Upgrade to Pro — share decks privately, control downloads, hide ads and more …

人工知能研究の最前線と中学・高校で得た経験

 人工知能研究の最前線と中学・高校で得た経験

2017年7月3日に愛媛県立松山西中等教育学校で行った講演で使用したスライドです。

Shoya Ishimaru

July 03, 2017
Tweet

More Decks by Shoya Ishimaru

Other Decks in Technology

Transcript

  1. ੜెͱʮಉੈ୅ͷτοϓϥϯφʔʯʹΑΔߨԋձ
    υΠπਓ޻஌ೳݚڀηϯλʔݚڀһੴؙᠳ໵
    ਓ޻஌ೳݚڀͷ࠷લઢͱ
    தֶɾߴߍͰಘͨܦݧɹ
    !Ѫඤݝཱদࢁ੢த౳ڭҭֶߍ

    View Slide

  2. ࣗݾ঺հੴؙᠳ໵
    • ೥দࢁ੢த౳ڭҭֶߍଔۀ ̎ظੜ

    • ೥େࡕ෎ཱେֶେֶӃ޻ֶݚڀՊमྃ
    ܦྺ
    ೥݄ݱࡏ
    • ܦ࢈লɾ*1"ೝఆະ౿εʔύʔΫϦΤʔλ
    • %',* υΠπਓ޻஌ೳݚڀηϯλʔ
    ݚڀһ
    • ΧΠβʔεϥ΢ςϧϯ޻Պେֶ

    ϦαʔνɾΞιγΤΠτ
    • େࡕ෎ཱେֶ٬һݚڀһ
    • ܚጯٛक़େֶ,.%ݚڀॴݚڀһ

    View Slide

  3. ࣗݾ঺հੴؙᠳ໵
    • ೥দࢁ੢த౳ڭҭֶߍଔۀ ̎ظੜ

    • ೥େࡕ෎ཱେֶେֶӃ޻ֶݚڀՊमྃ
    ܦྺ
    ೥݄ݱࡏ
    • ܦ࢈লɾ*1"ೝఆະ౿εʔύʔΫϦΤʔλ
    • %',* υΠπਓ޻஌ೳݚڀηϯλʔ
    ݚڀһ
    • ΧΠβʔεϥ΢ςϧϯ޻Պେֶ

    ϦαʔνɾΞιγΤΠτ
    • େࡕ෎ཱେֶ٬һݚڀһ
    • ܚጯٛक़େֶ,.%ݚڀॴݚڀһ
    ͲΜͳݚڀΛͯ͠ΔͷʁݚڀऀͬͯͲΜͳ࢓ࣄʁ
    ͲΜͳܦҢͰݚڀऀʹͳͬͨͷʁ

    View Slide

  4. ࠓ೔ͷߨԋͰ఻͑Δ༧ఆͷ͜ͱ
    • ݚڀऀͱ͍͏࢓ࣄʹڵຯ͕͋Δֶੜͷํ΁
    ɹ࠷ઌ୺ͷݚڀྫɺݚڀऀʹͳΔ͏͑Ͱ

    ɹɹதߴେֶ࣌୅ʹ΍ͬͯΑ͔ͬͨͱࢥ͏͜ͱ
    • কདྷ΍ਐ࿏બ୒ʹ͍ͭͯ೰ΜͰ͍Δֶੜͷํ΁
    ɹେֶͬͯ໘ന͍ʂ
    ɹ΍Γ͍ͨ͜ͱ͸ࠓܾΊͳͯ͘΋ྑ͍
    ษڧ๏ͳͲडݧʹؔ͢Δ۩ମతͳ͜ͱ΍

    ւ֎ੜ׆ͷۤ࿑࿩͸࠲ஊձͰ͓࿩͠·͢

    View Slide

  5. ͲΜͳݚڀΛ͍ͯ͠Δͷʁ
    ݚڀऀͬͯͲΜͳ࢓ࣄʁ
    ͲΜͳܦҢͰݚڀऀʹͳͬͨͷʁ

    View Slide

  6. ͲΜͳݚڀΛ͍ͯ͠Δͷʁ
    ݚڀऀͬͯͲΜͳ࢓ࣄʁ
    ͲΜͳܦҢͰݚڀऀʹͳͬͨͷʁ

    View Slide

  7. ਓ޻஌ೳ
    ਓ޻తʹίϯϐϡʔλ্ͳͲͰ
    ਓؒͱಉ༷ͷ஌ೳΛ࣮ݱͤ͞Α͏ͱ͍͏ࢼΈɺ
    ͍҃͸ͦͷͨΊͷҰ࿈ͷجૅٕज़8JLJQFEJB
    IUUQTKBXJLJQFEJBPSHXJLJ&#"#"&#"&'"&#%

    View Slide

  8. ਓ޻஌ೳͷछྨ
    ൚༻ਓ޻஌ೳ
    ҟͳΔྖҬͰଟ༻Ͱ
    ෳࡶͳ໰୊Λղܾ͢Δ
    ಛԽܕਓ޻஌ೳ
    ݸผͷྖҬʹಛԽͯ͠
    ໰୊Λղܾ͢Δ
    IUUQTXXXZPVUVCFDPNXBUDI WQ-JD(/5U6&IUUQKBQBOFTFFOHBEHFUDPNEWE
    IUUQTXXXFOHBEHFUDPNXBUDIBMQIBHPWTMFFTFEPMSPVOEMJWFSJHIUOPX

