Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Using Player’s Body-Orientation to Model Pass F...
Search
Sports AI
June 08, 2020
Research
0
37
Using Player’s Body-Orientation to Model Pass Feasibility in Soccer
Sports AI
June 08, 2020
Tweet
Share
More Decks by Sports AI
See All by Sports AI
Voronoi Analysis of a Soccer Game
sportsai
0
170
How to VizSki: Visualizing Captured Skier Motion in a VR Ski Training Simulator
sportsai
0
110
Explaining the Unique Nature of Individual Gait Patterns with Deep Learning
sportsai
1
720
DeepBall: Deep Neural-Network Ball Detector
sportsai
0
200
Valuing On-the-Ball Actions in Soccer: A Critical Comparison of xT and VAEP
sportsai
1
160
【論文解説】TTNet: Real-time temporal and spatial video analysis of table tennis
sportsai
1
430
Other Decks in Research
See All in Research
cvpaper.challenge 10年の軌跡 / cvpaper.challenge a decade-long journey
gatheluck
3
310
2025年度人工知能学会全国大会チュートリアル講演「深層基盤モデルの数理」
taiji_suzuki
25
18k
最適化と機械学習による問題解決
mickey_kubo
0
170
Google Agent Development Kit (ADK) 入門 🚀
mickey_kubo
2
1.8k
集合間Bregmanダイバージェンスと置換不変NNによるその学習
wasyro
0
140
Galileo: Learning Global & Local Features of Many Remote Sensing Modalities
satai
3
240
SSII2025 [TS2] リモートセンシング画像処理の最前線
ssii
PRO
7
3.1k
とあるSREの博士「過程」 / A Certain SRE’s Ph.D. Journey
yuukit
10
4.2k
snlp2025_prevent_llm_spikes
takase
0
170
論文読み会 SNLP2025 Learning Dynamics of LLM Finetuning. In: ICLR 2025
s_mizuki_nlp
0
210
論文紹介:Not All Tokens Are What You Need for Pretraining
kosuken
0
170
EarthSynth: Generating Informative Earth Observation with Diffusion Models
satai
3
260
Featured
See All Featured
Mobile First: as difficult as doing things right
swwweet
224
9.9k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
18
1.1k
Building an army of robots
kneath
306
46k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
The Language of Interfaces
destraynor
161
25k
Intergalactic Javascript Robots from Outer Space
tanoku
272
27k
GraphQLとの向き合い方2022年版
quramy
49
14k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.6k
Producing Creativity
orderedlist
PRO
347
40k
Into the Great Unknown - MozCon
thekraken
40
2k
Transcript
Using Player’s Body-Orientation to Model Pass Feasibility in Soccer A.
Arbues-Sang ´ uesa , A. Mart, J. Fernandez ,C.Ballester, G. Haro,Universitat Pompeu Fabra, Futbol Club Barcelona 【Sports AI 論文解説】 by Ikuma Uchida
Abstract • サッカーの単眼試合映像をインプットに加えた、任意の時間における最も 有効なパスを推定するモデルの作成を行った。 • 6000本以上のパスデータを使ってモデルの評価を行ったところ、精度が7 割を超えた。 • 既存のEPVと本モデルを掛け合わせることでより正確なモデルを得た。 ➡意思決定プロセスの理解を深められる。
Introduction バルサ元監督のペップのある日の言葉(らしい) ・サッカーにおいて、適切な向きを向くこと(Orientation)の基準ができること はチームパフォーマンス分析において重要なのではないか?(仮説) ・ただ、その基準は選手によってまちまちでフィードバックの余地がなかなか ない ➡最も指向性の効果があられるパスについて、映像から選手の向きを取 得してパス情報に付与すると、精度の高い結果が得られるのでは パサーは、ボールを コントロールする前
に周りを見て出す方 向に向ける準備が 大切だ!
Related Works [1]]Ball Localization for Robocup Soccer Using Convolutional Neural
Neural Networks (J. Fernandez et al., 2020) ・超解像ネットワークと、Open Poseを使用して、試合の単眼映像から選手の体の向き とボールの進行方向を推定。 中央値から誤差27度という精度を達成。 ・本研究は、選手の方向推定にこのモデルを使用。
Related Works [2]]Decomposing the Immeasurable Sport: A deep learning expected
possession value framework for soccer(J. Fernandez et al., 2019) ・任意の位置における、得点もしくは守備成功の期待値を予測するモデル。 ・パサーPがパスを受ける人にパスを成功させる期待値を予測することも可能。 ・本論文は、このEPVモデルに指向性を追加してより正確なパスモデル作成に取り組ん でいる。
Pass-Orientation Model • ある選手がパスを実行しようとしているという事前情報に基づいて、任意の時 点で最ももっともらしいパサーのパスを推定する計算モデルを提案 Hi … パサーPがレシーバーRiにボールをパスする仮説(シチュエーション) 最も実現可能なボールパスを以下のようにF(i)を最大化したときの偏角(arg)に なる。
F(i) : Hiにおけるイベントパスの実現可能性をし、以下のように表す。 Fo(i) : 方向性のスコア, Fd(i):ディフェンダーについてのスコア Fp(i): パサーとレシーバーの距離(ペアワイズ距離)についてのスコア
Orientation • 正確なパスモーメントtに関して、±Qフレームのウインドウに映るプレイヤー のプレー方向を[1]により計算する。 • ペアワイズ距離を考慮しないため、全てのレシーバーをパサーの周りの同 心円状に配置する。 • パサーの体の向き±Ψ(この論文は30°固定)をその選手の視野と定義して、 長さ2Zの二等辺三角形を描く。パス実現可能性になり、
Defenders Position • 守備側のプレー{Dk}kは絶えず意思決定プロセスを変えている。 • β(P, Ri): パサー P とレシーバー
Ri の間の 2 次元テンプレート場における角度 β(P, Dk): パサー P とディフェンダーDk の間の 2 次元テンプレート場における角度 ➡Fd,P(Ri):β(P, Ri)方向へのパス実行可能性 Fd,R(Ri):Pからのボールを受け取る実現可能性
Defenders Position Pairwise Distances これら3つの指標を掛け合わせてパスの実行可能性を定義する。
Dataset • FCバルセロナ提供の試合映像11試合分。 • 6038個のパスイベントを使用。 • パスイベントは、レシーバーがボールをコントロールを できたか否かのバイナリラベルがついている。 • 方向性の情報がある場合とない場合のモデルの比較
を行う。 方向なしの式
Orientation Relevance in Pass Feasibility Fの方が、TOP1とTOP3に おいて精度が向上している
Decomposed Fo - Fd - Fp Performance. 3つとも似たような形状を保っ ている。
Combination with Expected Possession Value EPVに方向性を加味したら精度が 上がった。
まとめ • 本論文は、パスの実現可能性を推定する新しいモデルを提案した。 • 姿勢モデルを用いて体の方向性をパス情報に加味すると、7割近い精 度が出せた。 • 今後は、空きスペースへのスルーパスの実現可能性についても検討す る。