Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
TokyoR#93
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
soriente
July 03, 2021
Technology
0
260
TokyoR#93
TokyoR#93の初心者セッション可視化パートです。
soriente
July 03, 2021
Tweet
Share
Other Decks in Technology
See All in Technology
クレジットカード決済基盤を支えるSRE - 厳格な監査とSRE運用の両立 (SRE Kaigi 2026)
capytan
6
2.7k
インフラエンジニア必見!Kubernetesを用いたクラウドネイティブ設計ポイント大全
daitak
1
360
Tebiki Engineering Team Deck
tebiki
0
24k
Kiro IDEのドキュメントを全部読んだので地味だけどちょっと嬉しい機能を紹介する
khmoryz
0
200
Claude_CodeでSEOを最適化する_AI_Ops_Community_Vol.2__マーケティングx_AIはここまで進化した.pdf
riku_423
2
570
マーケットプレイス版Oracle WebCenter Content For OCI
oracle4engineer
PRO
5
1.6k
変化するコーディングエージェントとの現実的な付き合い方 〜Cursor安定択説と、ツールに依存しない「資産」〜
empitsu
4
1.4k
[CV勉強会@関東 World Model 読み会] Orbis: Overcoming Challenges of Long-Horizon Prediction in Driving World Models (Mousakhan+, NeurIPS 2025)
abemii
0
140
配列に見る bash と zsh の違い
kazzpapa3
1
150
Embedded SREの終わりを設計する 「なんとなく」から計画的な自立支援へ
sansantech
PRO
3
2.4k
OCI Database Management サービス詳細
oracle4engineer
PRO
1
7.4k
日本の85%が使う公共SaaSは、どう育ったのか
taketakekaho
1
190
Featured
See All Featured
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
State of Search Keynote: SEO is Dead Long Live SEO
ryanjones
0
120
Tips & Tricks on How to Get Your First Job In Tech
honzajavorek
0
430
What the history of the web can teach us about the future of AI
inesmontani
PRO
1
430
JAMstack: Web Apps at Ludicrous Speed - All Things Open 2022
reverentgeek
1
340
How to Talk to Developers About Accessibility
jct
2
130
Leveraging LLMs for student feedback in introductory data science courses - posit::conf(2025)
minecr
0
140
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
2.1k
Agile Leadership in an Agile Organization
kimpetersen
PRO
0
82
Highjacked: Video Game Concept Design
rkendrick25
PRO
1
290
Design in an AI World
tapps
0
140
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Transcript
5PLZP3σʔλՄࢹԽ ॳ৺ऀηογϣϯ
ࣗݾհ w TPSJFOUF w *5اۀۈ w 3ྺ ࡉͬͯ͘͘·͢ɻ w
ͱ͍ͬͯ࠷ۙ1ZUIPO͕ϝΠϯ w 1)1ॻ͍ͯͨ࣌ظ͋Γ·ͨ͠ɻ
ՄࢹԽͱ w จࣈͷ௨Γɺݟ͑ΔԽ͢Δɻ σʔλੳͷจ຺ͰɺσʔλͷؔੑΛݟ͑ ΔԽ͢Δɻ w ՄࢹԽΛ͚ͨͩ͠ͰΘ͔Δ͜ͱଟ͍ɻ w ՄࢹԽΛ͢ΔͱɺΘ͔Γ͍͢ɻ
w ՄࢹԽΛͨ͋͠ͱʹԿΒ͔ͷҙࢥܾఆΛߦ͏͜ͱ͕ଟ͍ɻ ੳऀ͕ࣗҙࢥ ܾఆ͢Δ͜ͱɺ୭͔ʹҙࢥܾఆͯ͠Β͏͜ͱ͋Δɻ
None
HHQMPUͷجຊ
HHQMPUͱ w ՄࢹԽͷͨΊͷϥΠϒϥϦ w UJEZWFSTFͷϥΠϒϥϦ܈ͷҰͭ w ʰ5IF(SBNNBSPG(SBQIJDTʱΛϕʔεʹ࡞ΒΕ͍ͯΔ ˠҰ؏ੑͷ͋Δจ๏Ͱ߹ཧతʹॻ͚Δʂ
ࠓճ͏σʔλQFOHVJOT JOTUBMMQBDLBHFT QBMNFSQFOHVJOT MJCSBSZ QBMNFSQFOHVJOT IFBE QFOHVJOT
TQFDJFT JTMBOE CJMM@MFOHUI@NN CJMM@EFQUI@NN fl JQQFS@MFOHUI@NN CPEZ@NBTT@H TFY ZFBS "EFMJF 5PSHFSTFO NBMF "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO /" /" /" /" /" "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO NBMF
QFOHVJOT
HHQMPUΠϯετʔϧಡΈࠐΈ JOTUBMMQBDLBHFT HHQMPU JOTUBMMQBDLBHFT UJEZWFSTF ͰՄ MJCSBSZ HHQMPU MJCSBSZ UJEZWFSTF
ͰՄ
ࠓճॻ͘άϥϑͷछྨ w ࢄਤ w άϥϑ w ંΕઢάϥϑ
ࠓճ͏σʔλQFOHVJOT JOTUBMMQBDLBHFT QBMNFSQFOHVJOT MJCSBSZ QBMNFSQFOHVJOT IFBE QFOHVJOT
TQFDJFT JTMBOE CJMM@MFOHUI@NN CJMM@EFQUI@NN fl JQQFS@MFOHUI@NN CPEZ@NBTT@H TFY ZFBS "EFMJF 5PSHFSTFO NBMF "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO /" /" /" /" /" "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO NBMF
ࠓճ͏σʔλQFOHVJOT JOTUBMMQBDLBHFT QBMNFSQFOHVJOT MJCSBSZ QBMNFSQFOHVJOT IFBE QFOHVJOT