    View Slide

  9. ݚڀ੒Ռͷྫ
    IUUQHJHB[JOFOFUOFXTOFVSBMOFUXPSLDPMPSJ[F
    ғޟϓϩάϥϜ͕ਓؒͷϓϩғޟع࢜ΛഁΔ

    View Slide

  10. ݚڀ੒Ռͷྫ
    IUUQTUXJUUFSDPNqBEEJDUTUBUVT
    ػց຋༁ͷਫ਼౓޲্

    View Slide

  11. ݚڀ੒Ռͷྫ
    ,SBGLB ,ZMF FUBM&ZFUSBDLJOHGPSFWFSZPOF1SPD$713
    εϚʔτϑΥϯͷϑϩϯτΧϝϥͰར༻ऀͷࢹઢΛਪఆ

    View Slide

  12. ݚڀ੒Ռͷྫ
    IUUQHJHB[JOFOFUOFXTOFVSBMOFUXPSLDPMPSJ[F
    നࠇը૾͔ΒΧϥʔը૾Λੜ੒

    View Slide

  13. ͳ͍ͥ·ਓ޻஌ೳͳͷ͔
    ͜Ε·Ͱճͷౙͷ࣌୅Λܦͯୈ̏࣍ਓ޻஌ೳϒʔϜ
    • σΟʔϓϥʔχϯάͷొ৔

    ਓؒͷ೴ͷϝΧχζϜΛ໛฿ͨ͠γεςϜ
    • ܭࢉػ΍௨৴ٕज़ͷൃୡ

    $16΍(16ͳͲͷԋࢉੑೳ͕ඈ༂తʹ޲্

    ɹֶशʹඞཁͳଟྔͷσʔλΛूΊ΍͘͢ͳͬͨ
    • όζϫʔυԽ

    ͜Ε·Ͱͷػցֶश΍ύλʔϯೝࣝΛؚΊͯ

    ɹԿͰ΋ʮਓ޻஌ೳʯͱݺΜͰ͍Δ໘΋͋Δ

    View Slide

  14. ਓ޻஌ೳͷ͜Ε͔ΒͱγϯΪϡϥϦςΟ
    αΠϘ΢ζɾϥϘ੢ඌହ࿨͞ΜͷൃදΛ΋ͱʹ࡞੒

    ʮ*5ۀքͷاۀͰಇ͘ʯݚڀऀ͕ߟ͍͑ͯΔ͜ͱ!ट౎େֶ౦ژ

    IUUQTXXXTMJEFTIBSFOFUOJTIJP
    "*
    ਓؒ
    ະདྷ
    ݱࡏ
    γϯΪϡϥϦςΟ

    View Slide

  15. ਓ޻஌ೳͷ͜Ε͔ΒͱγϯΪϡϥϦςΟ
    αΠϘ΢ζɾϥϘ੢ඌହ࿨͞ΜͷൃදΛ΋ͱʹ࡞੒

    ʮ*5ۀքͷاۀͰಇ͘ʯݚڀऀ͕ߟ͍͑ͯΔ͜ͱ!ट౎େֶ౦ژ

    IUUQTXXXTMJEFTIBSFOFUOJTIJP
    ਓؒ

    "*
    "*
    ਓؒ
    ະདྷ
    ݱࡏ
    γϯΪϡϥϦςΟ
    • "*ਓͷ࣌୅

    "*͕ਓʹউΔ෼໺͕૿͖͍͑ͯͯΔ
    • ਓؒ"*"*ਓ


    ΞυόϯευɾνΣε
    "*ʹΑͬͯਓͷೳྗΛ֦ுɾڧԽ
    "VHNFOUFE)VNBO
    ਓͷߦಈ΍ҙਤͷೝ͕ࣝෆՄܽ

    View Slide

  16. ਓͷߦಈ΍ҙਤͷೝࣝ

    View Slide

  17. ೴ͷηϯγϯά
    fNIRS ݂தΦΩγϔϞάϩϏϯೱ౓͔Β
    ೴׆ಈมԽΛܭଌ͢Δ૷ஔ

    View Slide

  18. ೴ͷηϯγϯά

    View Slide

  19. ೴ͷηϯγϯά
    OCBDLهԱήʔϜ
    1PTJUJPO·ͨ͸4PVOE͕Oճલͱಉ͡ͳΒϘλϯΛΫϦοΫ

    View Slide

  20. ೴ͷηϯγϯά
    [1] Shoya Ishimaru, Kai Kunze, Koichi Kise and Masahiko Inami. Position Paper: Brain Teasers - Toward Wearable
    Computing that Engages Our Mind. Proceedings of the 2014 ACM International Joint Conference on Pervasive and
    Ubiquitous Computing Adjunct Publication (UbiComp2014). September 2014.
    1-back
    2-back
    4-back
    n-backهԱήʔϜதͷ೴׆ੑ ෛՙ
    3-back

    View Slide

  21. هԱྗΛ஁͑Δͷʹ࠷దͳ೉қ౓͕෼͔Δ
    [1] Shoya Ishimaru, Kai Kunze, Koichi Kise and Masahiko Inami. Position Paper: Brain Teasers - Toward Wearable
    Computing that Engages Our Mind. Proceedings of the 2014 ACM International Joint Conference on Pervasive and
    Ubiquitous Computing Adjunct Publication (UbiComp2014). September 2014.
    1-back
    2-back
    4-back
    n-backهԱήʔϜதͷ೴׆ੑ ෛՙ
    3-back

    View Slide

  22. έʔϒϧʹܨ͕ΕΔະདྷʁ

    View Slide

  23. ϞʔγϣϯηϯαΛ࢖ͬͨߦಈೝࣝ

    View Slide

  24. ϞʔγϣϯηϯαΛ࢖ͬͨߦಈೝࣝ
    ਭ຾
    Ҡಈ(ెา)
    Ҡಈ(ిं)
    ಡॻ
    ன৯
    ߨٛΛड͚Δ
    Ҡಈ(ెา)
    ༦৯
    ςϨϏΛݟΔ
    07:00
    08:00
    09:00
    10:00
    11:00
    12:00
    13:00
    14:00
    15:00
    16:00
    17:00
    18:00
    19:00
    20:00
    06:00

