Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
投球を可視化する技術〜Analyzing Pitching Data With Python
Search
Shinichi Nakagawa
PRO
March 22, 2016
Research
1
1.2k
投球を可視化する技術〜Analyzing Pitching Data With Python
MLBの一球速報データを使った投球データの可視化をPython他でやってみました.
BPStudy #103 2016/3/22 発表資料
Shinichi Nakagawa
PRO
March 22, 2016
Tweet
Share
More Decks by Shinichi Nakagawa
See All by Shinichi Nakagawa
AI・LLM事業部のSREとタスクの自動運転
shinyorke
PRO
0
410
実践Dash - 手を抜きながら本気で作るデータApplicationの基本と応用 / Dash for Python and Baseball
shinyorke
PRO
2
3k
Terraform, GitHub Actions, Cloud Buildでデータ基盤をProvisioningする / Data Platform provisioning for Google Cloud and Terraform
shinyorke
PRO
2
3.2k
Cloud RunとCloud PubSubでサーバレスなデータ基盤2024 with Terraform / Cloud Run and PubSub with Terraform
shinyorke
PRO
9
4k
自らを強いエンジニアにするための3つの習慣 / I need to be myself, I can't be no one else
shinyorke
PRO
82
85k
阪神タイガース優勝のひみつ - Pythonでシュッと調べた件 / SABRmetrics for Python
shinyorke
PRO
1
1.4k
Pythonとクラウドと野球の推し活. / Baseball Data Platform for Python and Google Cloud
shinyorke
PRO
2
2.9k
月額コーヒー3.34杯分のコストでオオタニサンの活躍を見守るデータ基盤のはなし / Pyhack Con
shinyorke
PRO
2
520
俺のDXを実現するためのサーバレスなデータ基盤開発と運用 / Serverless Data Platform and Baseball
shinyorke
PRO
5
12k
Other Decks in Research
See All in Research
数理最適化と機械学習の融合
mickey_kubo
15
8.8k
Agentic AIとMCPを利用したサービス作成入門
mickey_kubo
0
240
データサイエンティストの採用に関するアンケート
datascientistsociety
PRO
0
980
Pix2Poly: A Sequence Prediction Method for End-to-end Polygonal Building Footprint Extraction from Remote Sensing Imagery
satai
3
480
大規模な2値整数計画問題に対する 効率的な重み付き局所探索法
mickey_kubo
1
250
Adaptive Experimental Design for Efficient Average Treatment Effect Estimation and Treatment Choice
masakat0
0
130
研究テーマのデザインと研究遂行の方法論
hisashiishihara
5
1.4k
3D Gaussian Splattingによる高効率な新規視点合成技術とその応用
muskie82
5
2.6k
電力システム最適化入門
mickey_kubo
1
640
NLP2025 WS Shared Task 文法誤り訂正部門 ehiMetrick
sugiyamaseiji
0
190
引力・斥力を制御可能なランダム部分集合の確率分布
wasyro
0
150
なめらかなシステムと運用維持の終わらぬ未来 / dicomo2025_coherently_fittable_system
monochromegane
0
290
Featured
See All Featured
BBQ
matthewcrist
89
9.7k
For a Future-Friendly Web
brad_frost
179
9.8k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
657
60k
Speed Design
sergeychernyshev
32
1k
Large-scale JavaScript Application Architecture
addyosmani
512
110k
Git: the NoSQL Database
bkeepers
PRO
430
65k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Intergalactic Javascript Robots from Outer Space
tanoku
271
27k
Making Projects Easy
brettharned
116
6.3k
Designing for Performance
lara
609
69k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
130
19k
Facilitating Awesome Meetings
lara
54
6.4k
Transcript
None
Who am I? • Shinichi Nakagawa(@shinyorke) • Pythonista/Agile Software Development/Baseball
Analyst • visasQ(ϏβεΫ) Python Engineer/Scrum Master • ւಓຊϋϜϑΝΠλʔζ/Oakland Athletics • ιχʔɾάϨΠ(OAK)ͷαΠϠϯάड &Ԭւ(ϋϜ)ͷελϝϯୣऔΛ৴͍ͯ͡·͢.
