Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
投球を可視化する技術〜Analyzing Pitching Data With Python
Search
Shinichi Nakagawa
PRO
March 22, 2016
Research
1
1.2k
投球を可視化する技術〜Analyzing Pitching Data With Python
MLBの一球速報データを使った投球データの可視化をPython他でやってみました.
BPStudy #103 2016/3/22 発表資料
Shinichi Nakagawa
PRO
March 22, 2016
Tweet
Share
More Decks by Shinichi Nakagawa
See All by Shinichi Nakagawa
自らを強いエンジニアにするための3つの習慣 2025/ Fitter happier more productive
shinyorke
PRO
0
260
生成AI時代におけるSREの進化とキャリア戦略 / Building an Embedded SRE team and my career
shinyorke
PRO
0
130
生成AIを活用した野球データ分析 - メジャーリーグ編 / Baseball Analytics for Gen AI
shinyorke
PRO
1
5.7k
ゼロから始めるSREの事業貢献 - 生成AI時代のSRE成長戦略と実践 / Starting SRE from Day One
shinyorke
PRO
2
6.4k
AI・LLM事業部のSREとタスクの自動運転
shinyorke
PRO
0
510
実践Dash - 手を抜きながら本気で作るデータApplicationの基本と応用 / Dash for Python and Baseball
shinyorke
PRO
2
3.9k
Terraform, GitHub Actions, Cloud Buildでデータ基盤をProvisioningする / Data Platform provisioning for Google Cloud and Terraform
shinyorke
PRO
2
3.5k
Cloud RunとCloud PubSubでサーバレスなデータ基盤2024 with Terraform / Cloud Run and PubSub with Terraform
shinyorke
PRO
9
4.3k
自らを強いエンジニアにするための3つの習慣 / I need to be myself, I can't be no one else
shinyorke
PRO
86
91k
Other Decks in Research
See All in Research
When Learned Data Structures Meet Computer Vision
matsui_528
1
1.9k
Aurora Serverless からAurora Serverless v2への課題と知見を論文から読み解く/Understanding the challenges and insights of moving from Aurora Serverless to Aurora Serverless v2 from a paper
bootjp
6
1.3k
A History of Approximate Nearest Neighbor Search from an Applications Perspective
matsui_528
1
130
高畑鬼界ヶ島と重文・称名寺本薬師如来像の来歴を追って/kikaigashima
kochizufan
0
110
データサイエンティストをめぐる環境の違い2025年版〈一般ビジネスパーソン調査の国際比較〉
datascientistsociety
PRO
0
420
生成AI による論文執筆サポート・ワークショップ ─ サーベイ/リサーチクエスチョン編 / Workshop on AI-Assisted Paper Writing Support: Survey/Research Question Edition
ks91
PRO
0
130
第二言語習得研究における 明示的・暗示的知識の再検討:この分類は何に役に立つか,何に役に立たないか
tam07pb915
0
640
機械学習と数理最適化の融合 (MOAI) による革新
mickey_kubo
1
450
snlp2025_prevent_llm_spikes
takase
0
420
Earth AI: Unlocking Geospatial Insights with Foundation Models and Cross-Modal Reasoning
satai
2
270
ForestCast: Forecasting Deforestation Risk at Scale with Deep Learning
satai
2
190
言語モデルの地図:確率分布と情報幾何による類似性の可視化
shimosan
8
2.4k
Featured
See All Featured
Ethics towards AI in product and experience design
skipperchong
1
150
Digital Projects Gone Horribly Wrong (And the UX Pros Who Still Save the Day) - Dean Schuster
uxyall
0
110
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1.1k
Fashionably flexible responsive web design (full day workshop)
malarkey
408
66k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.6k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
HU Berlin: Industrial-Strength Natural Language Processing with spaCy and Prodigy
inesmontani
PRO
0
120
Leveraging LLMs for student feedback in introductory data science courses - posit::conf(2025)
minecr
0
97
Tell your own story through comics
letsgokoyo
0
770
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
141
34k
How STYLIGHT went responsive
nonsquared
100
6k
How to audit for AI Accessibility on your Front & Back End
davetheseo
0
130
Transcript
None
Who am I? • Shinichi Nakagawa(@shinyorke) • Pythonista/Agile Software Development/Baseball
Analyst • visasQ(ϏβεΫ) Python Engineer/Scrum Master • ւಓຊϋϜϑΝΠλʔζ/Oakland Athletics • ιχʔɾάϨΠ(OAK)ͷαΠϠϯάड &Ԭւ(ϋϜ)ͷελϝϯୣऔΛ৴͍ͯ͡·͢.