    View Slide

  25. ϞʔγϣϯηϯαΛ࢖ͬͨߦಈೝࣝ
    ਭ຾
    Ҡಈ(ెา)
    Ҡಈ(ిं)
    ಡॻ
    ன৯
    ߨٛΛड͚Δ
    Ҡಈ(ెา)
    ༦৯
    ςϨϏΛݟΔ
    07:00
    08:00
    09:00
    10:00
    11:00
    12:00
    13:00
    14:00
    15:00
    16:00
    17:00
    18:00
    19:00
    20:00
    06:00

    View Slide

  26. ʮ໨͸ޱ΄Ͳʹ΋ͷΛݴ͏ʯ

    View Slide

  27. ߦಈೝࣝʹ༻͍͍ͯΔ༷ʑͳηϯα
    ҆Ձ
    ߴՁ
    1ઍສ 100ສ 10ສ 1ສԁ
    fNIRS
    SMI Mobile
    Eye Tracking glasses Google Glass
    Software based
    eye tracking
    J!NS MEME Tobii e4c
    E4 wristband
    Pupil
    Emotiv EEG FLIR One Fitbit

    View Slide

  28. 8IBU )PX 8IZ
    ԿΛ ͲͷΑ͏ʹ ͳͥ

    View Slide

  29. 8IBU )PX 8IZ
    ԿΛ ͲͷΑ͏ʹ ͳͥ

    View Slide

  30. ॠ͖ͷηϯγϯά

    View Slide

  31. ॠ͖ͷηϯγϯά
    [2] Shoya Ishimaru, Jens Weppner, Kai Kunze, Andreas Bulling, Koichi Kise, Andreas Dengel and Paul Lukowicz. In the
    Blink of an Eye - Combining Head Motion and Eye Blink Frequency for Activity Recognition with Google Glass.
    Proceedings of the 5th Augmented Human International Conference (AH2014). March 2014.

    View Slide

  32. ॠ͖ͷηϯγϯά
    reading watching solving
    sawing talking
    [2] Shoya Ishimaru, Jens Weppner, Kai Kunze, Andreas Bulling, Koichi Kise, Andreas Dengel and Paul Lukowicz. In the
    Blink of an Eye - Combining Head Motion and Eye Blink Frequency for Activity Recognition with Google Glass.
    Proceedings of the 5th Augmented Human International Conference (AH2014). March 2014.

    View Slide

  33. ॠ͖ͷηϯγϯά
    [2] Shoya Ishimaru, Jens Weppner, Kai Kunze, Andreas Bulling, Koichi Kise, Andreas Dengel and Paul Lukowicz. In the
    Blink of an Eye - Combining Head Motion and Eye Blink Frequency for Activity Recognition with Google Glass.
    Proceedings of the 5th Augmented Human International Conference (AH2014). March 2014.
    reading watching solving
    sawing talking

    View Slide

  34. ॠ͖ͷύλʔϯͰ૷ணऀ͕ࠓԿΛ͍ͯ͠Δ͔෼͔Δ
    [2] Shoya Ishimaru, Jens Weppner, Kai Kunze, Andreas Bulling, Koichi Kise, Andreas Dengel and Paul Lukowicz. In the
    Blink of an Eye - Combining Head Motion and Eye Blink Frequency for Activity Recognition with Google Glass.
    Proceedings of the 5th Augmented Human International Conference (AH2014). March 2014.
    reading watching solving
    sawing talking
    ॠ͖͚ͩͰ ಄ͷಈ͖ΛՃ͑Δͱͷࣝผਫ਼౓

    View Slide

  35. ʮ৺ԹܭʯߦಈͷมԽ͔Βؾ෼ΛਪఆͰ͖Δ
    [7] Shoya Ishimaru and Koichi Kise. Quantifying the Mental State on the Basis of Physical and Social Activities. In
    Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing Adjunct
    Publication (UbiComp2015). September 2015.

    View Slide

  36. 8IBU )PX 8IZ
    ԿΛ ͲͷΑ͏ʹ ͳͥ

    View Slide

  37. +/4.&.&

    View Slide

  38. ؟ٿӡಈͷηϯγϯά
    #
    3 -
    ిۃ
    ؟ిҐܭଌ
    ɾਫฏํ޲: B - (L + R)/2 [mV]
    ɾਨ௚ํ޲: L - R [mV]

    View Slide

  39. ʮສޠܭʯ؟ٿӡಈ͔ΒಡΜͰ͍Δจࣈͷྔ͕෼͔Δ
    [3] Shoya Ishimaru, Kai Kunze, Koichi Kise, and Andreas Dengel. The Wordometer 2.0 - Estimating the Number of Words
    You Read in Real Life using Commercial EOG Glasses. In Proceedings of the 2016 ACM International Joint Conference on
    Pervasive and Ubiquitous Computing Adjunct Publication (UbiComp2016). September 2016.

    View Slide

  40. ࢹઢͷηϯγϯά

    View Slide

  41. ࢹઢͷηϯγϯά

    View Slide

  42. ࢹઢͷηϯγϯά
    Introduction
    Definitions
    Applications
    (a) text
    (a) text
    (b) tasks

    View Slide

  43. ࢹઢͷηϯγϯά
    3
    4
    5
    5
    5
    6
    7
    7
    novice(ॳ৺ऀ) intermediate(தڃऀ) expert(্ڃऀ)
    reading solving
    score (out of 14)

    View Slide

  44. ڭՊॻͷಡΈํ͔Β಺༰ͷཧղ౓͕෼͔Δ
    intro. def. appl. intro. def. appl.
    intro. def. appl. intro. def. appl.
    intro. def. appl. intro. def. appl.
    Expert
    Intermediate
    Novice
    reading solving
    reading solving
    reading solving
    B
    SFBEJOH C
    TPMWJOH
    F
    SFBEJOH G
    TPMWJOH
    /PWJDF
    D
    SFBEJOH E
    TPMWJOH
    *OUFSNFEJBUF
    &YQFSU
    Introduction
    Definitions
    Applications
    (a) text
    [4] Shoya Ishimaru, Syed Saqib Bukhari, Carina Heisel, Jochen Kuhn, and Andreas Dengel. Towards an Intelligent
    Textbook: Eye Gaze Based Attention Extraction on Materials for Learning and Instruction in Physics. In Proceedings of
    the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing Adjunct Publication
    (UbiComp2016). September 2016.

