Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Using Player’s Body-Orientation to Model Pass F...
Search
Sports AI
June 08, 2020
Research
0
39
Using Player’s Body-Orientation to Model Pass Feasibility in Soccer
Sports AI
June 08, 2020
Tweet
Share
More Decks by Sports AI
See All by Sports AI
Voronoi Analysis of a Soccer Game
sportsai
0
180
How to VizSki: Visualizing Captured Skier Motion in a VR Ski Training Simulator
sportsai
0
110
Explaining the Unique Nature of Individual Gait Patterns with Deep Learning
sportsai
1
720
DeepBall: Deep Neural-Network Ball Detector
sportsai
0
200
Valuing On-the-Ball Actions in Soccer: A Critical Comparison of xT and VAEP
sportsai
1
160
【論文解説】TTNet: Real-time temporal and spatial video analysis of table tennis
sportsai
1
440
Other Decks in Research
See All in Research
Mechanistic Interpretability:解釈可能性研究の新たな潮流
koshiro_aoki
1
480
Google Agent Development Kit (ADK) 入門 🚀
mickey_kubo
2
2.2k
VectorLLM: Human-like Extraction of Structured Building Contours via Multimodal LLMs
satai
4
340
PhD Defense 2025: Visual Understanding of Human Hands in Interactions
tkhkaeio
1
260
[CV勉強会@関東 CVPR2025] VLM自動運転model S4-Driver
shinkyoto
2
540
AIグラフィックデザインの進化:断片から統合(One Piece)へ / From Fragment to One Piece: A Survey on AI-Driven Graphic Design
shunk031
0
510
ロボット学習における大規模検索技術の展開と応用
denkiwakame
1
140
J-RAGBench: 日本語RAGにおける Generator評価ベンチマークの構築
koki_itai
0
810
情報技術の社会実装に向けた応用と課題:ニュースメディアの事例から / appmech-jsce 2025
upura
0
230
論文読み会 SNLP2025 Learning Dynamics of LLM Finetuning. In: ICLR 2025
s_mizuki_nlp
0
290
Adaptive Experimental Design for Efficient Average Treatment Effect Estimation and Treatment Choice
masakat0
0
130
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
62
32k
Featured
See All Featured
Git: the NoSQL Database
bkeepers
PRO
431
66k
Producing Creativity
orderedlist
PRO
347
40k
Building an army of robots
kneath
306
46k
BBQ
matthewcrist
89
9.8k
YesSQL, Process and Tooling at Scale
rocio
173
15k
The Invisible Side of Design
smashingmag
302
51k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.7k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
610
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.1k
jQuery: Nuts, Bolts and Bling
dougneiner
65
7.9k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
657
61k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
990
Transcript
Using Player’s Body-Orientation to Model Pass Feasibility in Soccer A.
Arbues-Sang ´ uesa , A. Mart, J. Fernandez ,C.Ballester, G. Haro,Universitat Pompeu Fabra, Futbol Club Barcelona 【Sports AI 論文解説】 by Ikuma Uchida
Abstract • サッカーの単眼試合映像をインプットに加えた、任意の時間における最も 有効なパスを推定するモデルの作成を行った。 • 6000本以上のパスデータを使ってモデルの評価を行ったところ、精度が7 割を超えた。 • 既存のEPVと本モデルを掛け合わせることでより正確なモデルを得た。 ➡意思決定プロセスの理解を深められる。
Introduction バルサ元監督のペップのある日の言葉(らしい) ・サッカーにおいて、適切な向きを向くこと(Orientation)の基準ができること はチームパフォーマンス分析において重要なのではないか?(仮説) ・ただ、その基準は選手によってまちまちでフィードバックの余地がなかなか ない ➡最も指向性の効果があられるパスについて、映像から選手の向きを取 得してパス情報に付与すると、精度の高い結果が得られるのでは パサーは、ボールを コントロールする前
に周りを見て出す方 向に向ける準備が 大切だ!
Related Works [1]]Ball Localization for Robocup Soccer Using Convolutional Neural
Neural Networks (J. Fernandez et al., 2020) ・超解像ネットワークと、Open Poseを使用して、試合の単眼映像から選手の体の向き とボールの進行方向を推定。 中央値から誤差27度という精度を達成。 ・本研究は、選手の方向推定にこのモデルを使用。
Related Works [2]]Decomposing the Immeasurable Sport: A deep learning expected
possession value framework for soccer(J. Fernandez et al., 2019) ・任意の位置における、得点もしくは守備成功の期待値を予測するモデル。 ・パサーPがパスを受ける人にパスを成功させる期待値を予測することも可能。 ・本論文は、このEPVモデルに指向性を追加してより正確なパスモデル作成に取り組ん でいる。
Pass-Orientation Model • ある選手がパスを実行しようとしているという事前情報に基づいて、任意の時 点で最ももっともらしいパサーのパスを推定する計算モデルを提案 Hi … パサーPがレシーバーRiにボールをパスする仮説(シチュエーション) 最も実現可能なボールパスを以下のようにF(i)を最大化したときの偏角(arg)に なる。
F(i) : Hiにおけるイベントパスの実現可能性をし、以下のように表す。 Fo(i) : 方向性のスコア, Fd(i):ディフェンダーについてのスコア Fp(i): パサーとレシーバーの距離(ペアワイズ距離)についてのスコア
Orientation • 正確なパスモーメントtに関して、±Qフレームのウインドウに映るプレイヤー のプレー方向を[1]により計算する。 • ペアワイズ距離を考慮しないため、全てのレシーバーをパサーの周りの同 心円状に配置する。 • パサーの体の向き±Ψ(この論文は30°固定)をその選手の視野と定義して、 長さ2Zの二等辺三角形を描く。パス実現可能性になり、
Defenders Position • 守備側のプレー{Dk}kは絶えず意思決定プロセスを変えている。 • β(P, Ri): パサー P とレシーバー
Ri の間の 2 次元テンプレート場における角度 β(P, Dk): パサー P とディフェンダーDk の間の 2 次元テンプレート場における角度 ➡Fd,P(Ri):β(P, Ri)方向へのパス実行可能性 Fd,R(Ri):Pからのボールを受け取る実現可能性
Defenders Position Pairwise Distances これら3つの指標を掛け合わせてパスの実行可能性を定義する。
Dataset • FCバルセロナ提供の試合映像11試合分。 • 6038個のパスイベントを使用。 • パスイベントは、レシーバーがボールをコントロールを できたか否かのバイナリラベルがついている。 • 方向性の情報がある場合とない場合のモデルの比較
を行う。 方向なしの式
Orientation Relevance in Pass Feasibility Fの方が、TOP1とTOP3に おいて精度が向上している
Decomposed Fo - Fd - Fp Performance. 3つとも似たような形状を保っ ている。
Combination with Expected Possession Value EPVに方向性を加味したら精度が 上がった。
まとめ • 本論文は、パスの実現可能性を推定する新しいモデルを提案した。 • 姿勢モデルを用いて体の方向性をパス情報に加味すると、7割近い精 度が出せた。 • 今後は、空きスペースへのスルーパスの実現可能性についても検討す る。