ࠓγʔζϯݟͲ͜Ζ ݟͲ͜Ζ ੈؒͷ෩ை தͷݟղ ༏উνʔϜ ɾιϑτόϯΫ ɾϠΫϧτ ɾϋϜ ɾڊਓPSౡ τϦϓϧεϦʔ
ɾ༄ా༔ذ ࿈ଓ ɾࢁాਓ ࿈ଓ ࢁాਓ ࿈ଓ ΪʔλࡾףͲ͏ͧ ΰʔϧσϯάϥϒ ɾ༄ా༔ذ $' ɾௗ୩ܟ 44 ɾೋਓڞऩ ɾγϣʔτ୭͕ʁ ۙ౻݈հ ϋϜ ɾׂຊ͍͚ΔͰʂ ɾࢦ໊ଧऀPSϥΠτ ۙ౻ ࢦcӈcัcࡾc༡ ˠॅॴෆఆʹͳΔ
Starting Member • ٿHack!2015ৼΓฦΓ • MLBҰٿใσʔλͱٿHack • MLBҰٿใσʔλΛPythonͰHackͯ͠ΈΔ ʙpitchpxͱJupyter +
pandas + matplotlibʙ • ར༻ྫʙؠ۾ٱࢤϊʔώοτϊʔϥϯ • ݁ͼʙࠓޙͷٿHack(PyCon JP 2016ʹ͚ͯ) • ʲΦϚέʳ2016ϓϩٿେ༧
ٿHack!1.0(PyCon JP 2015) • MLBͷࢼ߹͝ͱͷଧ੮σʔλΛHack! • ࢄาʢ࢛ٿʣͷʢΠονVSϘοτʣ • ϐονϟʔͷ݄ผউͪʢδϣϯɾϨελʔʣ •
ຖຖࢼ߹ͷσʔλΛऔಘ&ੳ • ΞμϜɾμϯʢଧऀʣ • ඃΞμϜɾμϯʢखʣ • ৄ͘͠εϥΠυΛޚཡ͍ͩ͘͞ or ʮٿ PythonʯͰάάΖ͏
ٿHack!ʙPythonΛ༻͍ͨσʔλੳͱՄࢹԽ PyCon JP 2015ൃදࢿྉ http://www.slideshare.net/shinyorke/hackpython-pyconjp
ٿHack!ʙPythonΛ༻͍ͨσʔλੳͱՄࢹԽ PyCon JP 2015ൃදࢿྉ http://www.slideshare.net/shinyorke/hackpython-pyconjp ͷωλ
ٿHack!ʙPythonΛ༻͍ͨσʔλੳͱՄࢹԽ PyCon JP 2015ൃදࢿྉ http://www.slideshare.net/shinyorke/hackpython-pyconjp ҰٿใΓ͍ͨϯΰ ˠͷςʔϚʂ
ٿHack!ͱҰٿใ • ࢼ߹ɾଧ੮ͷ݁Ռetc…είΞͰଌΕΔωλΓͬͨײ͋Δ • બखͷނোɾෆௐʢௐʣείΞͰଌΕͳ͍ˠΓ͍ͨ • खͳΒٿɾίϯτϩʔϧɾϘʔϧͷճసɺ खकඋൣғ()ɾεΠϯάεϐʔυͰଌΕΔͷͰʂʁ • Ұٿใͷσʔλ͕͋ΕͰ͖ͦ͏…͋ͬͨʂʂʂ
• ࢼ͠ʹͬͯΈΑ͏ʂʂʂˡࠓίί
MLB at BATʙMLBҰٿใ • MLB࣮گҰٿใαʔϏε • PCαΠτɾεϚϗΞϓϦɾApple TVͳͲ • MLB.TVͱ߹ΘͤͯܖͰ࣮گಈըݟΒΕΔ
• σʔλ͕ͱʹ͔͘ॆ࣮
Analyzing Baseball Data with R • MLBͷΦʔϓϯσʔλʮRetrosheetʯ, MLB at BATใσʔλΛ༻͍ͨσʔλੳɾՄࢹ