    View Slide

  45. ڭՊॻͷಡΈํ͔Β಺༰ͷཧղ౓͕෼͔Δ
    intro. def. appl. intro. def. appl.
    intro. def. appl. intro. def. appl.
    intro. def. appl. intro. def. appl.
    Expert
    Intermediate
    Novice
    reading solving
    reading solving
    reading solving
    B
    SFBEJOH C
    TPMWJOH
    F
    SFBEJOH G
    TPMWJOH
    /PWJDF
    D
    SFBEJOH E
    TPMWJOH
    *OUFSNFEJBUF
    &YQFSU
    Introduction
    Definitions
    Applications
    (a) text
    [4] Shoya Ishimaru, Syed Saqib Bukhari, Carina Heisel, Jochen Kuhn, and Andreas Dengel. Towards an Intelligent
    Textbook: Eye Gaze Based Attention Extraction on Materials for Learning and Instruction in Physics. In Proceedings of
    the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing Adjunct Publication
    (UbiComp2016). September 2016.

    View Slide

  46. ڭՊॻͷಡΈํ͔Β಺༰ͷཧղ౓͕෼͔Δ
    intro. def. appl. intro. def. appl.
    intro. def. appl. intro. def. appl.
    intro. def. appl. intro. def. appl.
    Expert
    Intermediate
    Novice
    reading solving
    reading solving
    reading solving
    B
    SFBEJOH C
    TPMWJOH
    F
    SFBEJOH G
    TPMWJOH
    /PWJDF
    D
    SFBEJOH E
    TPMWJOH
    *OUFSNFEJBUF
    &YQFSU
    Introduction
    Definitions
    Applications
    (a) text
    [4] Shoya Ishimaru, Syed Saqib Bukhari, Carina Heisel, Jochen Kuhn, and Andreas Dengel. Towards an Intelligent
    Textbook: Eye Gaze Based Attention Extraction on Materials for Learning and Instruction in Physics. In Proceedings of
    the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing Adjunct Publication
    (UbiComp2016). September 2016.

    View Slide

  47. ࢹઢ͔Βʮ೉͍͠ͱײͨ͡୯ޠʯ͕෼͔Δ
    ܭଌ͞Εͨࢹઢ
    ԁͷେ͖͞஫ࢹ࣌ؒ
    ೉͍͠ͱײͨ͡୯ޠͷਪఆ
    ΦϨϯδਖ਼ղ৘ใਫ৭ਪఆ݁Ռ
    [5] େࣾ ҁ೫, ੴؙ ᠳ໵, Olivier Augereau, ԫ੉ ߒҰ. ࢹ఺৘ใΛ༻͍ͨओ؍తߴ೉қ౓୯ޠͷਪఆ. ిࢠ৘ใ௨৴ֶձٕज़
    ݚڀใࠂ, vol. 115, no. 517, PRMU2015-189, pp. 149-153, March 2016.

    View Slide

  48. ࢹઢ͔Β50&*$είΞ͕෼͔Δ
    ௕จΛ୊ಡΉͱฏۉઈରޡࠩ఺ ຬ఺த
    ͰਪఆՄೳ
    େࡕ෎େɺӳޠशख़౓Λਪఆ͢Δٕज़Λ։ൃ−ӳจ໰୊ΛಡΈղ͘؟ٿͷಈ͖ղੳ ೔ץ޻ۀ৽ฉ 2016/8/3
    https://www.nikkan.co.jp/articles/view/00394843

    [6] ౻޷ ޺थ, ੴؙ ᠳ໵, Olivier Augereau, ԫ੉ ߒҰ. ࢹ఺৘ใΛ༻͍ͨӳޠशख़౓ਪఆ๏ͷ࣮ݧతݕ౼. ిࢠ৘ใ௨৴ֶձ
    ٕज़ݚڀใࠂ, vol. 115, no. 517, PRMU2015-195, pp. 185-190, March 2016.

    View Slide

  49. 8IBU )PX 8IZ
    ԿΛ ͲͷΑ͏ʹ ͳͥ

    View Slide

  50. Ͳ͜Λݟ͍͔͚ͯͨͩͰ͸෼͔Βͳ͍৘ใ
    ͜ͷੜె͕੺৭ͷ෦෼Λ࣌ؒΛ͔͚ͯಡΜͩͷ͸

    ͜ͷ෦෼͕໘ന͍ͱࢥ͔ͬͨΒ

    ͜ͷ෦෼͕෼͔Βͳ͔͔ͬͨΒ

    View Slide

  51. ࣗ཯ਆܦͷಇ͖ͱηϯγϯά
    [7] Robert M. Sapolsky "Why Zebras Don't Get Ulcers." WH Freeman, 1994.
    ަײਆܦ ෭ަײਆܦ
    ɾٳଉ
    ɾϦϥοΫε
    ɾ׆ಈ
    ɾूத
    ɾετϨε
    ɾۓு
    ೒࠼͕େ͖͘ͳΔ
    ݂؅͕ऩॖ͢Δ
    ඓͷԹ౓͕Լ͕Δ
    ৺ഥ਺্͕͕Δ
    ೒࠼͕খ͘͞ͳΔ
    ݂؅͕๲ு͢Δ
    ඓͷԹ౓্͕͕Δ
    ৺ഥ਺͕Լ͕Δ

