Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
投球を可視化する技術〜Analyzing Pitching Data With Python
Search
Shinichi Nakagawa
PRO
March 22, 2016
Research
1
1.2k
投球を可視化する技術〜Analyzing Pitching Data With Python
MLBの一球速報データを使った投球データの可視化をPython他でやってみました.
BPStudy #103 2016/3/22 発表資料
Shinichi Nakagawa
PRO
March 22, 2016
Tweet
Share
More Decks by Shinichi Nakagawa
See All by Shinichi Nakagawa
自らを強いエンジニアにするための3つの習慣 2025/ Fitter happier more productive
shinyorke
PRO
0
240
生成AI時代におけるSREの進化とキャリア戦略 / Building an Embedded SRE team and my career
shinyorke
PRO
0
120
生成AIを活用した野球データ分析 - メジャーリーグ編 / Baseball Analytics for Gen AI
shinyorke
PRO
1
5.6k
ゼロから始めるSREの事業貢献 - 生成AI時代のSRE成長戦略と実践 / Starting SRE from Day One
shinyorke
PRO
2
6.2k
AI・LLM事業部のSREとタスクの自動運転
shinyorke
PRO
0
490
実践Dash - 手を抜きながら本気で作るデータApplicationの基本と応用 / Dash for Python and Baseball
shinyorke
PRO
2
3.8k
Terraform, GitHub Actions, Cloud Buildでデータ基盤をProvisioningする / Data Platform provisioning for Google Cloud and Terraform
shinyorke
PRO
2
3.5k
Cloud RunとCloud PubSubでサーバレスなデータ基盤2024 with Terraform / Cloud Run and PubSub with Terraform
shinyorke
PRO
9
4.2k
自らを強いエンジニアにするための3つの習慣 / I need to be myself, I can't be no one else
shinyorke
PRO
86
90k
Other Decks in Research
See All in Research
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
63
34k
When Learned Data Structures Meet Computer Vision
matsui_528
1
1.3k
Stealing LUKS Keys via TPM and UUID Spoofing in 10 Minutes - BSides 2025
anykeyshik
0
170
EcoWikiRS: Learning Ecological Representation of Satellite Images from Weak Supervision with Species Observation and Wikipedia
satai
3
430
令和最新技術で伝統掲示板を再構築: HonoX で作る型安全なスレッドフロート型掲示板 / かろっく@calloc134 - Hono Conference 2025
calloc134
0
440
Combining Deep Learning and Street View Imagery to Map Smallholder Crop Types
satai
3
270
若手研究者が国際会議(例えばIROS)でワークショップを企画するメリットと成功法!
tanichu
0
120
Mamba-in-Mamba: Centralized Mamba-Cross-Scan in Tokenized Mamba Model for Hyperspectral Image Classification
satai
3
280
[IBIS 2025] 深層基盤モデルのための強化学習驚きから理論にもとづく納得へ
akifumi_wachi
15
8.1k
単施設でできる臨床研究の考え方
shuntaros
0
3.3k
SkySense V2: A Unified Foundation Model for Multi-modal Remote Sensing
satai
3
150
AIグラフィックデザインの進化:断片から統合(One Piece)へ / From Fragment to One Piece: A Survey on AI-Driven Graphic Design
shunk031
0
570
Featured
See All Featured
Into the Great Unknown - MozCon
thekraken
40
2.2k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
254
22k
What's in a price? How to price your products and services
michaelherold
246
13k
Become a Pro
speakerdeck
PRO
31
5.7k
A designer walks into a library…
pauljervisheath
210
24k
A better future with KSS
kneath
240
18k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.8k
Documentation Writing (for coders)
carmenintech
76
5.2k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.6k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.8k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
128
54k
How to Think Like a Performance Engineer
csswizardry
28
2.4k
Transcript
None
Who am I? • Shinichi Nakagawa(@shinyorke) • Pythonista/Agile Software Development/Baseball
Analyst • visasQ(ϏβεΫ) Python Engineer/Scrum Master • ւಓຊϋϜϑΝΠλʔζ/Oakland Athletics • ιχʔɾάϨΠ(OAK)ͷαΠϠϯάड &Ԭւ(ϋϜ)ͷελϝϯୣऔΛ৴͍ͯ͡·͢.
