Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
TokyoR#93
Search
soriente
July 03, 2021
Technology
0
260
TokyoR#93
TokyoR#93の初心者セッション可視化パートです。
soriente
July 03, 2021
Tweet
Share
Other Decks in Technology
See All in Technology
Building AI Applications with Java, LLMs, and Spring AI
thomasvitale
1
220
Post-AIコーディング時代のエンジニア生存戦略
shinoyu
0
300
Redux → Recoil → Zustand → useSyncExternalStore: 状態管理の10年とReact本来の姿
zozotech
PRO
21
8.9k
LINEスキマニ/LINEバイトにおけるバックエンド開発
lycorptech_jp
PRO
0
340
なぜインフラコードのモジュール化は難しいのか - アプリケーションコードとの本質的な違いから考える
mizzy
60
21k
ECS組み込みのBlue/Greenデプロイを動かしてELB側の動きを観察してみる
yuki_ink
3
360
JavaScript パーサーに using 対応をする過程で与えたエコシステムへの影響
baseballyama
1
110
新しい風。SolidFlutterで実現するシンプルな状態管理
zozotech
PRO
0
130
[CV勉強会@関東 ICCV2025 読み会] World4Drive: End-to-End Autonomous Driving via Intention-aware Physical Latent World Model (Zheng+, ICCV 2025)
abemii
0
240
AS59105におけるFreeBSD EtherIPの運用と課題
x86taka
0
210
Tomcatが起動しない!?SecureRandomと乱数デバイスの罠
fujikawa8
1
110
AI駆動開発を実現するためのアーキテクチャと取り組み
baseballyama
13
7.6k
Featured
See All Featured
KATA
mclloyd
PRO
32
15k
Building Flexible Design Systems
yeseniaperezcruz
329
39k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.8k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
11
940
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Balancing Empowerment & Direction
lara
5
760
How to Ace a Technical Interview
jacobian
280
24k
Docker and Python
trallard
46
3.7k
GitHub's CSS Performance
jonrohan
1032
470k
Visualization
eitanlees
150
16k
Navigating Team Friction
lara
190
15k
Six Lessons from altMBA
skipperchong
29
4.1k
Transcript
5PLZP3σʔλՄࢹԽ ॳ৺ऀηογϣϯ
ࣗݾհ w TPSJFOUF w *5اۀۈ w 3ྺ ࡉͬͯ͘͘·͢ɻ w
ͱ͍ͬͯ࠷ۙ1ZUIPO͕ϝΠϯ w 1)1ॻ͍ͯͨ࣌ظ͋Γ·ͨ͠ɻ
ՄࢹԽͱ w จࣈͷ௨Γɺݟ͑ΔԽ͢Δɻ σʔλੳͷจ຺ͰɺσʔλͷؔੑΛݟ͑ ΔԽ͢Δɻ w ՄࢹԽΛ͚ͨͩ͠ͰΘ͔Δ͜ͱଟ͍ɻ w ՄࢹԽΛ͢ΔͱɺΘ͔Γ͍͢ɻ
w ՄࢹԽΛͨ͋͠ͱʹԿΒ͔ͷҙࢥܾఆΛߦ͏͜ͱ͕ଟ͍ɻ ੳऀ͕ࣗҙࢥ ܾఆ͢Δ͜ͱɺ୭͔ʹҙࢥܾఆͯ͠Β͏͜ͱ͋Δɻ
None
HHQMPUͷجຊ
HHQMPUͱ w ՄࢹԽͷͨΊͷϥΠϒϥϦ w UJEZWFSTFͷϥΠϒϥϦ܈ͷҰͭ w ʰ5IF(SBNNBSPG(SBQIJDTʱΛϕʔεʹ࡞ΒΕ͍ͯΔ ˠҰ؏ੑͷ͋Δจ๏Ͱ߹ཧతʹॻ͚Δʂ
ࠓճ͏σʔλQFOHVJOT JOTUBMMQBDLBHFT QBMNFSQFOHVJOT MJCSBSZ QBMNFSQFOHVJOT IFBE QFOHVJOT
TQFDJFT JTMBOE CJMM@MFOHUI@NN CJMM@EFQUI@NN fl JQQFS@MFOHUI@NN CPEZ@NBTT@H TFY ZFBS "EFMJF 5PSHFSTFO NBMF "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO /" /" /" /" /" "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO NBMF
QFOHVJOT
HHQMPUΠϯετʔϧಡΈࠐΈ JOTUBMMQBDLBHFT HHQMPU JOTUBMMQBDLBHFT UJEZWFSTF ͰՄ MJCSBSZ HHQMPU MJCSBSZ UJEZWFSTF
ͰՄ
ࠓճॻ͘άϥϑͷछྨ w ࢄਤ w άϥϑ w ંΕઢάϥϑ
ࠓճ͏σʔλQFOHVJOT JOTUBMMQBDLBHFT QBMNFSQFOHVJOT MJCSBSZ QBMNFSQFOHVJOT IFBE QFOHVJOT
TQFDJFT JTMBOE CJMM@MFOHUI@NN CJMM@EFQUI@NN fl JQQFS@MFOHUI@NN CPEZ@NBTT@H TFY ZFBS "EFMJF 5PSHFSTFO NBMF "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO /" /" /" /" /" "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO NBMF
ࠓճ͏σʔλQFOHVJOT JOTUBMMQBDLBHFT QBMNFSQFOHVJOT MJCSBSZ QBMNFSQFOHVJOT IFBE QFOHVJOT
TQFDJFT JTMBOE CJMM@MFOHUI@NN CJMM@EFQUI@NN fl JQQFS@MFOHUI@NN CPEZ@NBTT@H TFY ZFBS "EFMJF 5PSHFSTFO NBMF "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO /" /" /" /" /" "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO NBMF
