Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
投球を可視化する技術〜Analyzing Pitching Data With Python
Search
Shinichi Nakagawa
PRO
March 22, 2016
Research
1
1.2k
投球を可視化する技術〜Analyzing Pitching Data With Python
MLBの一球速報データを使った投球データの可視化をPython他でやってみました.
BPStudy #103 2016/3/22 発表資料
Shinichi Nakagawa
PRO
March 22, 2016
Tweet
Share
More Decks by Shinichi Nakagawa
See All by Shinichi Nakagawa
自らを強いエンジニアにするための3つの習慣 2025/ Fitter happier more productive
shinyorke
PRO
0
150
生成AI時代におけるSREの進化とキャリア戦略 / Building an Embedded SRE team and my career
shinyorke
PRO
0
120
生成AIを活用した野球データ分析 - メジャーリーグ編 / Baseball Analytics for Gen AI
shinyorke
PRO
1
5.1k
ゼロから始めるSREの事業貢献 - 生成AI時代のSRE成長戦略と実践 / Starting SRE from Day One
shinyorke
PRO
2
5.8k
AI・LLM事業部のSREとタスクの自動運転
shinyorke
PRO
0
480
実践Dash - 手を抜きながら本気で作るデータApplicationの基本と応用 / Dash for Python and Baseball
shinyorke
PRO
2
3.7k
Terraform, GitHub Actions, Cloud Buildでデータ基盤をProvisioningする / Data Platform provisioning for Google Cloud and Terraform
shinyorke
PRO
2
3.4k
Cloud RunとCloud PubSubでサーバレスなデータ基盤2024 with Terraform / Cloud Run and PubSub with Terraform
shinyorke
PRO
9
4.2k
自らを強いエンジニアにするための3つの習慣 / I need to be myself, I can't be no one else
shinyorke
PRO
86
89k
Other Decks in Research
See All in Research
論文読み会 SNLP2025 Learning Dynamics of LLM Finetuning. In: ICLR 2025
s_mizuki_nlp
0
300
論文紹介:Safety Alignment Should be Made More Than Just a Few Tokens Deep
kazutoshishinoda
0
110
投資戦略202508
pw
0
570
とあるSREの博士「過程」 / A Certain SRE’s Ph.D. Journey
yuukit
11
4.7k
音声感情認識技術の進展と展望
nagase
0
320
大学見本市2025 JSTさきがけ事業セミナー「顔の見えないセンシング技術:多様なセンサにもとづく個人情報に配慮した人物状態推定」
miso2024
0
170
さまざまなAgent FrameworkとAIエージェントの評価
ymd65536
1
230
HoliTracer:Holistic Vectorization of Geographic Objects from Large-Size Remote Sensing Imagery
satai
3
180
AIスパコン「さくらONE」のLLM学習ベンチマークによる性能評価 / SAKURAONE LLM Training Benchmarking
yuukit
2
780
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
63
33k
【輪講資料】Moshi: a speech-text foundation model for real-time dialogue
hpprc
3
770
カスタマーサクセスの視点からAWS Summitの展示を考える~製品開発で活用できる勘所~
masakiokuda
2
210
Featured
See All Featured
Building Flexible Design Systems
yeseniaperezcruz
329
39k
Faster Mobile Websites
deanohume
310
31k
Done Done
chrislema
186
16k
Thoughts on Productivity
jonyablonski
72
4.9k
Six Lessons from altMBA
skipperchong
29
4k
Optimising Largest Contentful Paint
csswizardry
37
3.5k
Unsuck your backbone
ammeep
671
58k
For a Future-Friendly Web
brad_frost
180
10k
RailsConf 2023
tenderlove
30
1.3k
Gamification - CAS2011
davidbonilla
81
5.5k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.8k
The Power of CSS Pseudo Elements
geoffreycrofte
80
6k
Transcript
None
Who am I? • Shinichi Nakagawa(@shinyorke) • Pythonista/Agile Software Development/Baseball
Analyst • visasQ(ϏβεΫ) Python Engineer/Scrum Master • ւಓຊϋϜϑΝΠλʔζ/Oakland Athletics • ιχʔɾάϨΠ(OAK)ͷαΠϠϯάड &Ԭւ(ϋϜ)ͷελϝϯୣऔΛ৴͍ͯ͡·͢.
ࠓγʔζϯݟͲ͜Ζ ݟͲ͜Ζ ੈؒͷ෩ை தͷݟղ ༏উνʔϜ ɾιϑτόϯΫ ɾϠΫϧτ ɾϋϜ ɾڊਓPSౡ τϦϓϧεϦʔ
ɾ༄ా༔ذ ࿈ଓ ɾࢁాਓ ࿈ଓ ࢁాਓ ࿈ଓ ΪʔλࡾףͲ͏ͧ ΰʔϧσϯάϥϒ ɾ༄ా༔ذ $' ɾௗ୩ܟ 44 ɾೋਓڞऩ ɾγϣʔτ୭͕ʁ ۙ౻݈հ ϋϜ ɾׂຊ͍͚ΔͰʂ ɾࢦ໊ଧऀPSϥΠτ ۙ౻ ࢦcӈcัcࡾc༡ ˠॅॴෆఆʹͳΔ
Starting Member • ٿHack!2015ৼΓฦΓ • MLBҰٿใσʔλͱٿHack • MLBҰٿใσʔλΛPythonͰHackͯ͠ΈΔ ʙpitchpxͱJupyter +
pandas + matplotlibʙ • ར༻ྫʙؠ۾ٱࢤϊʔώοτϊʔϥϯ • ݁ͼʙࠓޙͷٿHack(PyCon JP 2016ʹ͚ͯ) • ʲΦϚέʳ2016ϓϩٿେ༧
ٿHack!1.0(PyCon JP 2015) • MLBͷࢼ߹͝ͱͷଧ੮σʔλΛHack! • ࢄาʢ࢛ٿʣͷʢΠονVSϘοτʣ • ϐονϟʔͷ݄ผউͪʢδϣϯɾϨελʔʣ •
ຖຖࢼ߹ͷσʔλΛऔಘ&ੳ • ΞμϜɾμϯʢଧऀʣ • ඃΞμϜɾμϯʢखʣ • ৄ͘͠εϥΠυΛޚཡ͍ͩ͘͞ or ʮٿ PythonʯͰάάΖ͏
ٿHack!ʙPythonΛ༻͍ͨσʔλੳͱՄࢹԽ PyCon JP 2015ൃදࢿྉ http://www.slideshare.net/shinyorke/hackpython-pyconjp
ٿHack!ʙPythonΛ༻͍ͨσʔλੳͱՄࢹԽ PyCon JP 2015ൃදࢿྉ http://www.slideshare.net/shinyorke/hackpython-pyconjp ͷωλ
ٿHack!ʙPythonΛ༻͍ͨσʔλੳͱՄࢹԽ PyCon JP 2015ൃදࢿྉ http://www.slideshare.net/shinyorke/hackpython-pyconjp ҰٿใΓ͍ͨϯΰ ˠͷςʔϚʂ
ٿHack!ͱҰٿใ • ࢼ߹ɾଧ੮ͷ݁Ռetc…είΞͰଌΕΔωλΓͬͨײ͋Δ • બखͷނোɾෆௐʢௐʣείΞͰଌΕͳ͍ˠΓ͍ͨ • खͳΒٿɾίϯτϩʔϧɾϘʔϧͷճసɺ खकඋൣғ()ɾεΠϯάεϐʔυͰଌΕΔͷͰʂʁ • Ұٿใͷσʔλ͕͋ΕͰ͖ͦ͏…͋ͬͨʂʂʂ
• ࢼ͠ʹͬͯΈΑ͏ʂʂʂˡࠓίί
MLB at BATʙMLBҰٿใ • MLB࣮گҰٿใαʔϏε • PCαΠτɾεϚϗΞϓϦɾApple TVͳͲ • MLB.TVͱ߹ΘͤͯܖͰ࣮گಈըݟΒΕΔ
• σʔλ͕ͱʹ͔͘ॆ࣮
Analyzing Baseball Data with R • MLBͷΦʔϓϯσʔλʮRetrosheetʯ, MLB at BATใσʔλΛ༻͍ͨσʔλੳɾՄࢹ
Խʹ͍ͭͯॻ͔Ε͍ͯΔॻ੶ʢӳޠʣ • RݴޠΛͬͨੳͱՄࢹԽͷωλ͕ϝΠϯ • ʮpitchRxʯͱ͍͏ɺRݴޠͷϥΠϒϥϦΛ༻͍ͯ at BATσʔλΛऔಘ&ՄࢹԽ
“ʮpitchRxʯͱ͍͏ɺ RݴޠͷϥΠϒϥϦΛ༻͍ͯ at BATσʔλΛऔಘ&ՄࢹԽ”
ʁʁʁʮPythonͰΓ͍ͨΜ͡Όʂʯ ※RΛͲ͏͜͏ݴ͏ͱ͔ͦΜͳҙਤ(ry
pitchpx - Getting MLB dataset • MLB at BATͷҰٿใσʔλΛऔಘ&εΫϨΠϐϯάͯ͠ CSVσʔληοτʹམͱ͢PythonϥΠϒϥϦ.
• pitchRx(R)ͳͲΛࢀߟʹࢲ͕։ൃ͠·ͨ͠. • ίϚϯυϥΠϯπʔϧͰ͢. • Python 3.3.xҎ্ઐ༻ˡڧ͍ͩ͜ΘΓ • PyPIͰެ։͍ͯ͠·͢ʂʂʂʢ୭Ͱ͑Δʣ
͍ํ $ # Python 3.3Ҏ্(ਪPython 3.4Ҏ্)͕ಈ͘ڥͰͬͯͶ $ pip install pitchpx
$ # ྫɿ2015/8/1-8/12·Ͱͷࢼ߹݁ՌΛऔಘ͢Δ $ pitchpx -s 20150801 -e 20150812 -o .
ʲྫʳؠ۾ϊʔώοτϊʔϥϯ • ϚϦφʔζ-ΦϦΦʔϧζͷࢼ߹(2015/8/12)ʹͯɺ ϊʔώοτϊʔϥϯΛܾΊͨؠ۾ٱࢤखͷٿΛੳ • ٿɺϘʔϧͷճసɺετϥΠΫκʔϯɺetc… • pitchpxͰऔಘͨ͠σʔλΛpandasͱ matplotlib(&seaborn)Ͱલॲཧ&ՄࢹԽ •
ڥJupyter notebook(Python 3.5.1)
σϞ (লུ)
ৄ͘͠QiitaͰʂʂʂ ؠ۾ٱࢤ(SEA)ͷφΠεϐονϯάΛPythonͰՄࢹԽ http://qiita.com/shinyorke/items/2c2e2c3976fc2d1ed051
݁ͼʙ2016ͷٿHack! • ͦΒʢࠓٿσʔλͷՄࢹԽ͔ͩΒʣ ͦ͏ʢͭ͗कඋσʔλͷՄࢹԽʹʣ Αɹʢܾ·͍ͬͯΔ͡Όͳ͍͔ʣ • PyCon JP 2016(9/21,22)ɺ ʮAnalyzing
Baseball Data With Pythonʯ ͱ͔ͦΜͳλΠτϧͰͬͱ໘ന͍͕Ͱ͖Δϋζ. • ຊެ։ͨ͠ωλੋඇ༡ΜͰΈͯʂ ˠػցֶशͷࡐͱ͔ʹΠέΔΜ͡Όͳ͍ʁ
ʮҰٿใσʔλͷϥΠηϯεʁେৎͳͷʁʯ ※Ұ൪͋Γͦ͏ͳ࣭
ɿ(ݸਓར༻ఔͳΒ)OK ʲެࣜʳ http://gd2.mlb.com/components/copyright.txt ʲ༁&ղઆʳ http://qiita.com/shinyorke/items/566f1b7e7687492a0c7f
ήʔϜηοτʂʂʂ ͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠. Shinichi Nakagawa(Twitter/Facebook/hatena:@shinyorke)