ࠓγʔζϯݟͲ͜Ζ ݟͲ͜Ζ ੈؒͷ෩ை தͷݟղ ༏উνʔϜ ɾιϑτόϯΫ ɾϠΫϧτ ɾϋϜ ɾڊਓPSౡ τϦϓϧεϦʔ
ɾ༄ా༔ذ ࿈ଓ ɾࢁాਓ ࿈ଓ ࢁాਓ ࿈ଓ ΪʔλࡾףͲ͏ͧ ΰʔϧσϯάϥϒ ɾ༄ా༔ذ $' ɾௗ୩ܟ 44 ɾೋਓڞऩ ɾγϣʔτ୭͕ʁ ۙ౻݈հ ϋϜ ɾׂຊ͍͚ΔͰʂ ɾࢦ໊ଧऀPSϥΠτ ۙ౻ ࢦcӈcัcࡾc༡ ˠॅॴෆఆʹͳΔ
Starting Member • ٿHack!2015ৼΓฦΓ • MLBҰٿใσʔλͱٿHack • MLBҰٿใσʔλΛPythonͰHackͯ͠ΈΔ ʙpitchpxͱJupyter +
pandas + matplotlibʙ • ར༻ྫʙؠ۾ٱࢤϊʔώοτϊʔϥϯ • ݁ͼʙࠓޙͷٿHack(PyCon JP 2016ʹ͚ͯ) • ʲΦϚέʳ2016ϓϩٿେ༧
ٿHack!1.0(PyCon JP 2015) • MLBͷࢼ߹͝ͱͷଧ੮σʔλΛHack! • ࢄาʢ࢛ٿʣͷʢΠονVSϘοτʣ • ϐονϟʔͷ݄ผউͪʢδϣϯɾϨελʔʣ •
ຖຖࢼ߹ͷσʔλΛऔಘ&ੳ • ΞμϜɾμϯʢଧऀʣ • ඃΞμϜɾμϯʢखʣ • ৄ͘͠εϥΠυΛޚཡ͍ͩ͘͞ or ʮٿ PythonʯͰάάΖ͏
ٿHack!ʙPythonΛ༻͍ͨσʔλੳͱՄࢹԽ PyCon JP 2015ൃදࢿྉ http://www.slideshare.net/shinyorke/hackpython-pyconjp
ٿHack!ʙPythonΛ༻͍ͨσʔλੳͱՄࢹԽ PyCon JP 2015ൃදࢿྉ http://www.slideshare.net/shinyorke/hackpython-pyconjp ͷωλ
ٿHack!ʙPythonΛ༻͍ͨσʔλੳͱՄࢹԽ PyCon JP 2015ൃදࢿྉ http://www.slideshare.net/shinyorke/hackpython-pyconjp ҰٿใΓ͍ͨϯΰ ˠͷςʔϚʂ
ٿHack!ͱҰٿใ • ࢼ߹ɾଧ੮ͷ݁Ռetc…είΞͰଌΕΔωλΓͬͨײ͋Δ • બखͷނোɾෆௐʢௐʣείΞͰଌΕͳ͍ˠΓ͍ͨ • खͳΒٿɾίϯτϩʔϧɾϘʔϧͷճసɺ खकඋൣғ()ɾεΠϯάεϐʔυͰଌΕΔͷͰʂʁ • Ұٿใͷσʔλ͕͋ΕͰ͖ͦ͏…͋ͬͨʂʂʂ
• ࢼ͠ʹͬͯΈΑ͏ʂʂʂˡࠓίί
MLB at BATʙMLBҰٿใ • MLB࣮گҰٿใαʔϏε • PCαΠτɾεϚϗΞϓϦɾApple TVͳͲ • MLB.TVͱ߹ΘͤͯܖͰ࣮گಈըݟΒΕΔ
• σʔλ͕ͱʹ͔͘ॆ࣮
Analyzing Baseball Data with R • MLBͷΦʔϓϯσʔλʮRetrosheetʯ, MLB at BATใσʔλΛ༻͍ͨσʔλੳɾՄࢹ
Խʹ͍ͭͯॻ͔Ε͍ͯΔॻ੶ʢӳޠʣ • RݴޠΛͬͨੳͱՄࢹԽͷωλ͕ϝΠϯ • ʮpitchRxʯͱ͍͏ɺRݴޠͷϥΠϒϥϦΛ༻͍ͯ at BATσʔλΛऔಘ&ՄࢹԽ
“ʮpitchRxʯͱ͍͏ɺ RݴޠͷϥΠϒϥϦΛ༻͍ͯ at BATσʔλΛऔಘ&ՄࢹԽ”
ʁʁʁʮPythonͰΓ͍ͨΜ͡Όʂʯ ※RΛͲ͏͜͏ݴ͏ͱ͔ͦΜͳҙਤ(ry
pitchpx - Getting MLB dataset • MLB at BATͷҰٿใσʔλΛऔಘ&εΫϨΠϐϯάͯ͠ CSVσʔληοτʹམͱ͢PythonϥΠϒϥϦ.