    View Slide

  52. ະདྷͷిࢠڭՊॻ

    View Slide

  53. ͲΜͳݚڀΛ͍ͯ͠Δͷʁ
    ݚڀऀͬͯͲΜͳ࢓ࣄʁ
    ͲΜͳܦҢͰݚڀऀʹͳͬͨͷʁ

    View Slide

  54. ݚڀऀͷ׆ಈ
    ࿦จΛಡΜͰઌߦݚڀΛௐࠪ͢Δ
    ݚڀςʔϚ ղܾ͍ͨ͠໰୊
    ΛܾΊΔ
    ख๏ΛߟҊ࣮ͯ͠૷͢Δ
    ࣮ݧͯ͠༗ޮੑΛݕূ͢Δ
    ࿦จΛॻ͘
    ֶձͰݚڀ੒ՌΛ఻͑Δ

    View Slide

  55. ࿦จΛಡΉ
    Figure 2. Proximity sensor value and ground truth of 2 participants.
    a video, solving a mathematical problem and sawing. Dis-
    tinguishing between these activities involves not only recog-
    nizing physical actions (that can easily be captured using for
    example on body motion sensors) but also a cognitive com-
    ponent which is what we hypothesize eye blinking frequency
    and head motion correlate with.
    We evaluate our method on a data set containing eight par-
    ticipants demonstrating an average classification accuracy of
    67% using blink features only and 82% using blink and mo-
    tion features.
    Related Work
    There is a large corpus of work to recognize human activities.
    A variety of physical activities can be recognized using body-
    mounted sensors [5]. On the other hand, some researchers
    focus on our cognitive activities. Bentivoglio et al. have stud-
    ied the relation between sitting activities and blink patterns
    [3]. They described that the blink rate changes when partic-
    ipants were reading, talking and resting. Acosta et al. have
    presented that working with computers causes a reduction of
    blink [1]. Haak et al. have described that emotion, especially
    stress, effects blink frequency [9]. Therefore, blink pattern
    should be one of the important features to recognize our ac-
    tivities. Some researchers have applied an image processing
    method [6] and an eye tracking approach [4] to detect blinks.
    As far as we know, we are the first to use a simple proximity
    sensor embedded in a commercial wearable computing sys-
    tem for activity recognition and to combine it with head mo-
    tion patterns.
    APPROACH
    We believe that blink patterns can give a lot of insights about
    the user’s mental state (drowsiness etc.) and the user’s ac-
    tivity. To show this we use an infrared proximity sensor on
    Google Glass (see Figure 1). It monitors the distance between
    the Google Glass and the eye. Figure 2 shows the raw values
    of the sensor. While the main function of this sensor is to
    detect if the user wears the device, when the user blinks, a
    peak value appears due to the eye lid and eyelashes move-
    ment. Our algorithm is based on two stages. The first stage
    is the pre-processing stage of the raw sensor signal. The pre-
    processing stage extracts the time of blinks. We validate the
    pre-processing results with ground truth blink information.
    Q
    Q
    Q
    Q
    Q
    Q
    Q
    Q
    Q
    from peak to average
    from peak to average
    Figure 3. Blink detection by calculating peak value.
    Secondly, the main part of our algorithm calculates features
    based on the detected blinks. Getting raw data of infrared
    proximity sensor on Google Glass is not provided in an of-
    ficial way. We rooted (customized) our Glass on the basis
    of Glass hacking tutorial [7] and installed our own logging
    application [8] for the experiment.
    Blink detection
    During pre-processing blinks are detected based on the raw
    infrared proximity sensor signal. We move a sliding win-
    dow on the sensor data stream and monitor whether the cen-
    ter point of each window is a peak or not according to the
    following definition. We calculate the distance from one sen-
    sor value of the center point in the window (p5
    in Figure 3)
    to the average value of other points (p1
    , p2
    , p3
    , p7
    , p8
    and
    p9
    ). The preceding and subsequent points of the center (p4
    and p6
    ) are excluded from the average calculation because
    their sensor values are often affected by the center point. If
    the distance is larger than a threshold ranging from 3.0 - 7.0
    we define the center point as a blink. Because the shape of
    the face and eye location vary, the best threshold for the peak
    detection varies for each user. Figure 2 with the same scale
    for each sub-graphic also demonstrates different signal vari-
    ations for different users. We calculate the best threshold (in
    0.1 steps ranging from 3.0 to 7.0) by evaluating the accuracy
    based on the ground truth information. This approach can be
    applied only in off-line evaluation. In on-line usage, we need
    a few seconds for calibration before detection. During the
    calibration term, Glass urges the user to blink as matching
    some timing. We get sensor values and actual blink timing
    from calibration and evaluate the best threshold.
    Blink frequency based activity recognition
    As an output of our pre-processing step we extract the times-
    tamps of blinks and compute a three-dimensional feature vec-
    tor. One is the mean blink frequency which describes the
    number of blinks during a period divided by the length of a
    period. Two other features are based on the distribution of
    blinks. Graphically, this can be understood as the histogram
    of the blink frequency. Figure 5 shows five histograms with
    a period of 5 minutes. The x-axis describes the mean blink
    frequency (0.0 - 1.0 Hz) and the y-axis describes the blink
    counts of each frequency. The number of specified bins per
    histogram is 20 having a resolution of 0.05 Hz. The frequency
    value is calculated as inverse value of the interval between
    two blinks. The second and third features are defined as the
    x-center of mass and the y-center of mass of the histogram.
    2
    ֶज़࿦จͱ͸
    • ԿΛ໌Β͔ʹ͍ͨ͠ͷ͔
    • ͦΕ͕෼͔Δͱͳͥخ͍͠ͷ͔
    • ઌߦݚڀͱൺ΂ͯԿ͕͍͔͢͝
    • Ͳ͏΍ͬͯ໌Β͔ʹ͢Δͷ͔
    • Ͳ͏΍ͬͯ༗ޮͩͱݕূ͔ͨ͠
    • ͜ͷݚڀ෼໺΁ͷߩݙ͸Կ͔
    ͜ΕΒͷ৘ใ͕ߴ଎ͰಡΈऔΕΔ
    ϑΥʔϚοτʹͳ͍ͬͯΔจॻ