Խʹ͍ͭͯॻ͔Ε͍ͯΔॻ੶ʢӳޠʣ • RݴޠΛͬͨੳͱՄࢹԽͷωλ͕ϝΠϯ • ʮpitchRxʯͱ͍͏ɺRݴޠͷϥΠϒϥϦΛ༻͍ͯ at BATσʔλΛऔಘ&ՄࢹԽ
“ʮpitchRxʯͱ͍͏ɺ RݴޠͷϥΠϒϥϦΛ༻͍ͯ at BATσʔλΛऔಘ&ՄࢹԽ”
ʁʁʁʮPythonͰΓ͍ͨΜ͡Όʂʯ ※RΛͲ͏͜͏ݴ͏ͱ͔ͦΜͳҙਤ(ry
pitchpx - Getting MLB dataset • MLB at BATͷҰٿใσʔλΛऔಘ&εΫϨΠϐϯάͯ͠ CSVσʔληοτʹམͱ͢PythonϥΠϒϥϦ.
• pitchRx(R)ͳͲΛࢀߟʹࢲ͕։ൃ͠·ͨ͠. • ίϚϯυϥΠϯπʔϧͰ͢. • Python 3.3.xҎ্ઐ༻ˡڧ͍ͩ͜ΘΓ • PyPIͰެ։͍ͯ͠·͢ʂʂʂʢ୭Ͱ͑Δʣ
͍ํ $ # Python 3.3Ҏ্(ਪPython 3.4Ҏ্)͕ಈ͘ڥͰͬͯͶ $ pip install pitchpx
$ # ྫɿ2015/8/1-8/12·Ͱͷࢼ߹݁ՌΛऔಘ͢Δ $ pitchpx -s 20150801 -e 20150812 -o .
ʲྫʳؠ۾ϊʔώοτϊʔϥϯ • ϚϦφʔζ-ΦϦΦʔϧζͷࢼ߹(2015/8/12)ʹͯɺ ϊʔώοτϊʔϥϯΛܾΊͨؠ۾ٱࢤखͷٿΛੳ • ٿɺϘʔϧͷճసɺετϥΠΫκʔϯɺetc… • pitchpxͰऔಘͨ͠σʔλΛpandasͱ matplotlib(&seaborn)Ͱલॲཧ&ՄࢹԽ •
ڥJupyter notebook(Python 3.5.1)
σϞ (লུ)
ৄ͘͠QiitaͰʂʂʂ ؠ۾ٱࢤ(SEA)ͷφΠεϐονϯάΛPythonͰՄࢹԽ http://qiita.com/shinyorke/items/2c2e2c3976fc2d1ed051
݁ͼʙ2016ͷٿHack! • ͦΒʢࠓٿσʔλͷՄࢹԽ͔ͩΒʣ ͦ͏ʢͭ͗कඋσʔλͷՄࢹԽʹʣ Αɹʢܾ·͍ͬͯΔ͡Όͳ͍͔ʣ • PyCon JP 2016(9/21,22)ɺ ʮAnalyzing
Baseball Data With Pythonʯ ͱ͔ͦΜͳλΠτϧͰͬͱ໘ന͍͕Ͱ͖Δϋζ. • ຊެ։ͨ͠ωλੋඇ༡ΜͰΈͯʂ ˠػցֶशͷࡐͱ͔ʹΠέΔΜ͡Όͳ͍ʁ
ʮҰٿใσʔλͷϥΠηϯεʁେৎͳͷʁʯ ※Ұ൪͋Γͦ͏ͳ࣭
ɿ(ݸਓར༻ఔͳΒ)OK ʲެࣜʳ http://gd2.mlb.com/components/copyright.txt ʲ༁&ղઆʳ http://qiita.com/shinyorke/items/566f1b7e7687492a0c7f
ήʔϜηοτʂʂʂ ͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠. Shinichi Nakagawa(Twitter/Facebook/hatena:@shinyorke)