Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データベースの種類と特徴 / Explanation-of-database-types
Search
soudai sone
May 23, 2020
Technology
6
1.4k
データベースの種類と特徴 / Explanation-of-database-types
RDBとNOSQLの違いにフォーカスしながら種類と特徴について解説する資料です。
soudai sone
May 23, 2020
Tweet
Share
More Decks by soudai sone
See All by soudai sone
顧客が本当に必要だったもの - パフォーマンス改善編 / Make what is needed
soudai
30
8.4k
仕事を前に進めるためのコツ - 判断と決断と共有 / Aim for the goal
soudai
84
36k
アプリケーションが 正しく動作するということ - 自動テスト編 / Automated Testing
soudai
15
3k
Gitlab本から学んだこと - そーだいなるプレイバック / gitlab-book
soudai
8
1.8k
**強い**エンジニアのなり方 - フィードバックサイクルを勝ち取る / grow one day each day
soudai
120
110k
マルチテナントの実現におけるDB設計とRLS / Utilizing RSL in multi-tenancy
soudai
26
8.2k
キャッシュと向き合う、キャッシュと共に生きる / cache pattern
soudai
38
16k
RDBアンチパターンと戦う - 削除フラグ 完全攻略ガイド / delete flag
soudai
30
18k
コミュニティと共に生きる - キャリアの螺旋 / live with community
soudai
8
5.9k
Other Decks in Technology
See All in Technology
B2B SaaSから見た最近のC#/.NETの進化
sansantech
PRO
0
760
AGIについてChatGPTに聞いてみた
blueb
0
130
The Role of Developer Relations in AI Product Success.
giftojabu1
0
120
The Rise of LLMOps
asei
7
1.4k
Introduction to Works of ML Engineer in LY Corporation
lycorp_recruit_jp
0
110
Shopifyアプリ開発における Shopifyの機能活用
sonatard
4
250
障害対応指揮の意思決定と情報共有における価値観 / Waroom Meetup #2
arthur1
5
470
SREが投資するAIOps ~ペアーズにおけるLLM for Developerへの取り組み~
takumiogawa
1
190
dev 補講: プロダクトセキュリティ / Product security overview
wa6sn
1
2.3k
100 名超が参加した日経グループ横断の競技型 AWS 学習イベント「Nikkei Group AWS GameDay」の紹介/mediajaws202411
nikkei_engineer_recruiting
1
170
ノーコードデータ分析ツールで体験する時系列データ分析超入門
negi111111
0
410
AWS Lambda のトラブルシュートをしていて思うこと
kazzpapa3
2
170
Featured
See All Featured
Docker and Python
trallard
40
3.1k
VelocityConf: Rendering Performance Case Studies
addyosmani
325
24k
Scaling GitHub
holman
458
140k
What's new in Ruby 2.0
geeforr
343
31k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
27
4.3k
The Pragmatic Product Professional
lauravandoore
31
6.3k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
665
120k
How To Stay Up To Date on Web Technology
chriscoyier
788
250k
Fireside Chat
paigeccino
34
3k
Side Projects
sachag
452
42k
jQuery: Nuts, Bolts and Bling
dougneiner
61
7.5k
Transcript
データベースの種類と特徴 RDBとNOSQLの違いを理解して正しく選ぶ tech.make #1
データベースを正しく選択すること What is it?
データベースを正しく選択すること ↓ プロジェクトの成功には必要不可欠 What is it?
データベースは 何を基準に選んでいますか? What is it?
データベースの選ぶには 特徴を掴むことが大切 What is it?
データベースの 種類と特徴を理解しよう! What is it?
