Upgrade to Pro — share decks privately, control downloads, hide ads and more …

エクストリーム・モチベーション / Extreme Motivation

エクストリーム・モチベーション / Extreme Motivation

2021年度未踏ジュニアブースト会議LTの発表資料です。目の前のことに夢中になって小さな目標を更新し続けていると、大きな目標を達成できたり軌跡から自分がやりたいことを発見できたりする、という話をしました。

Shoya Ishimaru

June 13, 2021
Tweet

More Decks by Shoya Ishimaru

Other Decks in Technology

Transcript

  1. ΤΫετϦʔϜɾϞνϕʔγϣϯ
    ੴؙᠳ໵ ະ౿δϡχΞϝϯλʔ ະ౿εʔύʔΫϦΤʔλ

    View Slide

  2. ͜Μͳ૬ஊ଴ͬͯ·͢
    • ػցֶश ύλʔϯೝࣝɺ࣌ܥྻσʔλղੳ

    • J04ɾ"OESPJEɾ8FCΞϓϦ։ൃ
    • 6*σβΠϯ
    • ωʔϛϯά
    • ΞΠσΞͷԾઆݕূ
    • ࿦จͷ୳͠ํɾಡΈํ

    View Slide

  3. ݚڀऀʹͳΔલ͸δϣʔΫΞϓϦ࡞Ո ʁ
    Ͱͨ͠

    View Slide

  4. ͜Ε·Ͱʹ։ൃͨ͠ΞϓϦαʔϏεͷ঺հ
    νίΫΠΠϫέϩϘ
    ໿ଋͷ࣌ؒʹ஗Εͨͱ͖ͷ
    ݴ͍༁Λݕࡧ͢ΔΞϓϦ
    3FTU$BTU
    ࣍ʹτΠϨʹߦͩ͘Ζ͏
    ࣌ؒΛ༧ใ͢ΔΞϓϦ
    ,PUPEBNB
    ৸๥Λޙչͨ͠πΠʔτΛूΊͯ
    ਂ໷ʹͻͨ͢Β౤ߘ͢Δ໎࿭#PU

    View Slide

  5. ͜Ε·Ͱʹ։ൃͨ͠ΞϓϦαʔϏεͷ঺հ
    νίΫΠΠϫέϩϘ
    ໿ଋͷ࣌ؒʹ஗Εͨͱ͖ͷ
    ݴ͍༁Λݕࡧ͢ΔΞϓϦ
    3FTU$BTU
    ࣍ʹτΠϨʹߦͩ͘Ζ͏
    ࣌ؒΛ༧ใ͢ΔΞϓϦ
    ,PUPEBNB
    ৸๥Λޙչͨ͠πΠʔτΛूΊͯ
    ਂ໷ʹͻͨ͢Β౤ߘ͢Δ໎࿭#PU
    ਓͷߦಈ΍ੈͷதͷৗࣝΛม͑Δ΋ͷ͕޷͖

    ୭΋͕ϚΠφεͩͱࢥ͍ͬͯΔ΋ͷΛϓϥεʹͰ͖ͳ͍͔

    View Slide

  6. ݱࡏ ະདྷ
    "*

    ਓ"*
    ݡ͞
    ੢ඌହ࿨͞ΜͷൃදࢿྉΛࢀߟʹਤΛ࡞੒

    ʮ*5ۀքͷاۀͰಇ͘ʯݚڀऀ͕ߟ͍͑ͯΔ͜ͱ!ट౎େֶ౦ژ

    IUUQTXXXTMJEFTIBSFOFUOJTIJP

    View Slide

  7. ਓ޻஌ೳͱࣗવ஌ೳ
    %FFQ#MVF


    νΣε"*͕ਓؒͷϓϩΛഁΔ

    ਓ͕ؒڭ͑ͨϚχϡΞϧΛ΋ͱʹઓ͏
    "MQIB(P


    ғޟ"*͕ਓؒͷϓϩع࢜ΛഁΔ

    ϓϩͷعේͱڧԽֶशΛ΋ͱʹ੒௕
    "MQIB(P;FSP


    ϧʔϧΛ΋ͱʹֶशͨ͠"*͕"MQIB(Pʹউར

    ਓؒͷखΛआΓͣʹ੒௕
    ਓ͕"*Λ

    ݡ͘͢Δ
    "*͕"*Λ

    ݡ͘͢Δ
    "*͕ਓΛ

    ݡ͘͢Δͱ໘നͦ͏
    ࣍͸ͲΜͳ͜ͱ͕ى͖Δʁ

    View Slide

  8. ਓΛݡ͘͢Δٕज़
    श׳ͷվળ ֶशํ๏ͷ࠷దԽ

    View Slide

  9. ֶशํ๏ͷ࠷దԽ
    ਓΛݡ͘͢Δٕज़
    श׳ͷվળ

    View Slide

  10. ਭ຾
    ௨ֶ
    तۀΛड͚Δ
    ຊΛಡΉ
    ςϨϏΛݟΔ
    ৯ࣄ
    ߦಈͷه࿥਎ମతߦಈ͔Βೝ஌తߦಈ·Ͱ
    ೔ৗ࢖͍Ͱ͖ΔσόΠεΛ࢖ͬͯਓͷೝ஌తߦಈΛه࿥͍ͨ͠ʂ
    ΢ΣΞϥϒϧσόΠεFUBM>
    εϚʔτΞΠ΢ΣΞ
    ࢢൢͷΞΫςΟϏςΟτϥοΧ খதߴੜͷ׆ಈ
    A. Bulling, et al. "Eye movement analysis for activity recognition using electrooculography." IEEE transactions on pattern analysis and machine intelligence 33.4 (2010): 741-753.


