Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
TokyoR#93
Search
soriente
July 03, 2021
Technology
0
260
TokyoR#93
TokyoR#93の初心者セッション可視化パートです。
soriente
July 03, 2021
Tweet
Share
Other Decks in Technology
See All in Technology
法人支出管理領域におけるソフトウェアアーキテクチャに基づいたテスト戦略の実践
ogugu9
1
210
今からでも間に合う!速習Devin入門とその活用方法
ismk
1
560
Challenging Hardware Contests with Zephyr and Lessons Learned
iotengineer22
0
140
今年のデータ・ML系アップデートと気になるアプデのご紹介
nayuts
1
200
ブロックテーマとこれからの WordPress サイト制作 / Toyama WordPress Meetup Vol.81
torounit
0
530
ML PM Talk #1 - ML PMの分類に関する考察
lycorptech_jp
PRO
1
750
AWSセキュリティアップデートとAWSを育てる話
cmusudakeisuke
0
120
エンジニアとPMのドメイン知識の溝をなくす、 AIネイティブな開発プロセス
applism118
4
1.1k
Microsoft Agent 365 を 30 分でなんとなく理解する
skmkzyk
1
1k
re:Inventで気になったサービスを10分でいけるところまでお話しします
yama3133
1
120
AIと二人三脚で育てた、個人開発アプリグロース術
zozotech
PRO
0
690
[デモです] NotebookLM で作ったスライドの例
kongmingstrap
0
110
Featured
See All Featured
Side Projects
sachag
455
43k
Why Our Code Smells
bkeepers
PRO
340
57k
The Straight Up "How To Draw Better" Workshop
denniskardys
239
140k
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
1
93
Testing 201, or: Great Expectations
jmmastey
46
7.8k
Rebuilding a faster, lazier Slack
samanthasiow
84
9.3k
The Language of Interfaces
destraynor
162
25k
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
35
2.3k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
720
Statistics for Hackers
jakevdp
799
230k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
12
970
Transcript
5PLZP3σʔλՄࢹԽ ॳ৺ऀηογϣϯ
ࣗݾհ w TPSJFOUF w *5اۀۈ w 3ྺ ࡉͬͯ͘͘·͢ɻ w
ͱ͍ͬͯ࠷ۙ1ZUIPO͕ϝΠϯ w 1)1ॻ͍ͯͨ࣌ظ͋Γ·ͨ͠ɻ
ՄࢹԽͱ w จࣈͷ௨Γɺݟ͑ΔԽ͢Δɻ σʔλੳͷจ຺ͰɺσʔλͷؔੑΛݟ͑ ΔԽ͢Δɻ w ՄࢹԽΛ͚ͨͩ͠ͰΘ͔Δ͜ͱଟ͍ɻ w ՄࢹԽΛ͢ΔͱɺΘ͔Γ͍͢ɻ
w ՄࢹԽΛͨ͋͠ͱʹԿΒ͔ͷҙࢥܾఆΛߦ͏͜ͱ͕ଟ͍ɻ ੳऀ͕ࣗҙࢥ ܾఆ͢Δ͜ͱɺ୭͔ʹҙࢥܾఆͯ͠Β͏͜ͱ͋Δɻ
None
HHQMPUͷجຊ
HHQMPUͱ w ՄࢹԽͷͨΊͷϥΠϒϥϦ w UJEZWFSTFͷϥΠϒϥϦ܈ͷҰͭ w ʰ5IF(SBNNBSPG(SBQIJDTʱΛϕʔεʹ࡞ΒΕ͍ͯΔ ˠҰ؏ੑͷ͋Δจ๏Ͱ߹ཧతʹॻ͚Δʂ
ࠓճ͏σʔλQFOHVJOT JOTUBMMQBDLBHFT QBMNFSQFOHVJOT MJCSBSZ QBMNFSQFOHVJOT IFBE QFOHVJOT
TQFDJFT JTMBOE CJMM@MFOHUI@NN CJMM@EFQUI@NN fl JQQFS@MFOHUI@NN CPEZ@NBTT@H TFY ZFBS "EFMJF 5PSHFSTFO NBMF "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO /" /" /" /" /" "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO NBMF
QFOHVJOT
HHQMPUΠϯετʔϧಡΈࠐΈ JOTUBMMQBDLBHFT HHQMPU JOTUBMMQBDLBHFT UJEZWFSTF ͰՄ MJCSBSZ HHQMPU MJCSBSZ UJEZWFSTF
ͰՄ
ࠓճॻ͘άϥϑͷछྨ w ࢄਤ w άϥϑ w ંΕઢάϥϑ
ࠓճ͏σʔλQFOHVJOT JOTUBMMQBDLBHFT QBMNFSQFOHVJOT MJCSBSZ QBMNFSQFOHVJOT IFBE QFOHVJOT
TQFDJFT JTMBOE CJMM@MFOHUI@NN CJMM@EFQUI@NN fl JQQFS@MFOHUI@NN CPEZ@NBTT@H TFY ZFBS "EFMJF 5PSHFSTFO NBMF "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO /" /" /" /" /" "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO NBMF
ࠓճ͏σʔλQFOHVJOT JOTUBMMQBDLBHFT QBMNFSQFOHVJOT MJCSBSZ QBMNFSQFOHVJOT IFBE QFOHVJOT
TQFDJFT JTMBOE CJMM@MFOHUI@NN CJMM@EFQUI@NN fl JQQFS@MFOHUI@NN CPEZ@NBTT@H TFY ZFBS "EFMJF 5PSHFSTFO NBMF "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO /" /" /" /" /" "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO NBMF