    View Slide

  56. ͳͥ࿦จΛॻ͘ͷ͔
    Shimon Petyon Jones (Microsoft Research Cambridge). "How to Write a Great Research Paper."

    https://www.microsoft.com/en-us/research/academic-program/write-great-research-paper/
    • ൃݟΛଟ͘ͷਓʹ఻͑ΔͨΊ

    ֶձൃද͚ͩͰ͸ͦͷ৔ʹډ߹Θͤͨਓʹ͔͠఻ΘΒͳ͍ɻ

    ࿦จ͕ࡶࢽʹࡌΕ͹ੈքதͷਓ͕ಡΉ͜ͱ͕Ͱ͖Δɻ
    • ݚڀ੒ՌΛ࣌୅Λ௒͑ͯ఻͑ΔͨΊ

    1BQFSTBSFGBSNPSFEVSBCMFUIBOQSPHSBNT

    ʮ࿦จ͸ϓϩάϥϜΑΓང͔ʹ௕࣋ͪ͢Δʯ

    View Slide

  57. ֶձൃද

    View Slide

  58. ֶձൃද ޱ಄ൃද

    View Slide

  59. ֶձൃද σϞɾϙελʔൃද

    View Slide

  60. ͳֶͥձͰൃද͢Δͷ͔

    View Slide

  61. ݚڀऀʹͳΔͱ͍ΖΜͳࠃΛ๚ΕΔ͜ͱ͕Ͱ͖Δ

    http://photo.shoya.io

    View Slide

  62. ݚڀऀʹඞཁͱ͞ΕΔ ͱੴؙ͕ࢥ͏
    εΩϧͱ͸ʁ
    ࿦จΛಡΜͰઌߦݚڀΛௐࠪ͢Δ
    ݚڀςʔϚ ղܾ͍ͨ͠໰୊
    ΛܾΊΔ
    ख๏ΛߟҊ࣮ͯ͠૷͢Δ
    ࣮ݧͯ͠༗ޮੑΛݕূ͢Δ
    ࿦จΛॻ͘
    ֶձͰݚڀ੒ՌΛ఻͑Δ

    View Slide

  63. ݚڀऀʹඞཁͱ͞ΕΔ ͱੴؙ͕ࢥ͏
    εΩϧͱ͸ʁ
    ࿦จΛಡΜͰઌߦݚڀΛௐࠪ͢Δ
    ݚڀςʔϚ ղܾ͍ͨ͠໰୊
    ΛܾΊΔ
    ख๏ΛߟҊ࣮ͯ͠૷͢Δ
    ࣮ݧͯ͠༗ޮੑΛݕূ͢Δ
    ࿦จΛॻ͘
    ֶձͰݚڀ੒ՌΛ఻͑Δ
    ӳޠྗ
    ࣮૷ྗ
    ೜଱ྗ