ࢄਤ ॻ͖ํओʹ3ύλʔϯ > ggplot(penguins, aes(x = bill_length_mm, y = bill_depth_mm))
+ geom_point() > ggplot(penguins) + geom_point(aes(x = bill_length_mm, y = bill_depth_mm)) > ggplot() + geom_point( data = penguins, aes(x = bill_length_mm, y = bill_depth_mm) )
ࠓճॻ͘άϥϑͷछྨ w ࢄਤ w ંΕઢάϥϑ w άϥϑ
ࠓճ͏σʔλQFOHVJOT JOTUBMMQBDLBHFT QBMNFSQFOHVJOT MJCSBSZ QBMNFSQFOHVJOT IFBE QFOHVJOT
TQFDJFT JTMBOE CJMM@MFOHUI@NN CJMM@EFQUI@NN fl JQQFS@MFOHUI@NN CPEZ@NBTT@H TFY ZFBS "EFMJF 5PSHFSTFO NBMF "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO /" /" /" /" /" "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO NBMF
ࠓճ͏σʔλQFOHVJOT JOTUBMMQBDLBHFT QBMNFSQFOHVJOT MJCSBSZ QBMNFSQFOHVJOT IFBE QFOHVJOT
TQFDJFT JTMBOE CJMM@MFOHUI@NN CJMM@EFQUI@NN fl JQQFS@MFOHUI@NN CPEZ@NBTT@H TFY ZFBS "EFMJF 5PSHFSTFO NBMF "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO /" /" /" /" /" "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO NBMF
σʔλूܭ MJCBSBSZ EQMZS QFOHVJOT@GPS@MJOFQFOHVJOT HSPVQ@CZ ZFBS TVNNBSJTF NFBO@NBTTNFBO
CPEZ@NBTT@H OBSN536& QFOHVJOT@GPS@MJOF ZFBS NFBO@NBTT
ંΕઢάϥϑ ॻ͖ํओʹ3ύλʔϯ > ggplot(penguins_for_line, aes(x = year, y = mean_mass))
+ geom_line() > penguins_for_line %>% ggplot() + geom_line(aes(x = year, y = mean_mass)) > ggplot(penguins_for_line) + geom_line(aes(x = year, y = mean_mass)) > ggplot() + geom_line( data = penguins_for_line, aes(x = year, y = mean_mass) )
άϥϑ ॻ͖ํ3ύλʔϯ > ggplot(penguins_for_line, aes(x = year, y = mean_mass))
+ geom_bar(stat = "identity") > ggplot(penguins_for_line) + geom_bar(aes(x = year, y = mean_mass), stat = "identity") > ggplot() + geom_bar( data = penguins_for_line, aes(x = year, y = mean_mass), stat = "identity") ҎԼͰՄ > ggplot() + geom_bar( data = penguins, aes(x = year, y = body_mass_g), stat = "summary", fun = "mean" )
ͦͷଞͷάϥϑɻɻɻ w άάΔ w ެࣜνʔτγʔτ IUUQTHJUIVCDPNSTUVEJPDIFBUTIFFUTCMPCNBTUFSEBUB WJTVBMJ[BUJPOQEG w 4MBDLͷSXBLBMBOH࣭
͍͔ͭ͘άϥϑॻ͍ͯΈͯ w λΠτϧ͚͍ͭͨɻ w ͕࣠ؾʹͳΔɻ
> ggplot() + geom_line( data = penguins_for_line, aes(x = year,
y = mean_mass) ) + ggtitle("ંΕઢάϥϑ") + theme_gray(base_family = "HiraKakuPro-W3") λΠτϧઃఆ
λΠτϧઃఆ > ggplot() + geom_line( data = penguins_for_line, aes(x =
year, y = mean_mass) ) + ggtitle("ંΕઢάϥϑ") + theme_gray(base_family = "HiraKakuPro-W3")
Y࣠ > ggplot() + geom_line( data = penguins_for_line, aes(x =
year, y = mean_mass)) + ggtitle("ંΕઢάϥϑ") + theme_gray(base_family = "HiraKakuPro-W3") + scale_x_continuous(breaks=seq(2007,2009,1))
Z࣠ > ggplot() + geom_line( data = penguins_for_line, aes(x =
year, y = mean_mass) ) + ggtitle("ࢄਤ") + theme_gray(base_family = "HiraKakuPro-W3") + scale_x_continuous( breaks = seq( min(penguins_for_line$year), max(penguins_for_line$year), 1 ) ) + ylim(0, 4300)
ࢄਤ छྨʹΑͬͯ৭͚͍ͨ > ggplot() + geom_point( data = penguins, aes(x
= bill_length_mm, y = bill_depth_mm, color = species) )
·ͱΊ w ՄࢹԽ͔ͳΓधཁͳύʔτ͕ͩɺ͍͠ɻ w άϥϑHHQMPU ͱHFPN@YYY Λ͏ͱॻ͘͜ͱ͕Ͱ͖Δɻ w ؔϓϥεͰͭͳ͙ɻ w
Γ͍ͨ͜ͱΛάάͬͯΈͯɺࢼͯ͠ΈͯɺΘ͔Βͳ͚Εɺ4MBDLͷSXBLBMBOHʹ࣭ͯͯ͠ Έ·͠ΐ͏ʂ
&/+0: