Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Valuing On-the-Ball Actions in Soccer: A Critic...
Search
Sports AI
May 09, 2020
Research
1
160
Valuing On-the-Ball Actions in Soccer: A Critical Comparison of xT and VAEP
Sports AI
May 09, 2020
Tweet
Share
More Decks by Sports AI
See All by Sports AI
Voronoi Analysis of a Soccer Game
sportsai
0
170
Using Player’s Body-Orientation to Model Pass Feasibility in Soccer
sportsai
0
37
How to VizSki: Visualizing Captured Skier Motion in a VR Ski Training Simulator
sportsai
0
110
Explaining the Unique Nature of Individual Gait Patterns with Deep Learning
sportsai
1
710
DeepBall: Deep Neural-Network Ball Detector
sportsai
0
190
【論文解説】TTNet: Real-time temporal and spatial video analysis of table tennis
sportsai
1
420
Other Decks in Research
See All in Research
NLP2025参加報告会 LT資料
hargon24
1
320
ASSADS:ASMR動画に合わせて撫でられる感覚を提示するシステムの開発と評価 / ec75-shimizu
yumulab
1
390
2025年度人工知能学会全国大会チュートリアル講演「深層基盤モデルの数理」
taiji_suzuki
24
15k
数理最適化に基づく制御
mickey_kubo
5
680
SSII2025 [TS1] 光学・物理原理に基づく深層画像生成
ssii
PRO
4
3.7k
数理最適化と機械学習の融合
mickey_kubo
15
8.8k
Ad-DS Paper Circle #1
ykaneko1992
0
5.5k
EarthSynth: Generating Informative Earth Observation with Diffusion Models
satai
3
100
Combinatorial Search with Generators
kei18
0
320
A multimodal data fusion model for accurate and interpretable urban land use mapping with uncertainty analysis
satai
3
220
AIによる画像認識技術の進化 -25年の技術変遷を振り返る-
hf149
6
3.5k
(NULLCON Goa 2025)Windows Keylogger Detection: Targeting Past and Present Keylogging Techniques
asuna_jp
1
530
Featured
See All Featured
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
125
52k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
Building an army of robots
kneath
306
45k
Statistics for Hackers
jakevdp
799
220k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
44
2.4k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.8k
Code Review Best Practice
trishagee
69
18k
BBQ
matthewcrist
89
9.7k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
15
1.5k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
29
9.5k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
107
19k
Six Lessons from altMBA
skipperchong
28
3.9k
Transcript
Valuing On-the-Ball Ac1ons in Soccer: A Cri1cal Comparison of xT
and VAEP Ikuma Uchida
Abstract • 試合中のサッカー選⼿の貢献度を客観的に定量化することは、サッカー分析において重要な課題で ある。 • ただ、従来の統計値(シュートやアシストの集計など)や、プレーの流れを考慮に⼊れた指標(xG やxAなど)は、試合中の1%にも満たないイベントを集計しているに過ぎず、試合の分析としては不 ⼗分 • 最近はこの不⼗分さのギャップを埋めるための新たな定量的アプローチが提案されている
• 多く出てきているが、これらのアプローチの違いや優劣は、概念的にもまた定量的にも理解されて いないのが現状 • そこで、最新のアプローチのxT とVAEPの⽐較を⾏う。
Outline • イントロ • xTとVAEPのアルゴリズムの説明 • 2つの⼿法の特徴の定性的⽐較 • 2つの⼿法の実装したときの⽐較
Introduc1on • 現代スポーツにおいて、プレーにおける様々なデータが取得できるようになり、データ を⽤いたアプローチが⾏われるようになってきた。 例1 ) Count-based approaches ・各プレーのタイプに重み付けをする→重み付けしたプレーが1試合で⾏われた回数分sumをとる ・値を試合結果や得失点との相関をとったモデルをトレーニングすることで学習される。
例2 ) Expected possession value(EPV) approaches ・各プレーをポゼッションシーンで分割して、チャンスメイクの度合いを評価。 ・オン・ザ・ボール評価 ・マルコフモデル⽤いてポゼッションをモデル化する。 ・xTはEPV approachesに含まれる。
Introduc1on • 現代スポーツにおいて、プレーにおける様々なデータが取得できるようになり、データ を⽤いたアプローチが⾏われるようになってきた。 例3) Ac>on-based approaches ・EPVよりも、より幅広いプレーを考慮に⼊れられるようになった最近の指標 ・⼆分法による分類を⽤いてフレーム化(?)して、 そのプレーが得点や失点の確率に与える影響を推定することで評価
EPV(xT)とVAEPは、プレーの特徴に基づいて個々のプレーを評価する点で 共通している。 ➡xT と VAEPの違いは?
xT • 前提として 移る時、xTとVAEPは以下の式でvalueが得られる。 • xTは、ポゼッションベースのマルコフモデル • ピッチをM×Nのグリッドに分割して、各ゾーンzに、そのチームの得点脅威の度合いを(xT)を割り 当てる。 •
ボールをゾーンzからゾーンz’に移動させることに成功したプレーaiを そのプレーの前後の脅威値の差を計算することで評価 Sz: ゾーンzにおいてシュートを打つ確率 xG(z) :ゾーンzからのシュートが得点に変換される確率 mz :ゾーンzにいる時に選⼿がボールを移動する確率 T:ゾーンzにいる時にそのプレイヤーが他のゾーンに移動する遷移⾏列 の状態から の状態に
VAEP • xTよりももっと複雑なゲームの状態を表現する。 • VAEPは、プレーiから⾒て2つ前の状態を考慮に⼊れる • VAEPは、1:プレーのタイプ、2:連続したゲームの流れ、3:試合の残り時間や得失点差、の3つを考慮 に⼊れる。 • xTと同様、ゲーム状況の変化に応じてvalueを決定するが、そのゲーム状況の評価の仕⽅が異なる。
• 、状態Siでボールを持っているチームが、次のk回のアクションで得点 または失点する確率 ➡VAEPはプレーのリスクとリターンのトレードオフを推定している。
Comparing xT and VAEP Loca%on-based vs feature-based • xT can
only value ball-progressing ac:ons • VAEP captures the ac:on context • VAEP captures the game context • VAEP captures the game context • xT values are interpretable
Comparing xT and VAEP Possession-based vs window-based • VAEP captures
the risk involved in an ac:on • VAEP can value ‘failed’ ac:ons accurately.
Dataset ・2017/2018シーズンと、2018/2019シーズンのプレミアリーグ ➡Statsbombのデータを使⽤ ➡2017/2018シーズンを訓練⽤データに採⽤ ・xTモデルは、12×16のグリットを使った ・4つのシーンにおける評価を⾏う。 1.⾃陣でのリスキーなバックパス 2.⾃陣からのカウンターを仕掛けるためのボール奪取 3.ペナルティエリア内へのドリブル 4.ペナルティエリア内侵⼊するための
スルーパス。
Dataset
Results 1.⾃陣でのリスキーなバックパス ・xTだと、value = 0が多い →バックパスのリスクとリターンをうまく捕捉できて いない ・VAEPだと、value が多様な値を⽰す。
Results 2. ペナルティエリア内のドリブル ・xTだと、value = 0が多い → ・VAEPだと、value が多様な値を⽰す。
Results 2.カウンターに繋がるボール奪取 ・xTだと、ゴール前なのにvalue = 0が多い →グリット外に移動しないプレーは捕捉できない VAEPだと、value が多様な値を⽰す
Results 4.ペナ内へのスルーパス
Experimental comparison of player ra1ngs
Experimental comparison of player ratings ジャカード類似度係数
xT is robust
Conclusion • 2つのアプローチを概念的、定性的、定量的に批判的に⽐較した。 • どのようなプレーを評価するかという点で重要な違いがある。これ らの違いは、VAEPがアクションのリスクとリターンのトレードオフ をより良く捉えている • xTがよりロバストである •
従来のメトリクス(ゴールやアシスト)を考慮した場合とは異なる ランキングを⽣成することである。したがって、これらはプレイ ヤーのパフォーマンスについての追加的な洞察を提供します。