Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Using Player’s Body-Orientation to Model Pass F...
Search
Sports AI
June 08, 2020
Research
0
40
Using Player’s Body-Orientation to Model Pass Feasibility in Soccer
Sports AI
June 08, 2020
Tweet
Share
More Decks by Sports AI
See All by Sports AI
Voronoi Analysis of a Soccer Game
sportsai
0
180
How to VizSki: Visualizing Captured Skier Motion in a VR Ski Training Simulator
sportsai
0
110
Explaining the Unique Nature of Individual Gait Patterns with Deep Learning
sportsai
1
730
DeepBall: Deep Neural-Network Ball Detector
sportsai
0
210
Valuing On-the-Ball Actions in Soccer: A Critical Comparison of xT and VAEP
sportsai
1
160
【論文解説】TTNet: Real-time temporal and spatial video analysis of table tennis
sportsai
1
440
Other Decks in Research
See All in Research
財務諸表監査のための逐次検定
masakat0
0
210
Multi-Agent Large Language Models for Code Intelligence: Opportunities, Challenges, and Research Directions
fatemeh_fard
0
120
論文紹介:Safety Alignment Should be Made More Than Just a Few Tokens Deep
kazutoshishinoda
0
150
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1k
[Devfest Incheon 2025] 모두를 위한 친절한 언어모델(LLM) 학습 가이드
beomi
2
1.2k
病院向け生成AIプロダクト開発の実践と課題
hagino3000
0
460
MetaEarth: A Generative Foundation Model for Global-Scale Remote Sensing Image Generation
satai
4
530
AIスーパーコンピュータにおけるLLM学習処理性能の計測と可観測性 / AI Supercomputer LLM Benchmarking and Observability
yuukit
0
190
Tiaccoon: Unified Access Control with Multiple Transports in Container Networks
hiroyaonoe
0
160
"主観で終わらせない"定性データ活用 ― プロダクトディスカバリーを加速させるインサイトマネジメント / Utilizing qualitative data that "doesn't end with subjectivity" - Insight management that accelerates product discovery
kaminashi
15
17k
Time to Cash: The Full Stack Breakdown of Modern ATM Attacks
ratatata
0
180
論文読み会 SNLP2025 Learning Dynamics of LLM Finetuning. In: ICLR 2025
s_mizuki_nlp
0
350
Featured
See All Featured
Prompt Engineering for Job Search
mfonobong
0
120
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
37
2.7k
DBのスキルで生き残る技術 - AI時代におけるテーブル設計の勘所
soudai
PRO
60
37k
Designing Experiences People Love
moore
143
24k
Believing is Seeing
oripsolob
0
15
Information Architects: The Missing Link in Design Systems
soysaucechin
0
710
How To Speak Unicorn (iThemes Webinar)
marktimemedia
1
340
svc-hook: hooking system calls on ARM64 by binary rewriting
retrage
1
21
Producing Creativity
orderedlist
PRO
348
40k
How to Ace a Technical Interview
jacobian
281
24k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
AI Search: Implications for SEO and How to Move Forward - #ShenzhenSEOConference
aleyda
1
1k
Transcript
Using Player’s Body-Orientation to Model Pass Feasibility in Soccer A.
Arbues-Sang ´ uesa , A. Mart, J. Fernandez ,C.Ballester, G. Haro,Universitat Pompeu Fabra, Futbol Club Barcelona 【Sports AI 論文解説】 by Ikuma Uchida
Abstract • サッカーの単眼試合映像をインプットに加えた、任意の時間における最も 有効なパスを推定するモデルの作成を行った。 • 6000本以上のパスデータを使ってモデルの評価を行ったところ、精度が7 割を超えた。 • 既存のEPVと本モデルを掛け合わせることでより正確なモデルを得た。 ➡意思決定プロセスの理解を深められる。
Introduction バルサ元監督のペップのある日の言葉(らしい) ・サッカーにおいて、適切な向きを向くこと(Orientation)の基準ができること はチームパフォーマンス分析において重要なのではないか?(仮説) ・ただ、その基準は選手によってまちまちでフィードバックの余地がなかなか ない ➡最も指向性の効果があられるパスについて、映像から選手の向きを取 得してパス情報に付与すると、精度の高い結果が得られるのでは パサーは、ボールを コントロールする前
に周りを見て出す方 向に向ける準備が 大切だ!
Related Works [1]]Ball Localization for Robocup Soccer Using Convolutional Neural
Neural Networks (J. Fernandez et al., 2020) ・超解像ネットワークと、Open Poseを使用して、試合の単眼映像から選手の体の向き とボールの進行方向を推定。 中央値から誤差27度という精度を達成。 ・本研究は、選手の方向推定にこのモデルを使用。
Related Works [2]]Decomposing the Immeasurable Sport: A deep learning expected
possession value framework for soccer(J. Fernandez et al., 2019) ・任意の位置における、得点もしくは守備成功の期待値を予測するモデル。 ・パサーPがパスを受ける人にパスを成功させる期待値を予測することも可能。 ・本論文は、このEPVモデルに指向性を追加してより正確なパスモデル作成に取り組ん でいる。
Pass-Orientation Model • ある選手がパスを実行しようとしているという事前情報に基づいて、任意の時 点で最ももっともらしいパサーのパスを推定する計算モデルを提案 Hi … パサーPがレシーバーRiにボールをパスする仮説(シチュエーション) 最も実現可能なボールパスを以下のようにF(i)を最大化したときの偏角(arg)に なる。
F(i) : Hiにおけるイベントパスの実現可能性をし、以下のように表す。 Fo(i) : 方向性のスコア, Fd(i):ディフェンダーについてのスコア Fp(i): パサーとレシーバーの距離(ペアワイズ距離)についてのスコア
Orientation • 正確なパスモーメントtに関して、±Qフレームのウインドウに映るプレイヤー のプレー方向を[1]により計算する。 • ペアワイズ距離を考慮しないため、全てのレシーバーをパサーの周りの同 心円状に配置する。 • パサーの体の向き±Ψ(この論文は30°固定)をその選手の視野と定義して、 長さ2Zの二等辺三角形を描く。パス実現可能性になり、
Defenders Position • 守備側のプレー{Dk}kは絶えず意思決定プロセスを変えている。 • β(P, Ri): パサー P とレシーバー
Ri の間の 2 次元テンプレート場における角度 β(P, Dk): パサー P とディフェンダーDk の間の 2 次元テンプレート場における角度 ➡Fd,P(Ri):β(P, Ri)方向へのパス実行可能性 Fd,R(Ri):Pからのボールを受け取る実現可能性
Defenders Position Pairwise Distances これら3つの指標を掛け合わせてパスの実行可能性を定義する。
Dataset • FCバルセロナ提供の試合映像11試合分。 • 6038個のパスイベントを使用。 • パスイベントは、レシーバーがボールをコントロールを できたか否かのバイナリラベルがついている。 • 方向性の情報がある場合とない場合のモデルの比較
を行う。 方向なしの式
Orientation Relevance in Pass Feasibility Fの方が、TOP1とTOP3に おいて精度が向上している
Decomposed Fo - Fd - Fp Performance. 3つとも似たような形状を保っ ている。
Combination with Expected Possession Value EPVに方向性を加味したら精度が 上がった。
まとめ • 本論文は、パスの実現可能性を推定する新しいモデルを提案した。 • 姿勢モデルを用いて体の方向性をパス情報に加味すると、7割近い精 度が出せた。 • 今後は、空きスペースへのスルーパスの実現可能性についても検討す る。