• pitchRx(R)ͳͲΛࢀߟʹࢲ͕։ൃ͠·ͨ͠. • ίϚϯυϥΠϯπʔϧͰ͢. • Python 3.3.xҎ্ઐ༻ˡڧ͍ͩ͜ΘΓ • PyPIͰެ։͍ͯ͠·͢ʂʂʂʢ୭Ͱ͑Δʣ
͍ํ $ # Python 3.3Ҏ্(ਪPython 3.4Ҏ্)͕ಈ͘ڥͰͬͯͶ $ pip install pitchpx
$ # ྫɿ2015/8/1-8/12·Ͱͷࢼ߹݁ՌΛऔಘ͢Δ $ pitchpx -s 20150801 -e 20150812 -o .
ʲྫʳؠ۾ϊʔώοτϊʔϥϯ • ϚϦφʔζ-ΦϦΦʔϧζͷࢼ߹(2015/8/12)ʹͯɺ ϊʔώοτϊʔϥϯΛܾΊͨؠ۾ٱࢤखͷٿΛੳ • ٿɺϘʔϧͷճసɺετϥΠΫκʔϯɺetc… • pitchpxͰऔಘͨ͠σʔλΛpandasͱ matplotlib(&seaborn)Ͱલॲཧ&ՄࢹԽ •
ڥJupyter notebook(Python 3.5.1)
σϞ (লུ)
ৄ͘͠QiitaͰʂʂʂ ؠ۾ٱࢤ(SEA)ͷφΠεϐονϯάΛPythonͰՄࢹԽ http://qiita.com/shinyorke/items/2c2e2c3976fc2d1ed051
݁ͼʙ2016ͷٿHack! • ͦΒʢࠓٿσʔλͷՄࢹԽ͔ͩΒʣ ͦ͏ʢͭ͗कඋσʔλͷՄࢹԽʹʣ Αɹʢܾ·͍ͬͯΔ͡Όͳ͍͔ʣ • PyCon JP 2016(9/21,22)ɺ ʮAnalyzing
Baseball Data With Pythonʯ ͱ͔ͦΜͳλΠτϧͰͬͱ໘ന͍͕Ͱ͖Δϋζ. • ຊެ։ͨ͠ωλੋඇ༡ΜͰΈͯʂ ˠػցֶशͷࡐͱ͔ʹΠέΔΜ͡Όͳ͍ʁ
ʮҰٿใσʔλͷϥΠηϯεʁେৎͳͷʁʯ ※Ұ൪͋Γͦ͏ͳ࣭
ɿ(ݸਓར༻ఔͳΒ)OK ʲެࣜʳ http://gd2.mlb.com/components/copyright.txt ʲ༁&ղઆʳ http://qiita.com/shinyorke/items/566f1b7e7687492a0c7f
ήʔϜηοτʂʂʂ ͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠. Shinichi Nakagawa(Twitter/Facebook/hatena:@shinyorke)