ࢄਤ ॻ͖ํओʹ3ύλʔϯ > ggplot(penguins, aes(x = bill_length_mm, y = bill_depth_mm))
+ geom_point() > ggplot(penguins) + geom_point(aes(x = bill_length_mm, y = bill_depth_mm)) > ggplot() + geom_point( data = penguins, aes(x = bill_length_mm, y = bill_depth_mm) )
ࠓճॻ͘άϥϑͷछྨ w ࢄਤ w ંΕઢάϥϑ w άϥϑ
ࠓճ͏σʔλQFOHVJOT JOTUBMMQBDLBHFT QBMNFSQFOHVJOT MJCSBSZ QBMNFSQFOHVJOT IFBE QFOHVJOT
TQFDJFT JTMBOE CJMM@MFOHUI@NN CJMM@EFQUI@NN fl JQQFS@MFOHUI@NN CPEZ@NBTT@H TFY ZFBS "EFMJF 5PSHFSTFO NBMF "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO /" /" /" /" /" "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO NBMF
ࠓճ͏σʔλQFOHVJOT JOTUBMMQBDLBHFT QBMNFSQFOHVJOT MJCSBSZ QBMNFSQFOHVJOT IFBE QFOHVJOT
TQFDJFT JTMBOE CJMM@MFOHUI@NN CJMM@EFQUI@NN fl JQQFS@MFOHUI@NN CPEZ@NBTT@H TFY ZFBS "EFMJF 5PSHFSTFO NBMF "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO /" /" /" /" /" "EFMJF 5PSHFSTFO GFNBMF "EFMJF 5PSHFSTFO NBMF
σʔλूܭ MJCBSBSZ EQMZS QFOHVJOT@GPS@MJOFQFOHVJOT HSPVQ@CZ ZFBS TVNNBSJTF NFBO@NBTTNFBO
CPEZ@NBTT@H OBSN536& QFOHVJOT@GPS@MJOF ZFBS NFBO@NBTT
ંΕઢάϥϑ ॻ͖ํओʹ3ύλʔϯ > ggplot(penguins_for_line, aes(x = year, y = mean_mass))
+ geom_line() > penguins_for_line %>% ggplot() + geom_line(aes(x = year, y = mean_mass)) > ggplot(penguins_for_line) + geom_line(aes(x = year, y = mean_mass)) > ggplot() + geom_line( data = penguins_for_line, aes(x = year, y = mean_mass) )
άϥϑ ॻ͖ํ3ύλʔϯ > ggplot(penguins_for_line, aes(x = year, y = mean_mass))
+ geom_bar(stat = "identity") > ggplot(penguins_for_line) + geom_bar(aes(x = year, y = mean_mass), stat = "identity") > ggplot() + geom_bar( data = penguins_for_line, aes(x = year, y = mean_mass), stat = "identity") ҎԼͰՄ > ggplot() + geom_bar( data = penguins, aes(x = year, y = body_mass_g), stat = "summary", fun = "mean" )
ͦͷଞͷάϥϑɻɻɻ w άάΔ w ެࣜνʔτγʔτ IUUQTHJUIVCDPNSTUVEJPDIFBUTIFFUTCMPCNBTUFSEBUB WJTVBMJ[BUJPOQEG w 4MBDLͷSXBLBMBOH࣭
͍͔ͭ͘άϥϑॻ͍ͯΈͯ w λΠτϧ͚͍ͭͨɻ w ͕࣠ؾʹͳΔɻ
> ggplot() + geom_line( data = penguins_for_line, aes(x = year,
y = mean_mass) ) + ggtitle("ંΕઢάϥϑ") + theme_gray(base_family = "HiraKakuPro-W3") λΠτϧઃఆ
λΠτϧઃఆ > ggplot() + geom_line( data = penguins_for_line, aes(x =
year, y = mean_mass) ) + ggtitle("ંΕઢάϥϑ") + theme_gray(base_family = "HiraKakuPro-W3")
Y࣠ > ggplot() + geom_line( data = penguins_for_line, aes(x =
year, y = mean_mass)) + ggtitle("ંΕઢάϥϑ") + theme_gray(base_family = "HiraKakuPro-W3") + scale_x_continuous(breaks=seq(2007,2009,1))
Z࣠ > ggplot() + geom_line( data = penguins_for_line, aes(x =
year, y = mean_mass) ) + ggtitle("ࢄਤ") + theme_gray(base_family = "HiraKakuPro-W3") + scale_x_continuous( breaks = seq( min(penguins_for_line$year), max(penguins_for_line$year), 1 ) ) + ylim(0, 4300)
ࢄਤ छྨʹΑͬͯ৭͚͍ͨ > ggplot() + geom_point( data = penguins, aes(x
= bill_length_mm, y = bill_depth_mm, color = species) )
·ͱΊ w ՄࢹԽ͔ͳΓधཁͳύʔτ͕ͩɺ͍͠ɻ w άϥϑHHQMPU ͱHFPN@YYY Λ͏ͱॻ͘͜ͱ͕Ͱ͖Δɻ w ؔϓϥεͰͭͳ͙ɻ w
Γ͍ͨ͜ͱΛάάͬͯΈͯɺࢼͯ͠ΈͯɺΘ͔Βͳ͚Εɺ4MBDLͷSXBLBMBOHʹ࣭ͯͯ͠ Έ·͠ΐ͏ʂ
&/+0: