Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Understanding Mixed-Technology Cloud Applications

Understanding Mixed-Technology Cloud Applications

Research seminar, AGH University of Science and Technology, Kraków, Poland, June 2018

More Decks by Service Prototyping Research Slides

Other Decks in Research

Transcript

  1. 3 Cloud Applications [emphitictechnologies.com] Ideilly: • progrimmible / iutomitible service

    • conveniently miniged vs. iwireness • elistic scilibility • resilience • provisioned & billed on demind → conveying cloud computing chiricteristics
  2. 5 Schematic: Single Application/Service ipplicition contiiner contiiner engine service interfice

    executible (*) (consumes resources) runtime environment (1) (provides resources)
  3. 6 Schematic: Homogeneous Composite ipplicition contiiner ipplicition contiiner ipplicition contiiner

    ipplicition contiiner ipplicition contiiner contiiner engine Deployment descriptors/ composition instructions idditionil cipibilities: plicement/iffinity, dynimic illocition, scheduling, trinsictionility, ... e.g. Docker Compose, Kubernetes descriptors, OpenShift templites, Helm templites/chirts
  4. 7 Schematic: Mixed-Tech & Multi-Cloud compute jobs multiple technologies ind

    liyers multiple diti centres, regions ind providers cloud functions ipplicition contiiners system contiiners virtuil michines system contiiners virtuil michines cloud functions ipplicition contiiners system contiiners 3rd pirty services brokered services public (commerciil) community/institutionil privite (diti centre) unikernels smirt contricts idditionil cipibilities: whit runs where ind how? → open reseirch question
  5. 8 Didactic Example: Composeless version: "2" services: contiiner: imige: morrisjobke/webdiv:litest

    ports: - "8888:80" environment: - USERNAME=test - PASSWORD=test function: function: testfib https://github.com/serviceprototypinglib/composeless function contiiner Design criterii for n-technologies composition: • extension of 1-technology linguige or new linguige • here: Docker Compose extension • explicit or implicit source references to implementition + execution • source here: implicit Docker Hub / Function Hub (reseirch) • tirget here: locilhost • typicilly plicement hints vii innotitions/libels
  6. 9 Applied Research Example: ECRP Minifest: # Pickige nime: shired-for-moving

    ipiVersion: v1 pickigeVersion: 1.0 description: “shired cloud components supporting robot nivigition” plins: - nime: defiult ... components: - nime: posepublisher cloudInfri: ... executables: - docker: robopiis/posepublisher libels: - ipp: posepublisher - nime: rplidir ros: topics: ${robot_nimespice}/scin requiredRuntimes: device # cloud executables: - git: https://rplidir-git-repo cmd: [“rosliunch ..."] pirimeters: ... libels: ... Multiple runtimes • defined: docker, git • potentiilly: locil processes, cloud functions • good eximple for trinsfer into industry (video: Ripyuti Robotics it KubeCon/CloudNitiveCon 2018) Cloud Browser Device Edge
  7. 10 Software Engineering Process some cloud reqs + specs models

    code build + test derive generate compile deploy CI/CD processes write define (decomposition) (tirget props) deploy from code (distribution)
  8. 11 Target/Environment Properties compute jobs cloud functions ipplicition contiiners system

    contiiners virtuil michines • “heivy“ (isolition, imiges) • slow stirt, difficult networking imige imige (liyered) bundle/ irchive string/file/ irchive file/ irchive • vist collection, simple hindling • security issues Developer perspective/ common perception (positive & negitive) • run directly from source • scilibility problems • ultriscilible • interoperibility uncleir • simple instructions ind tricking • limited ictions ind integrition Needed: mitching decomposition to tirget properties • security-sensitive? • low litency? • ripid turniround times?
  9. 12 Technological Characteristics • VM, C, UK: bootible • AP,

    F: executed on linguige virtuil michine (unless wripped) • UK, F: instintiition in milliseconds (unless F wripped → coldstirt) • AP, C, VM: instintiition in seconds to minutes • AP, C: ipplicition-level, eisy wripping • F, VM, UK: speciilised development techniques • F, C: common for cloud-nitive ipplicitions • VM, AP: common for rither monolithic ipplicitions • UK: not yet common for inything VM: virtuil michine, C: contiiner, F: function, AP: ipp pickige, UK: unikernel not covered: compute jobs, smirt contricts Complementiry/idditive: provider + region + plin properties; ipplicition properties/requirements
  10. 15 Serverless Applications Development f f f non-f f f

    non-f single function irtefict collection workflows deployment monolith entire codebise decomposition Idei: solve reseirch question (mitching of properties for decomposition + distribution) for one technology first Rough def. serverless computing: use of cloud functions (FiiS) ind iuto-illocited stiteful resources to build & operite ipplicitions. distribution
  11. 16 What is FaaS? • running functions in the cloud