    View Slide

  64. ͲΜͳݚڀΛ͍ͯ͠Δͷʁ
    ݚڀऀͬͯͲΜͳ࢓ࣄʁ
    ͲΜͳܦҢͰݚڀऀʹͳͬͨͷʁ

    View Slide

  65. ݚڀऀʹͳΔ·Ͱதֶߴߍ

    View Slide

  66. ՝֎׆ಈ
    ෺৺͕͍ͭͨͱ͖͔ΒʮཧՊʯ͕޷͖ͩͬͨ
    • ੜ෺νϟϨϯδ ੜ෺ֶΦϦϯϐοΫ೔ຊ༧બ

    • ՊֶάϥϯϓϦ ՊֶΦϦϯϐοΫ೔ຊ༧બ

    • ͓΋͠ΖՊֶίϯςετ
    • αΠΤϯεΩϟϯϓ
    • େֶ๚໰ɾΦʔϓϯΩϟϯύε

    View Slide

  67. ಛผߨٛɾେֶ๚໰
    দ੢த౳ͰͷߨԋͷޙϝʔϧΛૹ࣭ͬͯ໰
    ͦͷޙ΋ਐ࿏ʹ͍ͭͯ૬ஊͨ͠ΓେֶΛ๚໰ͨ͠Γ

    View Slide

  68. ੜ෺ֶΦϦϯϐοΫ

    View Slide

  69. ੜ෺ֶΦϦϯϐοΫ

    View Slide

  70. ੜ෺ֶΦϦϯϐοΫ
    দ੢ͷ)1ʹܝࡌͯ͠΋Βͬͨײ૝ΑΓൈਮ
    ੜ෺ֶΦϦϯϐοΫ̎࣍༧બʢੜ෺νϟϨϯδຊબʣʹࢀՃͰ͖ͯҰ൪
    ྑ͔ͬͨͷ͸ɺಉ͡ࢤΛ࣋ͬͨ༑ୡ͕શࠃʹͨ͘͞ΜͰ͖ͨ͜ͱͰ͢ɻશࠃ͔
    Βਓͷੜ෺େ޷͖ਓ͕ؒू·͍ͬͯͨͷͰɺΈΜͳͦΕͧΕཱ೿ͳເΛ࣋ͬ
    ͍ͯ·ͨ͠ɻࢼݧ࠷ऴ೔ʹ͸͓ޓ͍ͷເͱ͔໨ඪΛே·ͰޠΓ໌͔͢͜ͱ͕Ͱ
    ͖ɺͱͯ΋͍͍ܹࢗΛड͚·ͨ͠ʂ
    Ͱ΋ɺ͕͢͞༧બ௨աऀɺੜ෺ͷ࿩ʹͳΔͱ࿩୊͕ਂ͍͍͗ͯͭͯ͘͢ࣄ͕Ͱ
    ͖·ͤΜɻʮΈΜͳ͍͢͝ͳ͊ʯͱײ৺͢Δͱಉ࣌ʹɺࣗ෼ͷະख़͔͞Β࿩ʹ
    ͍͍͚ͭͯͳ͍͜ͱ͕ͱͯ΋չ͔ͬͨ͠Ͱ͢ɻʮ͜Ε͔Β͍Ζ͍Ζͳ஌ࣝΛٵ
    ऩͯ͠ɺ࣍ʹձ͏ࠒʹ͸ΈΜͳʹ௥͍͍ͭͯ΍Δʂʯͱڧܾ͘৺͠·ͨ͠ɻ
    ๻ͷເ͸ɺ෺ཧɾԽֶɾੜ෺ɾ஍ֶͷ෯޿͍෼໺Ͱ"MMSPVOEʹ׆༂Ͱ͖ΔՊ
    ֶऀʹͳΔ͜ͱͰ͢ɻࠓճͷੜ෺ֶΦϦϯϐοΫ̎࣍༧બʢੜ෺νϟϨϯδ
    ຊબʣ΁ͷग़৔͸ɺເʹۙͮͨ͘Ίͷେ͖ͳҰาʹͳͬͨͱࢥ͍·͢ʂ
    ࢀՃͰ͖ͯΑ͔ͬͨͰ͢ʂ

    View Slide

  71. Ϟνϕʔγϣϯҡ࣋ͷൿ݃
    νʔϜ

    View Slide

  72. डݧ͸ஂମઓ
    ೥Ұ؏ͷ໊໳ਐֶߍͱ஍ํެཱߍͱͷؒʹ͋Δ
    ౦େडݧͷͭͷΪϟοϓ
    ࿨ాलथʰ৽ɾडݧٕ๏౦େ߹֨ͷۃҙ೥൛ʱΑΓ

    ɾجૅମྗͷࠩ
    ɾ໨తҙࣝͷࠩ
    ɾ৘ใྗͷࠩ
    ɾਫ਼ਆྗͷࠩ
    ɾษڧ๏ͷࠩ

    View Slide

  73. डݧ͸ஂମઓ
    ೥Ұ؏ͷ໊໳ਐֶߍͱ஍ํެཱߍͱͷؒʹ͋Δ
    ౦େडݧͷͭͷΪϟοϓ
    ࿨ాलथʰ৽ɾडݧٕ๏౦େ߹֨ͷۃҙ೥൛ʱΑΓ

    ɾجૅମྗͷࠩ
    ɾ໨తҙࣝͷࠩ
    ɾ৘ใྗͷࠩ
    ɾਫ਼ਆྗͷࠩ
    ɾษڧ๏ͷࠩ
    ஂମઓ
    ݸʑͷ౒ྗ

    View Slide

  74. Ѫඤ͔Β໷ߦόεͰ౦େͷΦʔϓϯΩϟϯύεʹߦͬͨ

    View Slide

  75. Ϟνϕʔγϣϯҡ࣋ͷൿ݃
    ߦಈͷه࿥ɾৼΓฦΓ

    View Slide

  76. ੜ׆ͷه࿥Λ̏೥ੜՆ͔Β̒೥ੜౙ·Ͱຖ೔͚͍ͭͯͨ

    View Slide

  77. ໨ඪ
    ه࿥
    ൓ল
    ೥ੜ݄

    View Slide

  78. ೥ੜ݄

    View Slide

  79. ೥ੜ݄

    View Slide

  80. ೥ੜ݄

    View Slide

  81. ೥ੜ݄

    View Slide

  82. େࡕେֶجૅ޻ֶ෦Λडݧ

    View Slide

  83. ୈೋࢤ๬ͷେࡕ෎ཱେֶ޻ֶ෦஌ೳ৘ใ޻ֶՊʹೖֶ

    View Slide

  84. ݚڀऀʹͳΔ·Ͱେֶ

    View Slide

  85. େֶ೥य़ɿେֶࡇͷ࣮ߦҕһձʹೖΔ

    View Slide

  86. ৘ใએ఻෦Ͱϙελʔ΍8FCαΠτͷσβΠϯΛ୲౰

    View Slide

  87. େֶ೥ౙɿσβΠϯϓϩάϥϛϯάͰΞϓϦ։ൃ
    ౰࣌ͷҰ࣍༧બԠืࢿྉ

    View Slide

  88. εϚʔτϑΥϯΞϓϦ։ൃίϯςετͰ༏উ

    View Slide

  89. େֶ೥य़ɿιϑτ΢ΣΞ։ൃ͕झຯɾΞϧόΠτʹ
    νίΫΠΠϫέϩϘ SBDPMUB /'$+VODUJPO
    LPUPEBNB 3FTU$BTU 4XJQFS
    ͳͲ
    झຯͰ࡞ͬͨΞϓϦέʔγϣϯ
    ΞϧόΠτɾΠϯλʔϯγοϓ

