Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
投球を可視化する技術〜Analyzing Pitching Data With Python
Search
Shinichi Nakagawa
PRO
March 22, 2016
Research
1
1.2k
投球を可視化する技術〜Analyzing Pitching Data With Python
MLBの一球速報データを使った投球データの可視化をPython他でやってみました.
BPStudy #103 2016/3/22 発表資料
Shinichi Nakagawa
PRO
March 22, 2016
Tweet
Share
More Decks by Shinichi Nakagawa
See All by Shinichi Nakagawa
生成AI時代におけるSREの進化とキャリア戦略 / Building an Embedded SRE team and my career
shinyorke
PRO
0
100
生成AIを活用した野球データ分析 - メジャーリーグ編 / Baseball Analytics for Gen AI
shinyorke
PRO
1
5k
ゼロから始めるSREの事業貢献 - 生成AI時代のSRE成長戦略と実践 / Starting SRE from Day One
shinyorke
PRO
2
4.8k
AI・LLM事業部のSREとタスクの自動運転
shinyorke
PRO
0
470
実践Dash - 手を抜きながら本気で作るデータApplicationの基本と応用 / Dash for Python and Baseball
shinyorke
PRO
2
3.5k
Terraform, GitHub Actions, Cloud Buildでデータ基盤をProvisioningする / Data Platform provisioning for Google Cloud and Terraform
shinyorke
PRO
2
3.4k
Cloud RunとCloud PubSubでサーバレスなデータ基盤2024 with Terraform / Cloud Run and PubSub with Terraform
shinyorke
PRO
9
4.2k
自らを強いエンジニアにするための3つの習慣 / I need to be myself, I can't be no one else
shinyorke
PRO
85
88k
阪神タイガース優勝のひみつ - Pythonでシュッと調べた件 / SABRmetrics for Python
shinyorke
PRO
1
1.5k
Other Decks in Research
See All in Research
AWSで実現した大規模日本語VLM学習用データセット "MOMIJI" 構築パイプライン/buiding-momiji
studio_graph
2
690
2025年度人工知能学会全国大会チュートリアル講演「深層基盤モデルの数理」
taiji_suzuki
25
19k
EOGS: Gaussian Splatting for Efficient Satellite Image Photogrammetry
satai
4
650
大域マッチングコスト最小化とLiDAR-IMUタイトカップリングに基づく三次元地図生成 / GLIM @ Robotics symposia 2022
koide3
0
110
電通総研の生成AI・エージェントの取り組みエンジニアリング業務向けAI活用事例紹介
isidaitc
1
1k
引力・斥力を制御可能なランダム部分集合の確率分布
wasyro
0
260
Time to Cash: The Full Stack Breakdown of Modern ATM Attacks
ratatata
0
160
SNLP2025:Can Language Models Reason about Individualistic Human Values and Preferences?
yukizenimoto
0
180
Submeter-level land cover mapping of Japan
satai
3
410
国際論文を出そう!ICRA / IROS / RA-L への論文投稿の心構えとノウハウ / RSJ2025 Luncheon Seminar
koide3
9
5.4k
生成的推薦の人気バイアスの分析:暗記の観点から / JSAI2025
upura
0
280
なめらかなシステムと運用維持の終わらぬ未来 / dicomo2025_coherently_fittable_system
monochromegane
0
3.7k
Featured
See All Featured
Six Lessons from altMBA
skipperchong
28
4k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.7k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
37
2.6k
Thoughts on Productivity
jonyablonski
70
4.9k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
900
RailsConf 2023
tenderlove
30
1.2k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
A better future with KSS
kneath
239
18k
Large-scale JavaScript Application Architecture
addyosmani
514
110k
The Straight Up "How To Draw Better" Workshop
denniskardys
237
140k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
30
2.9k
Build your cross-platform service in a week with App Engine
jlugia
232
18k
Transcript
None
Who am I? • Shinichi Nakagawa(@shinyorke) • Pythonista/Agile Software Development/Baseball
Analyst • visasQ(ϏβεΫ) Python Engineer/Scrum Master • ւಓຊϋϜϑΝΠλʔζ/Oakland Athletics • ιχʔɾάϨΠ(OAK)ͷαΠϠϯάड &Ԭւ(ϋϜ)ͷελϝϯୣऔΛ৴͍ͯ͡·͢.