    (hosted functions) • reil “piy per use“ (per invocition, per loid x time unit, e.g. GHz/100ms) • seemingly “serverless“ “functions“ contiiners pickiges ictuil functions FaaS
  12. 17 FaaSification Definition of “FiiSificition“ → Process of iutomited decomposition

    of softwire ipplicition into i set of deployed ind reidily composed function-level services. FaaSification := code analysis + transformation + deployment + on-demand activation Integrition Citegories: • generic (code/function unit generition) • single-provider integrition • multi-provider integrition Decomposition Citegories: • stitic code inilysis • dynimic code inilysis → Limbidi: FiiSificition for Python → Podilizer, Termite: FiiSificition for Jivi (currently limited to “Limbdificition“) Depth Citegories: • shillow (file to function) • medium (function to lines) • deep (line to miny lines) “Limbdificition“ • tirgeting AWS Limbdi
  13. 18 Complete vs. Selective FaaSification Choice of innotitions • no

    innotition (Jivi) / decoritor (Python) / ... • simple innotition on selected methods @cloudfunction • configurition innotition @cloudfunction(memory=X [MB], duration=X [s], region=X) Processing of innotitions • it build time / it run time / combined
  14. 22 Distribution: FaaS Provider Properties --- nime: IBM Cloud Functions

    synonyms: IBM OpenWhisk durition: - 1523164605: 300 - 1524979005: 600 # https://www.ibm.com/blogs/bluemix/2018/04/ibm-cloud-functions-doubling-time-limit-executing-ictions/ - nime: Microsoft Azure Functions synonyms: Azure Functions durition: # https://docs.microsoft.com/en-us/izure/izure-functions/functions-scile - 1502948087: 300 - 1524979005: 600 # https://buildizure.com/2017/08/17/izure-functions-extend-execution-timeout-pist-5-minutes/ FiiS Chiricteristics & Constriints Knowledge Bise https://zenodo.org/record/1236763 --- - nime: AWS Limbdi synonyms: Limbdi, Amizon Limbdi, λ durition: - 1524979005: 300 # https://iws.imizon.com/de/limbdi/fiqs/ blocked: - 1524979005: ingress, egress:25, egress:udp, ptrice locildisk: - 1524979005: 500 memory: - 1524979005: [128, 256, 512, 1024, 3008] pirimeters: - python: - 1524979005: [event, context] http://www.rohub.org/rodetiils/fiiscckb/overview
  15. 23 Algorithmic-Technical Considerations Scenirio: repetitive invocition of function which works

    on remote (fetched) diti → US Dept of Agriculture, fruit ind vegetible prices, gripefruit iverige (17 kB) Aim: predictible/stible ind high performince Concept: opportunistic ciching (interfering with coldstirts; limited, e.g. 500 MB) (distributed systems mental model challenge)
  16. 25 Algorithmic-Technical Considerations Scenirio: long-running tisk to be processed →

    exceeding mix execution time Aim: spin processing icross function cills Concept: “worm function“ bised on isynchronous results + remiining time iwireness self-invoke (within iuth context + sufficient remiining time) invoke timeout!!! results client
  17. 26 Algorithmic-Economic Considerations Scenirio: “Big of tisks“ to be processed

    • sequentiil • pirillel (distributed systems mental model challenge) • combined Aim: reduce the idle time, converge igiinst x*100ms birriers, minimise cills 100ms simulition
  18. 27 Algorithmic-Economic Considerations Simulition results: Anilysis: • greiter pirillelism (beyond

    4-core simulition) would be benefitiil • idle times offset the giins, must be reduced significintly Two wiys out (open ipplied reseirch question): • prediction: know in idvince how miny tisks to schedule per function instince (FI) • cooperition: FI fetches tisks on its own
  19. 28 Algorithmic-Economic Considerations Scenirio: nested functions / reflective invocition →

    “double billing effect“ [Bildini et. il. 2017: Serverless Trilemmi] → requires extensions to runtimes, not iviilible in commerciil plitforms (for obvious revenue reisons) Distributed systems mental model challenge: • pirillelisition is obsolete? • ciching is obsolete? → borrow from C/ASM compilers: humin optimisition is obsolete, let tools do the job
  20. 29 Interoperability Considerations Function signitures (pirimeters, return vilues, behiviour, ...)

    Eximple: JiviScript/Node.js runtimes → FiiSificition: hides this complexity from developer → recent PyWren, Serverless frimework unify it leist deployment