    View Slide

  90. େֶ೥ळɿݚڀࣨ഑ଐσβΠϯɾϓϩάϥϛϯά͕໾ཱͭ

    View Slide

  91. ࠷ॳ͸ݴ༿ͷน͕͋ͬͨ ӳޠ͕Ͱ͖ͳ͍ͱݚڀ͕ਐ·ͳ͍

    ത࢜࿦จͷࢦಋڭ׭

    1SPG"OESFBT%FOHFM
    ଔۀ࿦จͷࢦಋڭ׭

    "TTPD1SPG,BJ,VO[F
    म࢜࿦จͷࢦಋڭ׭

    1SPG,PJDIJ,JTF

    View Slide

  92. υΠπɾϑϥϯεཹֶ

    View Slide

  93. େֶӃ म࢜ɾത࢜߸

    View Slide

  94. ৺ͷঢ়ଶΛՄࢹԽ͢ΔγεςϜͷ։ൃ
    ੴؙᠳ໵େࡕ෎ཱେֶେֶӃ ࠾୒࣌

    ɹɹɹɹυΠπਓ޻஌ೳݚڀηϯλʔ ݱࡏ

    ೥౓ະ౿̞̩ਓࡐൃ۷ɾҭ੒ࣄۀ

    View Slide

  95. ܦࡁ࢈ۀলɾ৘ใॲཧਪਐػߏΑΓεʔύʔΫϦΤʔλʹೝఆ

    View Slide

  96. ೥͔Β%',*Ͱಇ͖ͳ͕Βത࢜߸ͷऔಘΛ໨ࢦ͍ͯ͠·͢

    View Slide

  97. தֶɾߴߍɾେֶͰͷܦݧ͕ݱࡏʹੜ͖͍ͯΔ
    ࿦จΛಡΜͰઌߦݚڀΛௐࠪ͢Δ
    ݚڀςʔϚ ղܾ͍ͨ͠໰୊
    ΛܾΊΔ
    ख๏ΛߟҊ࣮ͯ͠૷͢Δ
    ࣮ݧͯ͠༗ޮੑΛݕূ͢Δ
    ࿦จΛॻ͘
    ֶձͰݚڀ੒ՌΛ఻͑Δ
    ӳޠྗ
    ࣮૷ྗ
    ೜଱ྗ

    View Slide

  98. $POOFDUJOHUIFEPUT

    View Slide

  99. $POOFDUJOHUIFEPUT
    :PVDBOUDPOOFDUUIFEPUTMPPLJOHGPSXBSE:PVDBOPOMZDPOOFDU
    UIFNMPPLJOHCBDLXBSET TPZPVIBWFUPUSVTUUIBUUIFEPUTXJMM
    TPNFIPXDPOOFDUJOZPVSGVUVSF
    ະདྷʹ޲͔ͬͯ఺Λܨ͛Δ͜ͱ͸Ͱ͖·ͤΜɻաڈΛৼΓฦͬͯ఺Λܨ͛ΒΕΔ
    ͚ͩͰ͢ɻ͔ͩΒɺࠓ΍͍ͬͯΔ͜ͱ͕ɺকདྷͲ͔͜ʹܨ͕Δͱ৴ͯ͡Լ͍͞ɻ
    εςΟʔϒɾδϣϒζ͕೥ελϯϑΥʔυେֶͷଔۀࣜͰߦͬͨεϐʔνΑΓ

    View Slide

  100. େ͖ͳ໨ඪΛͲ͏΍࣮ͬͯݱ͢Δ͔
    ΢ΥʔλʔϑΥʔϧϞσϧ

    ఆٛॻʹج͍ͮͨܭըతͳ։ൃ
    ˏ*5ɿಛूɿ/&5։ൃऀͷͨΊͷ։ൃϓϩηεೖ໳ʢલฤʣΑΓਤΛҾ༻

    IUUQTKBXJLJQFEJBPSHXJLJ&#"#"&#"&'"&#%

    View Slide

  101. େ͖ͳ໨ඪΛͲ͏΍࣮ͬͯݱ͢Δ͔
    ΞδϟΠϧ։ൃ ΤΫετϦʔϜɾϓϩάϥϛϯά

    ˏ*5ɿಛूɿ/&5։ൃऀͷͨΊͷ։ൃϓϩηεೖ໳ʢલฤʣΑΓਤΛҾ༻

    IUUQTKBXJLJQFEJBPSHXJLJ&#"#"&#"&'"&#%

    View Slide

  102. ΤΫετϦʔϜɾϞνϕʔγϣϯ
    ܭըੑΑΓॊೈੑখ͞ͳ໨ඪΛߋ৽
    ͠ଓ͚Δ͜ͱͰେ͖ͳ໨ඪΛୡ੒͢Δ

    View Slide

  103. ·ͱΊ
    "VHNFOUFE)VNBO
    ਓؒͱ"*͕ڧௐ͢Δ࣌୅͕΍ͬͯ͘Δɻ
    ΤΫετϦʔϜɾϞνϕʔγϣϯ
    ܭըੑΑΓॊೈੑɻ΍Γ͍ͨ͜ͱ͸มΘ͍͍ͬͯɻ
    ϐϯνΛνϟϯεʹɺϓϨογϟʔΛָ͠Ή
    ໨ඪʹ޲͔ͬͯ౒ྗɾసΜͰ΋ͨͩͰ͸ى͖ͳ͍
    ͱ͍͏࢟੎͸தߴ࣌୅ͷܦݧͰ਎ʹ͍ͭͨɻ
    ໨ͷલͷऔΓ૊Έ͕কདྷͲ͔͜ʹܨ͕Δɻ

    View Slide

  104. ੜెͱʮಉੈ୅ͷτοϓϥϯφʔʯʹΑΔߨԋձ
    υΠπਓ޻஌ೳݚڀηϯλʔݚڀһੴؙᠳ໵
    ਓ޻஌ೳݚڀͷ࠷લઢͱ
    தֶɾߴߍͰಘͨܦݧɹ
    !Ѫඤݝཱদࢁ੢த౳ڭҭֶߍ
    ײ૝ɾ࣭໰ɾ૬ஊͳͲ͸ͪ͜Β

    ϝʔϧΞυϨεTIPZBJTIJNBSV!HNBJMDPN

    5XJUUFS!TIPZB

    'BDFCPPL4IPZB*TIJNBSV

    View Slide