ࠓγʔζϯݟͲ͜Ζ ݟͲ͜Ζ ੈؒͷ෩ை தͷݟղ ༏উνʔϜ ɾιϑτόϯΫ ɾϠΫϧτ ɾϋϜ ɾڊਓPSౡ τϦϓϧεϦʔ
ɾ༄ా༔ذ ࿈ଓ ɾࢁాਓ ࿈ଓ ࢁాਓ ࿈ଓ ΪʔλࡾףͲ͏ͧ ΰʔϧσϯάϥϒ ɾ༄ా༔ذ $' ɾௗ୩ܟ 44 ɾೋਓڞऩ ɾγϣʔτ୭͕ʁ ۙ౻݈հ ϋϜ ɾׂຊ͍͚ΔͰʂ ɾࢦ໊ଧऀPSϥΠτ ۙ౻ ࢦcӈcัcࡾc༡ ˠॅॴෆఆʹͳΔ
Starting Member • ٿHack!2015ৼΓฦΓ • MLBҰٿใσʔλͱٿHack • MLBҰٿใσʔλΛPythonͰHackͯ͠ΈΔ ʙpitchpxͱJupyter +
pandas + matplotlibʙ • ར༻ྫʙؠ۾ٱࢤϊʔώοτϊʔϥϯ • ݁ͼʙࠓޙͷٿHack(PyCon JP 2016ʹ͚ͯ) • ʲΦϚέʳ2016ϓϩٿେ༧
ٿHack!1.0(PyCon JP 2015) • MLBͷࢼ߹͝ͱͷଧ੮σʔλΛHack! • ࢄาʢ࢛ٿʣͷʢΠονVSϘοτʣ • ϐονϟʔͷ݄ผউͪʢδϣϯɾϨελʔʣ •
ຖຖࢼ߹ͷσʔλΛऔಘ&ੳ • ΞμϜɾμϯʢଧऀʣ • ඃΞμϜɾμϯʢखʣ • ৄ͘͠εϥΠυΛޚཡ͍ͩ͘͞ or ʮٿ PythonʯͰάάΖ͏
ٿHack!ʙPythonΛ༻͍ͨσʔλੳͱՄࢹԽ PyCon JP 2015ൃදࢿྉ http://www.slideshare.net/shinyorke/hackpython-pyconjp
ٿHack!ʙPythonΛ༻͍ͨσʔλੳͱՄࢹԽ PyCon JP 2015ൃදࢿྉ http://www.slideshare.net/shinyorke/hackpython-pyconjp ͷωλ
ٿHack!ʙPythonΛ༻͍ͨσʔλੳͱՄࢹԽ PyCon JP 2015ൃදࢿྉ http://www.slideshare.net/shinyorke/hackpython-pyconjp ҰٿใΓ͍ͨϯΰ ˠͷςʔϚʂ
ٿHack!ͱҰٿใ • ࢼ߹ɾଧ੮ͷ݁Ռetc…είΞͰଌΕΔωλΓͬͨײ͋Δ • બखͷނোɾෆௐʢௐʣείΞͰଌΕͳ͍ˠΓ͍ͨ • खͳΒٿɾίϯτϩʔϧɾϘʔϧͷճసɺ खकඋൣғ()ɾεΠϯάεϐʔυͰଌΕΔͷͰʂʁ • Ұٿใͷσʔλ͕͋ΕͰ͖ͦ͏…͋ͬͨʂʂʂ
• ࢼ͠ʹͬͯΈΑ͏ʂʂʂˡࠓίί
MLB at BATʙMLBҰٿใ • MLB࣮گҰٿใαʔϏε • PCαΠτɾεϚϗΞϓϦɾApple TVͳͲ • MLB.TVͱ߹ΘͤͯܖͰ࣮گಈըݟΒΕΔ
• σʔλ͕ͱʹ͔͘ॆ࣮
Analyzing Baseball Data with R • MLBͷΦʔϓϯσʔλʮRetrosheetʯ, MLB at BATใσʔλΛ༻͍ͨσʔλੳɾՄࢹ
Խʹ͍ͭͯॻ͔Ε͍ͯΔॻ੶ʢӳޠʣ • RݴޠΛͬͨੳͱՄࢹԽͷωλ͕ϝΠϯ • ʮpitchRxʯͱ͍͏ɺRݴޠͷϥΠϒϥϦΛ༻͍ͯ at BATσʔλΛऔಘ&ՄࢹԽ
“ʮpitchRxʯͱ͍͏ɺ RݴޠͷϥΠϒϥϦΛ༻͍ͯ at BATσʔλΛऔಘ&ՄࢹԽ”
ʁʁʁʮPythonͰΓ͍ͨΜ͡Όʂʯ ※RΛͲ͏͜͏ݴ͏ͱ͔ͦΜͳҙਤ(ry
pitchpx - Getting MLB dataset • MLB at BATͷҰٿใσʔλΛऔಘ&εΫϨΠϐϯάͯ͠ CSVσʔληοτʹམͱ͢PythonϥΠϒϥϦ.