    J. Steil & A. Bulling. "Discovery of everyday human activities from long-term visual behaviour using topic models." Proceedings of the 2015 ACM international joint conference on pervasive and ubiquitous computing. 2015.
    ɾɾɾ

    View Slide

  11. +*/4.&.&

    View Slide

  12. #
    3 -
    ిۃ
    ؟ిҐܭଌ
    ɾਨ௚# -3

    ɾਫฏ-3

    View Slide

  13. +*/4.&.&&MFDUSPPDVMPHSBQIZ &0(
    (MBTTFT
    ؟ిҐ (Electrooculography)
    #
    3 -
    Electrodes
    Horizontal axis: L - R [mV]
    Vertical axis: B - (L + R)/2 [mV]

    View Slide

  14. +*/4.&.&%FNP

    View Slide

  15. ສޠܭ؟ٿӡಈ͔ΒಡॻྔΛܭଌ
    า਺ͷ୅ΘΓʹޠ਺ΛՄࢹԽ

    ಡॻΛଅ͢ϑΟʔυόοΫ
    read!
    Nice condition. Read


    one paragraph more!
    There are interesting
    articles for you.
    S. Ishimaru et al. "The Wordometer 2.0: Estimating the Number of Words You Read in Real Life using Commercial EOG Glasses”. UbiComp '16 Adjunct, pp. 293–296, 2016.

    View Slide

  16. ͳͥಡॻྔͷه࿥͕ඞཁͳͷ͔
    ϕωοηڭҭ૯߹ݚڀॴͷௐࠪ݁Ռ
    ʹΑΔͱ

    ͨ͘͞ΜಡॻΛ͍ͯ͠ΔࢠͲ΋΄Ͳֶྗ͕޲্͢Δɻ

    ಡॻྔ͸ಛʹʮࢉ਺ʯͰภࠩ஋ͷมԽͷ͕ࠩେ͖͍ͱ͍͏ɻ

    খֶੜɺ೥ϲ݄ͷௐࠪɺಡॻগͳ͍ʙ࡭ଟ͍࡭Ҏ্

    View Slide

  17. ೔ʑͷߦಈྔͱ৺ͷঢ়ଶʹ͸૬ޓͷ૬͕ؔ͋Δ
    ೖྗ ग़ྗ
    ؾ෼
    ػ

    ց

    ֶ


    ਎ମߦಈྔ
    ೝ஌ߦಈྔ
    ࣾձߦಈྔ
    ਭ຾
    ಛ௃நग़
    ׆ྗ
    iPhone, AppleWatch
    Fitbit
    JINS MEME
    Twitter, Facebook
    RescueTime
    ਪఆ

    View Slide

  18. ೥౓ະ౿ࣄۀʮ৺Թܭʯ
    ηϯαͰه࿥ͨ͠೔ʑͷߦಈϩά͔Β

    ৺ͷঢ়ଶΛఆྔԽͯ͠දࣔ͢ΔΞϓϦ

    View Slide

  19. श׳ͷվળ
    ਓΛݡ͘͢Δٕज़
    ֶशํ๏ͷ࠷దԽ

    View Slide

  20. ໨͸ޱ΄Ͳʹ෺Λݴ͏ ͜͜ͰσϞ

    View Slide

  21. ࢹઢ͔Βओ؍తߴ೉қ౓୯ޠ Θ͔Βͳ͍୯ޠ
    Λਪఆ
    ܭଌ͞Εͨࢹઢ
    ԁͷେ͖͞஫ࢹ࣌ؒ
    ೉͍͠ͱײͨ͡୯ޠͷਪఆ
    ΦϨϯδਖ਼ղ৘ใਫ৭ਪఆ݁Ռ
    େࣾ et al. "ࢹ఺৘ใΛ༻͍ͨओ؍తߴ೉қ౓୯ޠͷਪఆ". ిࢠ৘ใ௨৴ֶձٕज़ݚڀใࠂ, vol. 115, no. 517, PRMU2015-189, pp. 149-153, 2016.

    View Slide

  22. ࢹઢ͔Βӳޠྗ 50&*$είΞ
    Λਪఆ
    ӳޠจॻΛͭಡΉͱϓϥεϚΠφε఺ͰਪఆՄೳ
    ౻޷ et al. "ࢹ఺৘ใΛ༻͍ͨӳޠशख़౓ਪఆ๏ͷ࣮ݧతݕ౼". ిࢠ৘ใ௨৴ֶձٕज़ݚڀใࠂ, vol. 115, no. 517, PRMU2015-195, pp. 185-190, 2016.