1. 自己紹介 2. RDBとNOSQL 3. ACIDとCAP定理とBASE 4. アーキテクチャとデータモデル 5. まとめ
あじぇんだ
1. 自己紹介 2. RDBとNOSQL 3. ACIDとCAP定理とBASE 4. アーキテクチャとデータモデル 5. まとめ
あじぇんだ
自己紹介 曽根 壮大(35歳) Have Fun Tech LLC 代表社員 そ
ね たけ とも • 日本PostgreSQLユーザ会 勉強会分科会 担当 • 3人の子供がいます(長女、次女、長男) • 技術的にはWeb/LL言語/RDBMSが好きです • コミュニティが好き
None
本書きました
1. 自己紹介 2. RDBとNOSQL 3. ACIDとCAP定理とBASE 4. アーキテクチャとデータモデル 5. まとめ
あじぇんだ
RDBとNOSQL RDBとNOSQL
RDBとNOSQL ↓ なにが違うのか? RDBとNOSQL
RDBとNOSQL アーキテクチャ / データモデル マスタ型 P2P型 その他 リレーショナル MySQL PostgreSQL
ProxySQL pgpool-2 キーバリュー Redis Memcached Redis Cluster カラム指向 Redshift Cassandra ドキュメント指向 MongoDB グラフ指向 Neo4J InfiniteGraph ※代表的なデータベースのソフトウェアの抜粋
RDBとNOSQL アーキテクチャ / データモデル マスタ型 P2P型 その他 リレーショナル MySQL PostgreSQL
ProxySQL pgpool-2 キーバリュー Redis Memcached Redis Cluster カラム指向 Redshift Cassandra ドキュメント指向 MongoDB グラフ指向 Neo4J InfiniteGraph ※代表的なデータベースのソフトウェアの抜粋
リレーショナルデータモデルに 最適化されたデータベース 現在も多くのシステムで広く使われている RDBとNOSQL RDB
RDB以外のDBシステムの総称 (Not Only SQL) グラフデータモデルをはじめ、 RDBの不得意な分野に特化している RDBとNOSQL NOSQL
つまり、RDB以外はすべてNOSQL RDBとNOSQL
RDBと根本から違う RDBとNOSQL
• データモデルが違うのでデータ設計も違う • スケールアウトやスケールアップの有効性が違う • パフォーマンスチューニングの方法が違う • アプリケーションからの接続や扱い方が違う RDBとNOSQL RDBとNOSQLの違い
違いを捉えて特徴を掴む RDBとNOSQL
1. 自己紹介 2. RDBとNOSQL 3. ACIDとCAP定理とBASE 4. アーキテクチャとデータモデル 5. まとめ
あじぇんだ
違うを知るための考え方を知る ACIDとCAP定理とBASE
ACID ACIDとCAP定理とBASE
関連する複数の処理を 一つの処理単位にまとめて管理する トランザクション処理に 求められる4つの特性 ACIDとCAP定理とBASE ACID
• 原子性(Atomicity) • 一貫性(Consistency) • 独立性(Isolation) • 永続性(Durability) ACIDとCAP定理とBASE ACID
• 原子性(Atomicity) • 一貫性(Consistency) • 独立性(Isolation) • 永続性(Durability) ACIDとCAP定理とBASE ACID
トランザクションに含まれる個々の手順が すべて実行される or すべて実行されない のどちらかになる性質
• 原子性(Atomicity) • 一貫性(Consistency) • 独立性(Isolation) • 永続性(Durability) ACIDとCAP定理とBASE ACID
トランザクションの前後でデータの整合性が保たれ、 矛盾の無い状態が継続される性質
• 原子性(Atomicity) • 一貫性(Consistency) • 独立性(Isolation) • 永続性(Durability) ACIDとCAP定理とBASE ACID
トランザクション実行中の処理過程が 外部から隠蔽され、 他の処理などに影響を与えない性質
• 原子性(Atomicity) • 一貫性(Consistency) • 独立性(Isolation) • 永続性(Durability) ACIDとCAP定理とBASE ACID
トランザクションが完了した場合に、 その結果は記録され、失われることはない性質
CAP定理 ACIDとCAP定理とBASE
分散データベースにおける、 Webサービスを想定した作られた定理 ノード間のデータ複製に置いて、 同時に3つの保証を提供することはできない ACIDとCAP定理とBASE CAP定理
分散データベースにおける、 Webサービスを想定した作られた定理 ノード間のデータ複製に置いて、 同時に3つの保証を提供することはできない ACIDとCAP定理とBASE CAP定理 CAP定理を見直す。“CAPの3つから2つを選ぶ”と いう説明はミスリーディングだった --
Eric Brewer 引用元 : https://www.publickey1.jp/blog/13/capcap32.html
• 一貫性(Consistency) • 可用性(Availability) • 分断耐性(Partition-tolerance) ACIDとCAP定理とBASE CAP定理
• 一貫性(Consistency) • 可用性(Availability) • 分断耐性(Partition-tolerance) ACIDとCAP定理とBASE CAP定理 全てのクライアントが
常に同一のデータ、またはエラーを参照する性質
• 一貫性(Consistency) • 可用性(Availability) • 分断耐性(Partition-tolerance) ACIDとCAP定理とBASE CAP定理 全てのクライアントが