• pitchRx(R)ͳͲΛࢀߟʹࢲ͕։ൃ͠·ͨ͠. • ίϚϯυϥΠϯπʔϧͰ͢. • Python 3.3.xҎ্ઐ༻ˡڧ͍ͩ͜ΘΓ • PyPIͰެ։͍ͯ͠·͢ʂʂʂʢ୭Ͱ͑Δʣ
͍ํ $ # Python 3.3Ҏ্(ਪPython 3.4Ҏ্)͕ಈ͘ڥͰͬͯͶ $ pip install pitchpx
$ # ྫɿ2015/8/1-8/12·Ͱͷࢼ߹݁ՌΛऔಘ͢Δ $ pitchpx -s 20150801 -e 20150812 -o .
ʲྫʳؠ۾ϊʔώοτϊʔϥϯ • ϚϦφʔζ-ΦϦΦʔϧζͷࢼ߹(2015/8/12)ʹͯɺ ϊʔώοτϊʔϥϯΛܾΊͨؠ۾ٱࢤखͷٿΛੳ • ٿɺϘʔϧͷճసɺετϥΠΫκʔϯɺetc… • pitchpxͰऔಘͨ͠σʔλΛpandasͱ matplotlib(&seaborn)Ͱલॲཧ&ՄࢹԽ •
ڥJupyter notebook(Python 3.5.1)
σϞ (লུ)
ৄ͘͠QiitaͰʂʂʂ ؠ۾ٱࢤ(SEA)ͷφΠεϐονϯάΛPythonͰՄࢹԽ http://qiita.com/shinyorke/items/2c2e2c3976fc2d1ed051
݁ͼʙ2016ͷٿHack! • ͦΒʢࠓٿσʔλͷՄࢹԽ͔ͩΒʣ ͦ͏ʢͭ͗कඋσʔλͷՄࢹԽʹʣ Αɹʢܾ·͍ͬͯΔ͡Όͳ͍͔ʣ • PyCon JP 2016(9/21,22)ɺ ʮAnalyzing
Baseball Data With Pythonʯ ͱ͔ͦΜͳλΠτϧͰͬͱ໘ന͍͕Ͱ͖Δϋζ. • ຊެ։ͨ͠ωλੋඇ༡ΜͰΈͯʂ ˠػցֶशͷࡐͱ͔ʹΠέΔΜ͡Όͳ͍ʁ
ʮҰٿใσʔλͷϥΠηϯεʁେৎͳͷʁʯ ※Ұ൪͋Γͦ͏ͳ࣭
ɿ(ݸਓར༻ఔͳΒ)OK ʲެࣜʳ http://gd2.mlb.com/components/copyright.txt ʲ༁&ղઆʳ http://qiita.com/shinyorke/items/566f1b7e7687492a0c7f
ήʔϜηοτʂʂʂ ͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠. Shinichi Nakagawa(Twitter/Facebook/hatena:@shinyorke)