    View Slide

  23. ࢹઢ͔Βબ୒ࢶ໰୊ʹ͓͚Δ֬৴౓Λਪఆ
    ར༻ऀͷֶशσʔλ͕͋Ε͹ͷਫ਼౓ͰਪఆͰ͖Δ
    ֬৴Λ΋ͨͣʹ౴͑ͯؒҧ͑ͨ໰୊ͷྫ ֬৴Λ΋ͬͯ౴͑ͯؒҧ͑ͨ໰୊ͷྫ
    S. Ishimaru et al. "Confidence-Aware Learning Assistant". In arXiv preprint arXiv:2102.07312, 2021.

    View Slide

  24. ͳͥ֬৴౓ͷਪఆ͕ඞཁͳͷ͔
    तۀڭՊॻ ԋश ෮श
    Ͳͷ໰୊Λ෮श͢΂͖͔ʁൈ͚࿙Εɾޮ཰ͷτϨʔυΦϑ

    View Slide

  25. ͳͥ֬৴౓ͷਪఆ͕ඞཁͳͷ͔
    ཧղ͍ͯ͠Δ͜ͱΛ

    ཧղ͍ͯ͠Δ
    ཧղ͍ͯ͠ͳ͍͜ͱΛ

    ཧղ͍ͯ͠Δ
    ۮવʁ
    ཧղ͍ͯ͠ͳ͍͜ͱΛ

    ཧղ͍ͯ͠ͳ͍
    ୒໰୊ʹ͓͚Δ੒੷ͱճ౴ͷ֬৴౓ͷ෼෍ ੜె໊

    ੒੷ ఺ຬ఺

    ճ౴΁ͷ֬৴౓ ͔Β

    View Slide

  26. View Slide

  27. ηϯαͷ૊Έ߹ΘͤͰֶशऀͷ৺తঢ়ଶΛਪఆ
    ڵຯ ओ؍٬؍తཧղ౓ ೝ஌ෛՙ
    ΞΠτϥοΧ
    αʔϞΧϝϥ
    ಡΈฦ͠ إԹ౓
    ஫ࢹ࣌ؒ

    View Slide

  28. )ZQFS.JOE%FNP

    View Slide

  29. ಡॻࢧԉٕज़ͷ"MQIBCFO υΠπͰىۀ

    View Slide

  30. ϝοηʔδ

    View Slide

  31. ఺Λܨ͛Δ
    :PVDBOUDPOOFDUUIFEPUTMPPLJOHGPSXBSE
    :PVDBOPOMZDPOOFDUUIFNMPPLJOHCBDLXBSET
    TPZPVIBWFUPUSVTUUIBUUIFEPUTXJMM
    TPNFIPXDPOOFDUJOZPVSGVUVSF
    ະདྷʹ޲͔ͬͯ఺Λܨ͛Δ͜ͱ͸Ͱ͖·ͤΜɻաڈΛ
    ৼΓฦͬͯ఺Λܨ͛ΒΕΔ͚ͩͰ͢ɻ͔ͩΒɺࠓ΍ͬ
    ͍ͯΔ͜ͱ͕ɺকདྷͲ͔͜ʹܨ͕Δͱ৴ͯ͡Լ͍͞ɻ
    εςΟʔϒɾδϣϒζ͕೥ελϯϑΥʔυେֶ
    ͷଔۀࣜͰߦͬͨεϐʔνΑΓ

    View Slide

  32. ΤΫετϦʔϜɾϞνϕʔγϣϯ
    ΢ΥʔλʔϑΥʔϧ։ൃ ΞδϟΠϧ։ൃ

    ΤΫετϦʔϜɾϓϩάϥϛϯά

    ܭըੑΑΓॊೈੑ

    ྫ͑͹σβΠφʔˠΤϯδχΞˠݚڀऀ΁ͱస৬ͨ͠Γɺ

    ໨ͷલͷখ͞ͳ໨ඪΛߋ৽͠ଓ͚Δ͜ͱͰେ͖ͳ໨ඪΛୡ੒͢Δɻ

    View Slide

  33. ·ͱΊ
    • ΍Γ͍ͨ͜ͱ͸มΘͬͯ΋͍͍ʂ
    • ͦΕͧΕͷ׆ಈ͕ܨ͕Δॠ͕ؒདྷΔ
    • ܭըੑΑΓॊೈੑ
    • ະ౿δϡχΞ͸ΰʔϧ͡Όͳ͍
    • ະ౿δϡχΞͷϲ݄ؒΛશྗͰָ͠ΜͰ͍ͩ͘͞ʂ
    • ԿΛୡ੒͢Ε͹ϓϩδΣΫτ͸੒ޭͱ͍͑Δ͔
    • ࡞ͬͨ΋ͷ͕͋ͳͨͷ໊ࢗʹͳΔ

    View Slide