ࠓγʔζϯݟͲ͜Ζ ݟͲ͜Ζ ੈؒͷ෩ை தͷݟղ ༏উνʔϜ ɾιϑτόϯΫ ɾϠΫϧτ ɾϋϜ ɾڊਓPSౡ τϦϓϧεϦʔ
ɾ༄ా༔ذ ࿈ଓ ɾࢁాਓ ࿈ଓ ࢁాਓ ࿈ଓ ΪʔλࡾףͲ͏ͧ ΰʔϧσϯάϥϒ ɾ༄ా༔ذ $' ɾௗ୩ܟ 44 ɾೋਓڞऩ ɾγϣʔτ୭͕ʁ ۙ౻݈հ ϋϜ ɾׂຊ͍͚ΔͰʂ ɾࢦ໊ଧऀPSϥΠτ ۙ౻ ࢦcӈcัcࡾc༡ ˠॅॴෆఆʹͳΔ
Starting Member • ٿHack!2015ৼΓฦΓ • MLBҰٿใσʔλͱٿHack • MLBҰٿใσʔλΛPythonͰHackͯ͠ΈΔ ʙpitchpxͱJupyter +
pandas + matplotlibʙ • ར༻ྫʙؠ۾ٱࢤϊʔώοτϊʔϥϯ • ݁ͼʙࠓޙͷٿHack(PyCon JP 2016ʹ͚ͯ) • ʲΦϚέʳ2016ϓϩٿେ༧
ٿHack!1.0(PyCon JP 2015) • MLBͷࢼ߹͝ͱͷଧ੮σʔλΛHack! • ࢄาʢ࢛ٿʣͷʢΠονVSϘοτʣ • ϐονϟʔͷ݄ผউͪʢδϣϯɾϨελʔʣ •
ຖຖࢼ߹ͷσʔλΛऔಘ&ੳ • ΞμϜɾμϯʢଧऀʣ • ඃΞμϜɾμϯʢखʣ • ৄ͘͠εϥΠυΛޚཡ͍ͩ͘͞ or ʮٿ PythonʯͰάάΖ͏
ٿHack!ʙPythonΛ༻͍ͨσʔλੳͱՄࢹԽ PyCon JP 2015ൃදࢿྉ http://www.slideshare.net/shinyorke/hackpython-pyconjp
ٿHack!ʙPythonΛ༻͍ͨσʔλੳͱՄࢹԽ PyCon JP 2015ൃදࢿྉ http://www.slideshare.net/shinyorke/hackpython-pyconjp ͷωλ
ٿHack!ʙPythonΛ༻͍ͨσʔλੳͱՄࢹԽ PyCon JP 2015ൃදࢿྉ http://www.slideshare.net/shinyorke/hackpython-pyconjp ҰٿใΓ͍ͨϯΰ ˠͷςʔϚʂ
ٿHack!ͱҰٿใ • ࢼ߹ɾଧ੮ͷ݁Ռetc…είΞͰଌΕΔωλΓͬͨײ͋Δ • બखͷނোɾෆௐʢௐʣείΞͰଌΕͳ͍ˠΓ͍ͨ • खͳΒٿɾίϯτϩʔϧɾϘʔϧͷճసɺ खकඋൣғ()ɾεΠϯάεϐʔυͰଌΕΔͷͰʂʁ • Ұٿใͷσʔλ͕͋ΕͰ͖ͦ͏…͋ͬͨʂʂʂ
• ࢼ͠ʹͬͯΈΑ͏ʂʂʂˡࠓίί
MLB at BATʙMLBҰٿใ • MLB࣮گҰٿใαʔϏε • PCαΠτɾεϚϗΞϓϦɾApple TVͳͲ • MLB.TVͱ߹ΘͤͯܖͰ࣮گಈըݟΒΕΔ
• σʔλ͕ͱʹ͔͘ॆ࣮
Analyzing Baseball Data with R • MLBͷΦʔϓϯσʔλʮRetrosheetʯ, MLB at BATใσʔλΛ༻͍ͨσʔλੳɾՄࢹ
Խʹ͍ͭͯॻ͔Ε͍ͯΔॻ੶ʢӳޠʣ • RݴޠΛͬͨੳͱՄࢹԽͷωλ͕ϝΠϯ • ʮpitchRxʯͱ͍͏ɺRݴޠͷϥΠϒϥϦΛ༻͍ͯ at BATσʔλΛऔಘ&ՄࢹԽ
“ʮpitchRxʯͱ͍͏ɺ RݴޠͷϥΠϒϥϦΛ༻͍ͯ at BATσʔλΛऔಘ&ՄࢹԽ”
ʁʁʁʮPythonͰΓ͍ͨΜ͡Όʂʯ ※RΛͲ͏͜͏ݴ͏ͱ͔ͦΜͳҙਤ(ry
pitchpx - Getting MLB dataset • MLB at BATͷҰٿใσʔλΛऔಘ&εΫϨΠϐϯάͯ͠ CSVσʔληοτʹམͱ͢PythonϥΠϒϥϦ.
• pitchRx(R)ͳͲΛࢀߟʹࢲ͕։ൃ͠·ͨ͠. • ίϚϯυϥΠϯπʔϧͰ͢. • Python 3.3.xҎ্ઐ༻ˡڧ͍ͩ͜ΘΓ • PyPIͰެ։͍ͯ͠·͢ʂʂʂʢ୭Ͱ͑Δʣ
͍ํ $ # Python 3.3Ҏ্(ਪPython 3.4Ҏ্)͕ಈ͘ڥͰͬͯͶ $ pip install pitchpx
$ # ྫɿ2015/8/1-8/12·Ͱͷࢼ߹݁ՌΛऔಘ͢Δ $ pitchpx -s 20150801 -e 20150812 -o .
ʲྫʳؠ۾ϊʔώοτϊʔϥϯ • ϚϦφʔζ-ΦϦΦʔϧζͷࢼ߹(2015/8/12)ʹͯɺ ϊʔώοτϊʔϥϯΛܾΊͨؠ۾ٱࢤखͷٿΛੳ • ٿɺϘʔϧͷճసɺετϥΠΫκʔϯɺetc… • pitchpxͰऔಘͨ͠σʔλΛpandasͱ matplotlib(&seaborn)Ͱલॲཧ&ՄࢹԽ •
ڥJupyter notebook(Python 3.5.1)
σϞ (লུ)
ৄ͘͠QiitaͰʂʂʂ ؠ۾ٱࢤ(SEA)ͷφΠεϐονϯάΛPythonͰՄࢹԽ http://qiita.com/shinyorke/items/2c2e2c3976fc2d1ed051
݁ͼʙ2016ͷٿHack! • ͦΒʢࠓٿσʔλͷՄࢹԽ͔ͩΒʣ ͦ͏ʢͭ͗कඋσʔλͷՄࢹԽʹʣ Αɹʢܾ·͍ͬͯΔ͡Όͳ͍͔ʣ • PyCon JP 2016(9/21,22)ɺ ʮAnalyzing
Baseball Data With Pythonʯ ͱ͔ͦΜͳλΠτϧͰͬͱ໘ന͍͕Ͱ͖Δϋζ. • ຊެ։ͨ͠ωλੋඇ༡ΜͰΈͯʂ ˠػցֶशͷࡐͱ͔ʹΠέΔΜ͡Όͳ͍ʁ
ʮҰٿใσʔλͷϥΠηϯεʁେৎͳͷʁʯ ※Ұ൪͋Γͦ͏ͳ࣭
ɿ(ݸਓར༻ఔͳΒ)OK ʲެࣜʳ http://gd2.mlb.com/components/copyright.txt ʲ༁&ղઆʳ http://qiita.com/shinyorke/items/566f1b7e7687492a0c7f
ήʔϜηοτʂʂʂ ͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠. Shinichi Nakagawa(Twitter/Facebook/hatena:@shinyorke)