Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
スニリプ全自動化への検討 / Full automated sni_rep
Search
shuukei.imas_cg
December 16, 2017
Research
1
890
スニリプ全自動化への検討 / Full automated sni_rep
#スニリプ キャンペーンの内容を現在知られている技術で自動化するとしたらどこまでできそうか検討してみた
shuukei.imas_cg
December 16, 2017
Tweet
Share
More Decks by shuukei.imas_cg
See All by shuukei.imas_cg
idol2vec
shuukeiimascg
3
910
台詞を一行も書かずに作る全自動アイドルBotの検討 / Full automated idol's bot
shuukeiimascg
1
930
シンデレラガールズ台詞判定の開発・運用・反響について
shuukeiimascg
5
2.9k
GAE/P環境でLINE BOTを作る
shuukeiimascg
0
880
シンデレラガールズの台詞のみから「誰の台詞か」機械学習で判定する
shuukeiimascg
1
2.9k
Other Decks in Research
See All in Research
ASSADS:ASMR動画に合わせて撫でられる感覚を提示するシステムの開発と評価 / ec75-shimizu
yumulab
1
360
Self-supervised audiovisual representation learning for remote sensing data
satai
3
210
言語モデルによるAI創薬の進展 / Advancements in AI-Driven Drug Discovery Using Language Models
tsurubee
2
370
Collaborative Development of Foundation Models at Japanese Academia
odashi
2
560
SSII2025 [TS2] リモートセンシング画像処理の最前線
ssii
PRO
7
2.7k
コーパスを丸呑みしたモデルから言語の何がわかるか
eumesy
PRO
12
3.7k
作業記憶の発達的特性が言語獲得の臨界期を形成する(NLP2025)
chemical_tree
2
590
実行環境に中立なWebAssemblyライブマイグレーション機構/techtalk-2025spring
chikuwait
0
210
定性データ、どう活かす? 〜定性データのための分析基盤、はじめました〜 / How to utilize qualitative data? ~We have launched an analysis platform for qualitative data~
kaminashi
6
1k
VAGeo: View-specific Attention for Cross-View Object Geo-Localization
satai
3
320
チャッドローン:LLMによる画像認識を用いた自律型ドローンシステムの開発と実験 / ec75-morisaki
yumulab
1
390
2025年度 生成AIの使い方/接し方
hkefka385
1
680
Featured
See All Featured
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
3k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
30
2.1k
A designer walks into a library…
pauljervisheath
206
24k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
20
1.3k
Designing for Performance
lara
609
69k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
137
34k
Facilitating Awesome Meetings
lara
54
6.4k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
233
17k
Agile that works and the tools we love
rasmusluckow
329
21k
Product Roadmaps are Hard
iamctodd
PRO
53
11k
Scaling GitHub
holman
459
140k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
14
1.5k
Transcript
#スニリプ 全自動化への検討 たくみP 2017/12/16 www.shuukei.info
自己紹介 たくみP 担当アイドル: 喜多日菜子 Twitter: @shuukei_imas_cg
@
[email protected]
運営しているサイト・サービス https://www.shuukei.info/ モバマス-Pixiv集計所 シンデレラガールズ/ミリオンライブ!/SideM台詞判定 喜多日菜子LINE BOT デレマスユニット推薦 2017/12/16 2
スニリプの要件/特徴 Twitterで#スニリプ のハッシュタグを付けてスニッ カーズのパッケージが写り込んだ写真を投稿すると、 アイドルから返事が来る(ことがある) 何人かのアイドルについては、動画メッセージがくる 返事をくれるアイドルは選べず、ランダムに選択される?
(選定条件不明) 返信は事前に用意されたテキスト(著作者チェック済み)の 中から適当に選ばれる 従って発言パターンが少ない。写真のシチュエーションと 合っているとはいえないものも多い 返事がなかなか来ない… 2017/12/16 3 自動化で解決
自動化に向けた要素技術 「スニッカーズが写っているか否か」 物体検出 写真のシチュエーションに応じたテキストの生成 日本語イメージキャプショニング
Twitter Bot リミットを守って正しいリプライを 2017/12/16 4
今回実現したこと 「スニッカーズが写っているか否か」 物体検出 学習済みディープラーニングモデルの後段を 特徴抽出器とみなしてSVMで判定 写真のシチュエーションに応じたテキストの生成
日本語イメージキャプショニング 画像をCNNでベクトル化→LSTMでキャプション生成 Twitter Bot リミットを守って正しいリプライを 一般的なTwitter Botの技術 2017/12/16 5
物体検出 学習済みで配布されているディープラーニングモデル を特徴抽出器として使う 実質5行で書ける この1000次元の特徴(要素数1000個のfloat32の配列)を SVMに渡して判別する
例によってJubatus(jubaclassfier: AROW)を使う 2017/12/16 6
物体検出 今回は「キーアイテム」として2種類対応 スニッカーズ: スニリプ公式アカウントがリプライをした500ツイー トの画像から125個をランダムに選定 十六茶(喜多日菜子の総合16位にちなんで):
Google画像検索で人手で125個収集 負例: てきとうに人手で125個収集 上記の375個で学習 正解率: 78%(???) 2017/12/16 7
イメージキャプショニング 有名なShow and tell論文のChainer実装がある (ありがたく使わせていただく) https://qiita.com/dsanno/items/b237482087207d0364c3 2017/12/16 8
日本語イメージキャプショニング MS-COCOデータセットに日本語キャプションを付 けたデータセットがある STAIR Captions https://stair.center/archives/research/stair-captions
164,062画像に対する820,310キャプション 英語でキャプション生成 → 日本語に翻訳 の 場合に較べて性能がよいとされている 2017/12/16 9
Twitter Bot 口調変換 とりあえずルールベースで リミットを守る 30分ごとにTwitterが設定する制限がある
具体的な数値は公言されていない 有志の調査により、APIで投稿できるのは 1時間で100ポスト程度と言われている 30分で50ポスト? 2017/12/16 10
デモ Twitterアカウント: @hinako_rep このアカウントに対し画像添付のリプライを送る と返事が来る 喜多日菜子からの返事という体で作成 2017/12/16
11
課題 物体検出の性能向上 真面目にディープラーニングモデルのファイン チューニングを行う キャプション生成精度の向上 もしかすると多クラスの一般物体検出を行って、見
つかった物体ごとに(人手で)事前定義したコメント を付けたほうがいいかも… その場合、英語の物体検出でもよい (複数アイドルへの対応) 2017/12/16 12