読み込みと書き込みが出来る性質
• 一貫性(Consistency) • 可用性(Availability) • 分断耐性(Partition-tolerance) ACIDとCAP定理とBASE CAP定理 物理ネットワークが分断されても
間違った結果が発生しない性質
ACIDとCAP定理とBASE CAP定理 一貫性(C) 可用性(A) 分断耐性(P)
ACIDとCAP定理とBASE CA重視型 一貫性(C) 可用性(A) 分断耐性(P) PostgreSQL MySQL RDBMS 全般
ACIDとCAP定理とBASE AP重視型 可用性(A) 分断耐性(P) 一貫性(C) DyamoDB Cassandra ...など
ACIDとCAP定理とBASE CP重視型 一貫性(C) 分断耐性(P) 可用性(A) MongoDB Redis ...など
BASE ACIDとCAP定理とBASE
一貫性(C)と可用性(A)を重視した場合はACIDを 満たす必要がある それに対し、一貫性(C)よりも可用性(A)と分断耐 性(P)を重視する場合はBASEを満たす必要が ある ACIDとCAP定理とBASE BASE
• Basically Available • Soft-State • Eventually Consistent ACIDとCAP定理とBASE BASE
• Basically Available • Soft-State • Eventually Consistent ACIDとCAP定理とBASE BASE
可用性が高く、常に利用可能である どんなときもアプリケーションが動く
• Basically Available • Soft-State • Eventually Consistent ACIDとCAP定理とBASE BASE
厳密なステータスではなく、 送られてくる情報によって変化する 常に整合性を保たなくて良い
• Basically Available • Soft-State • Eventually Consistent 最終的に一貫性が保たれる 結果整合性
ACIDとCAP定理とBASE BASE
ACID(CA型)とBASE(AP型) ACIDとCAP定理とBASE
データベースの背景を知ると 特徴が見えてくる ACIDとCAP定理とBASE
1. 自己紹介 2. RDBとNOSQL 3. ACIDとCAP定理とBASE 4. アーキテクチャとデータモデル 5. まとめ
あじぇんだ
ACID、CAP定理、BASEを紐解くと アーキテクチャで重視した部分が見えてくる アーキテクチャとデータモデル
ACID(CA型)とBASE(AP型) アーキテクチャとデータモデル
ACID(CA型)とBASE(AP型) ↓ どのように実現をするか アーキテクチャとデータモデル
アーキテクチャが見えてくる アーキテクチャとデータモデル
マスタ型とP2P型 アーキテクチャとデータモデル
アーキテクチャとデータモデル マスタ型 マスタ スレーブ スレーブ スレーブ
アーキテクチャとデータモデル P2P型 マスタ マスタ マスタ マスタ
データモデル アーキテクチャとデータモデル
アーキテクチャとデータモデル リレーショナル user_id name 1 hoge 2 fuga 3
foo user_id role_id 1 1 1 3 3 2 4 4 role_id name 1 開発部 2 営業部 3 運用部 4 総務部
アーキテクチャとデータモデル リレーショナル user_id name 1 hoge 2 fuga 3
foo user_id role_id 1 1 1 3 3 2 4 4 role_id name 1 開発部 2 営業部 3 運用部 4 総務部 集合を定義する 関係を定義する
アーキテクチャとデータモデル キーバリュー key value 1 hoge 2 fuga 3 foo
4 bar fuga 次郎 hoge 太郎 foo 花子
アーキテクチャとデータモデル キーバリュー key value 1 hoge 2 fuga 3 foo
4 bar fuga 次郎 hoge 太郎 foo 花子 1:1の関係を保持する
アーキテクチャとデータモデル カラム指向 name hoge fuga bar foo test 部門 開発
営業 総務 企画 経理
アーキテクチャとデータモデル ドキュメント指向 name : hoge role : 開発 age :
30 name : fuga role : 開発,営業 from : 広島 age : 30 name : foo role : 総務 それぞれが独立したドキュメント ドキュメントにはユニークなIDでアクセス
他にも多種多様にデータモデルはある アーキテクチャとデータモデル
RDBとNOSQL アーキテクチャ / データモデル マスタ型 P2P型 その他 リレーショナル MySQL PostgreSQL
ProxySQL pgpool-2 キーバリュー Redis Memcached Redis Cluster カラム指向 Redshift Cassandra ドキュメント指向 MongoDB グラフ指向 Neo4J InfiniteGraph ※代表的なデータベースのソフトウェアの抜粋
1. 自己紹介 2. RDBとNOSQL 3. ACIDとCAP定理とBASE 4. アーキテクチャとデータモデル 5. まとめ
あじぇんだ
アーキテクチャ x データモデル ↓ データベースの種類と特徴を決める まとめ
保存したいデータモデル + 重視したいアーキテクチャ まとめ
ACIDとCAP定理とBASE 軸を持って比較する まとめ
長所と短所を知る ↓ 要件に合わせる まとめ
“もし現在のアプリケーションがRDBで 上手く動いているのであれば、 それをNOSQLに置換する理由は無いし、 それを勧めたりはしない” Nate McCall (@zznate)
データベースの種類と特徴を捉えて 適切なデータベースを選ぶ まとめ
ご清聴ありがとうございました まとめ