TQFDJFT JTMBOE CJMM@MFOHUI@NN CJMM@EFQUI@NN fl JQQFS@MFOHUI@NN CPEZ@NBTT@H TFY ZFBS "EFMJF 5PSHFSTFO NBMF "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO /" /" /" /" /" "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO NBMF
ࢄਤ ॻ͖ํओʹ3ύλʔϯ > ggplot(penguins, aes(x = bill_length_mm, y = bill_depth_mm))
+ geom_point() > ggplot(penguins) + geom_point(aes(x = bill_length_mm, y = bill_depth_mm)) > ggplot() + geom_point( data = penguins, aes(x = bill_length_mm, y = bill_depth_mm) )
ࠓճॻ͘άϥϑͷछྨ w ࢄਤ w ંΕઢάϥϑ w άϥϑ
ࠓճ͏σʔλQFOHVJOT JOTUBMMQBDLBHFT QBMNFSQFOHVJOT MJCSBSZ QBMNFSQFOHVJOT IFBE QFOHVJOT
TQFDJFT JTMBOE CJMM@MFOHUI@NN CJMM@EFQUI@NN fl JQQFS@MFOHUI@NN CPEZ@NBTT@H TFY ZFBS "EFMJF 5PSHFSTFO NBMF "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO /" /" /" /" /" "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO NBMF
ࠓճ͏σʔλQFOHVJOT JOTUBMMQBDLBHFT QBMNFSQFOHVJOT MJCSBSZ QBMNFSQFOHVJOT IFBE QFOHVJOT
TQFDJFT JTMBOE CJMM@MFOHUI@NN CJMM@EFQUI@NN fl JQQFS@MFOHUI@NN CPEZ@NBTT@H TFY ZFBS "EFMJF 5PSHFSTFO NBMF "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO /" /" /" /" /" "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO NBMF
σʔλूܭ MJCBSBSZ EQMZS QFOHVJOT@GPS@MJOFQFOHVJOT HSPVQ@CZ ZFBS TVNNBSJTF NFBO@NBTTNFBO
CPEZ@NBTT@H OBSN536& QFOHVJOT@GPS@MJOF ZFBS NFBO@NBTT
ંΕઢάϥϑ ॻ͖ํओʹ3ύλʔϯ > ggplot(penguins_for_line, aes(x = year, y = mean_mass))
+ geom_line() > penguins_for_line %>% ggplot() + geom_line(aes(x = year, y = mean_mass)) > ggplot(penguins_for_line) + geom_line(aes(x = year, y = mean_mass)) > ggplot() + geom_line( data = penguins_for_line, aes(x = year, y = mean_mass) )
άϥϑ ॻ͖ํ3ύλʔϯ > ggplot(penguins_for_line, aes(x = year, y = mean_mass))
+ geom_bar(stat = "identity") > ggplot(penguins_for_line) + geom_bar(aes(x = year, y = mean_mass), stat = "identity") > ggplot() + geom_bar( data = penguins_for_line, aes(x = year, y = mean_mass), stat = "identity") ҎԼͰՄ > ggplot() + geom_bar( data = penguins, aes(x = year, y = body_mass_g), stat = "summary", fun = "mean" )
ͦͷଞͷάϥϑɻɻɻ w άάΔ w ެࣜνʔτγʔτ IUUQTHJUIVCDPNSTUVEJPDIFBUTIFFUTCMPCNBTUFSEBUB WJTVBMJ[BUJPOQEG w 4MBDLͷSXBLBMBOH࣭
͍͔ͭ͘άϥϑॻ͍ͯΈͯ w λΠτϧ͚͍ͭͨɻ w ͕࣠ؾʹͳΔɻ
> ggplot() + geom_line( data = penguins_for_line, aes(x = year,
y = mean_mass) ) + ggtitle("ંΕઢάϥϑ") + theme_gray(base_family = "HiraKakuPro-W3") λΠτϧઃఆ
λΠτϧઃఆ > ggplot() + geom_line( data = penguins_for_line, aes(x =
year, y = mean_mass) ) + ggtitle("ંΕઢάϥϑ") + theme_gray(base_family = "HiraKakuPro-W3")
Y࣠ > ggplot() + geom_line( data = penguins_for_line, aes(x =
year, y = mean_mass)) + ggtitle("ંΕઢάϥϑ") + theme_gray(base_family = "HiraKakuPro-W3") + scale_x_continuous(breaks=seq(2007,2009,1))
Z࣠ > ggplot() + geom_line( data = penguins_for_line, aes(x =
year, y = mean_mass) ) + ggtitle("ࢄਤ") + theme_gray(base_family = "HiraKakuPro-W3") + scale_x_continuous( breaks = seq( min(penguins_for_line$year), max(penguins_for_line$year), 1 ) ) + ylim(0, 4300)
ࢄਤ छྨʹΑͬͯ৭͚͍ͨ > ggplot() + geom_point( data = penguins, aes(x
= bill_length_mm, y = bill_depth_mm, color = species) )
·ͱΊ w ՄࢹԽ͔ͳΓधཁͳύʔτ͕ͩɺ͍͠ɻ w άϥϑHHQMPU ͱHFPN@YYY Λ͏ͱॻ͘͜ͱ͕Ͱ͖Δɻ w ؔϓϥεͰͭͳ͙ɻ w
Γ͍ͨ͜ͱΛάάͬͯΈͯɺࢼͯ͠ΈͯɺΘ͔Βͳ͚Εɺ4MBDLͷSXBLBMBOHʹ࣭ͯͯ͠ Έ·͠ΐ͏ʂ
&/+0: