaro202020
3
220
The Origin of Grad-CAM
shintaro202020
0
130
Other Decks in Research
See All in Research
GeoCLIP: Clip-Inspired Alignment between Locations and Images for Effective Worldwide Geo-localization
satai
3
250
Creation and environmental applications of 15-year daily inundation and vegetation maps for Siberia by integrating satellite and meteorological datasets
satai
3
140
SatCLIP: Global, General-Purpose Location Embeddings with Satellite Imagery
satai
3
230
在庫管理のための機械学習と最適化の融合
mickey_kubo
3
1.1k
Cross-Media Information Spaces and Architectures
signer
PRO
0
230
引力・斥力を制御可能なランダム部分集合の確率分布
wasyro
0
200
Sosiaalisen median katsaus 03/2025 + tekoäly
hponka
0
1.4k
Submeter-level land cover mapping of Japan
satai
3
140
LLM-as-a-Judge: 文章をLLMで評価する@教育機関DXシンポ
k141303
3
830
とあるSREの博士「過程」 / A Certain SRE’s Ph.D. Journey
yuukit
6
3.3k
Minimax and Bayes Optimal Best-arm Identification: Adaptive Experimental Design for Treatment Choice
masakat0
0
140
定性データ、どう活かす? 〜定性データのための分析基盤、はじめました〜 / How to utilize qualitative data? ~We have launched an analysis platform for qualitative data~
kaminashi
7
1.1k
Featured
See All Featured
Gamification - CAS2011
davidbonilla
81
5.4k
GraphQLの誤解/rethinking-graphql
sonatard
71
11k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.4k
Statistics for Hackers
jakevdp
799
220k
Rails Girls Zürich Keynote
gr2m
95
14k
Docker and Python
trallard
45
3.5k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
[RailsConf 2023] Rails as a piece of cake
palkan
55
5.7k
Building Better People: How to give real-time feedback that sticks.
wjessup
367
19k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
53
2.9k
Why You Should Never Use an ORM
jnunemaker
PRO
58
9.5k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
2.9k
Transcript
Grad-CAMの 始まりの話 AI勉強会#4 @Eaglys on 2020/10/25 吉田 慎太郎 @sht_47
Grad-CAMの特徴 • Grad-CAM(Gradient-weighted Class Activation Mapping, 2016, Ramprasaath) ◦ XAIで最も有名なもの(理由はGrad-CAMのページで説明)
◦ CAM(2015, Zhou) の弱点を克服し、全てのCNNモデルに対して一般化 • XAI(Explainable Artificial Intelligence) の目的 (筆者の長期的な視点) 失敗の原因を特定 (モデル << 人間) 予測の根拠を説明し、判定の信頼⬆ (モデル ≒ 人間) 人間がAIに教わる (モデル >> 人間)
今回の勉強会で扱う内容 - Grad-CAMのアイデアになった論文たち - - - - Grad-CAMのモデル中身 - 実験結果
- Google Colaboratoryでの実装
NIN(Network In Network, 2014 Lin et al) - 偉大な論文 (2つのメインアイデア)
計算量削減のために1x1 Convを導入 ( InceptionNetのアイデアの源、ResNet Botttleneck Block) GAP(Global Average Pooling) を提案 → 最近だとAdaptive Average Pooling • GAP Structural Regularizerとして機能 ◦ Feature MapとCategory間の関係がより自然に ◦ 追加のParameterが不要 ◦ Spatial TranslationにRobust
Object Detectors Emerge In Deep Scene Cnns(2015 Zhou et al)
- Scene Recognitionの問題を解く → Object Detector が出現した Objectの正解ラベルを与えていないのに。。。 先行研究として、Object Classification問題のCNNで、Object Localizationの出現 Places Database (2014 Zhou et al )
CAM(Class Activation Mapping 2015 Zhou et al) … … Final
Conv GAP FC k枚 k個 … c個 a a 1 を用いて CAMを生成
CAM(Class Activation Mapping) … … Final Conv GAP FC 4096枚
4096個 … 1000個 VGG16 (ImageNet) 7 7
CAMの数式と概念図 iとjでSum Kで Sum それぞれのプロセスは独立 Zは最終Feature Mapのサイズ(今回は49)
CAMの使用方法(推論時に利用) Iとjで 平均 Kで 加重平均 (Image Source : Zhou et
al 2015) CAM Kで 加重平均 推論 CAM生成
Guided Back-Propagation(2015 Springenberg) - Deconvolutional Network (2011 Zeiler) Max Poolingの反対の操作
- Guided Backprop deconvNetを ReLUのBackPropagationに組み合わせ
Guided-Backpropの実験結果 Batch Size : 64 Learning Rate : 0.01 Weight
Decay : 0.001 Optimizer : SGD Conv6 Conv9
Grad-CAM(2016 Ramprasaath) CAMはGAPに限定 → 一般化( 全てのCNN Architectureで可能) CAM(Corase)とGuided-Backprop(Fined-Grained)を組み合わせ CAMにReLUを挿入(Positiveな影響を与えるもののみ必要) CAM,
Grad-CAM共にArchitectural ChangeやRe-Trainが必要ない iとjでSum Kで 加重平均 Kで 加重平均
Grad-CAMの結果1 - Microsoft COCO データセット - Validation Dataset からSample -
Ice Creamで誤り
Grad-CAMの結果2 VGG@ImageNetにおける間違い集 モデルがバイアスを含むかどうか
実装 - Pytorch 1.6 https://github.com/sht47/grad-cam-Pytorch1.6 - Tensorflow 2.3 https://github.com/sht47/grad-cam-Tensorflow2.3