Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Grad-CAMの始まりのお話
Search
Shintaro Yoshida
October 25, 2020
Research
0
91
Grad-CAMの始まりのお話
EAGLYS株式会社 AI 勉強会第4回の資料になります。
Grad-CAMの実装とそのアイデアの元となったCAMやGuided-Back-Propagationについて説明しています。
Shintaro Yoshida
October 25, 2020
Tweet
Share
More Decks by Shintaro Yoshida
See All by Shintaro Yoshida
顔認証・顔識別周りのサーベイ
shintaro202020
7
46
人が注目する箇所を当てるSaliency Detectionの最新モデル UCNet(CVPR2020)
shintaro202020
4
240
The Origin of Grad-CAM
shintaro202020
0
140
Other Decks in Research
See All in Research
Agentic AI Era におけるサプライチェーン最適化
mickey_kubo
0
110
Panopticon: Advancing Any-Sensor Foundation Models for Earth Observation
satai
3
560
HU Berlin: Industrial-Strength Natural Language Processing with spaCy and Prodigy
inesmontani
PRO
0
120
ウェブ・ソーシャルメディア論文読み会 第36回: The Stepwise Deception: Simulating the Evolution from True News to Fake News with LLM Agents (EMNLP, 2025)
hkefka385
0
110
令和最新技術で伝統掲示板を再構築: HonoX で作る型安全なスレッドフロート型掲示板 / かろっく@calloc134 - Hono Conference 2025
calloc134
0
480
その推薦システムの評価指標、ユーザーの感覚とズレてるかも
kuri8ive
1
300
Agentic AI フレームワーク戦略白書 (2025年度版)
mickey_kubo
1
110
Can AI Generated Ambrotype Chain the Aura of Alternative Process? In SIGGRAPH Asia 2024 Art Papers
toremolo72
0
120
Self-Hosted WebAssembly Runtime for Runtime-Neutral Checkpoint/Restore in Edge–Cloud Continuum
chikuwait
0
280
AlphaEarth Foundations: An embedding field model for accurate and efficient global mapping from sparse label data
satai
3
690
Collective Predictive Coding and World Models in LLMs: A System 0/1/2/3 Perspective on Hierarchical Physical AI (IEEE SII 2026 Plenary Talk)
tanichu
1
120
A History of Approximate Nearest Neighbor Search from an Applications Perspective
matsui_528
1
130
Featured
See All Featured
Building Adaptive Systems
keathley
44
2.9k
Statistics for Hackers
jakevdp
799
230k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.6k
We Analyzed 250 Million AI Search Results: Here's What I Found
joshbly
0
410
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Jess Joyce - The Pitfalls of Following Frameworks
techseoconnect
PRO
1
45
The Limits of Empathy - UXLibs8
cassininazir
1
200
Taking LLMs out of the black box: A practical guide to human-in-the-loop distillation
inesmontani
PRO
3
2k
Groundhog Day: Seeking Process in Gaming for Health
codingconduct
0
73
SEO in 2025: How to Prepare for the Future of Search
ipullrank
3
3.3k
Design in an AI World
tapps
0
110
Money Talks: Using Revenue to Get Sh*t Done
nikkihalliwell
0
130
Transcript
Grad-CAMの 始まりの話 AI勉強会#4 @Eaglys on 2020/10/25 吉田 慎太郎 @sht_47
Grad-CAMの特徴 • Grad-CAM(Gradient-weighted Class Activation Mapping, 2016, Ramprasaath) ◦ XAIで最も有名なもの(理由はGrad-CAMのページで説明)
◦ CAM(2015, Zhou) の弱点を克服し、全てのCNNモデルに対して一般化 • XAI(Explainable Artificial Intelligence) の目的 (筆者の長期的な視点) 失敗の原因を特定 (モデル << 人間) 予測の根拠を説明し、判定の信頼⬆ (モデル ≒ 人間) 人間がAIに教わる (モデル >> 人間)
今回の勉強会で扱う内容 - Grad-CAMのアイデアになった論文たち - - - - Grad-CAMのモデル中身 - 実験結果
- Google Colaboratoryでの実装
NIN(Network In Network, 2014 Lin et al) - 偉大な論文 (2つのメインアイデア)
計算量削減のために1x1 Convを導入 ( InceptionNetのアイデアの源、ResNet Botttleneck Block) GAP(Global Average Pooling) を提案 → 最近だとAdaptive Average Pooling • GAP Structural Regularizerとして機能 ◦ Feature MapとCategory間の関係がより自然に ◦ 追加のParameterが不要 ◦ Spatial TranslationにRobust
Object Detectors Emerge In Deep Scene Cnns(2015 Zhou et al)
- Scene Recognitionの問題を解く → Object Detector が出現した Objectの正解ラベルを与えていないのに。。。 先行研究として、Object Classification問題のCNNで、Object Localizationの出現 Places Database (2014 Zhou et al )
CAM(Class Activation Mapping 2015 Zhou et al) … … Final
Conv GAP FC k枚 k個 … c個 a a 1 を用いて CAMを生成
CAM(Class Activation Mapping) … … Final Conv GAP FC 4096枚
4096個 … 1000個 VGG16 (ImageNet) 7 7
CAMの数式と概念図 iとjでSum Kで Sum それぞれのプロセスは独立 Zは最終Feature Mapのサイズ(今回は49)
CAMの使用方法(推論時に利用) Iとjで 平均 Kで 加重平均 (Image Source : Zhou et
al 2015) CAM Kで 加重平均 推論 CAM生成
Guided Back-Propagation(2015 Springenberg) - Deconvolutional Network (2011 Zeiler) Max Poolingの反対の操作
- Guided Backprop deconvNetを ReLUのBackPropagationに組み合わせ
Guided-Backpropの実験結果 Batch Size : 64 Learning Rate : 0.01 Weight
Decay : 0.001 Optimizer : SGD Conv6 Conv9
Grad-CAM(2016 Ramprasaath) CAMはGAPに限定 → 一般化( 全てのCNN Architectureで可能) CAM(Corase)とGuided-Backprop(Fined-Grained)を組み合わせ CAMにReLUを挿入(Positiveな影響を与えるもののみ必要) CAM,
Grad-CAM共にArchitectural ChangeやRe-Trainが必要ない iとjでSum Kで 加重平均 Kで 加重平均
Grad-CAMの結果1 - Microsoft COCO データセット - Validation Dataset からSample -
Ice Creamで誤り
Grad-CAMの結果2 VGG@ImageNetにおける間違い集 モデルがバイアスを含むかどうか
実装 - Pytorch 1.6 https://github.com/sht47/grad-cam-Pytorch1.6 - Tensorflow 2.3 https://github.com/sht47/grad-cam-Tensorflow2.3