Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Prophetを使った時系列データ予測と機械学習モデルとの比較 / prophet-vs-ml
Search
Haruki Okuyama
October 27, 2019
Business
0
1.3k
Prophetを使った時系列データ予測と機械学習モデルとの比較 / prophet-vs-ml
時系列データにおいて, Prophetと3時間で作成した機械学習モデルとの精度比較
Haruki Okuyama
October 27, 2019
Tweet
Share
More Decks by Haruki Okuyama
See All by Haruki Okuyama
Prophetを使ったコスパの良い時系列データ予測 / prophet-use-cases
spring1018
0
100
Other Decks in Business
See All in Business
AWS Summit Japan 2025 社内コミュニティによる企業文化創り ~MAWS-UGの挑戦とこれから~
yukiogawa
2
720
M&A戦略に関する資料
portpr
0
14k
20250613_CMC_2025_A3
hideki_ojima
0
450
Platform Engineering done well: innovation, efficiency, market advantage - Matthew Skelton - ProductTank Auckland
matthewskelton
PRO
0
250
フルカイテン株式会社 採用資料
fullkaiten
0
66k
アシスト 会社紹介資料
ashisuto_career
3
120k
Bwell Group Recruit
yuyaokagawa
0
1.7k
特別講義 理系のための法学入門
seko_shuhei
2
2.2k
ソーシング・ブラザーズ株式会社|会社説明資料
sbro
0
340
LayerX AI・LLM Division Deck
layerx
PRO
1
36k
エクセレントグループ採用ピッチ[介護事業]
excare
0
1.2k
ユウミ会社説明資料
yumi2023
0
320
Featured
See All Featured
How to train your dragon (web standard)
notwaldorf
93
6.1k
Balancing Empowerment & Direction
lara
1
370
The Art of Programming - Codeland 2020
erikaheidi
54
13k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
32
2.3k
BBQ
matthewcrist
89
9.7k
Six Lessons from altMBA
skipperchong
28
3.8k
Producing Creativity
orderedlist
PRO
346
40k
Designing for humans not robots
tammielis
253
25k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
53
2.8k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3.3k
Facilitating Awesome Meetings
lara
54
6.4k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
3k
Transcript
©2019 Wantedly, Inc. ProphetΛͬͨ࣌ܥྻσʔλ༧ଌͱ ػցֶशϞσϧͱͷൺֱ ML for Beginners! MeetUp #1
LTձ Oct 27, 2019 - Haruki Okuyama - @spring1018x
©2019 Wantedly, Inc. Self-Introduction •Haruki OkuyamaʢԞࢁ ݰكʣ •Chemistry Research (until
March 2019) •Wantedly, Inc. (since April 2019) •Recommendation Team • Mainly, Data Analysis
©2019 Wantedly, Inc. ͢͜ͱ ɾ౷ܭϞσϧͱػցֶशϞσϧͷ࣌ܥྻσʔλ༧ଌ ɾ࣌ܥྻ༧ଌϥΠϒϥϦProphetͷհ ͞ͳ͍͜ͱ ɾProphetͷৄࡉͳΞϧΰϦζϜ About this
talk
©2019 Wantedly, Inc. ɾֶशσʔλ(աڈ)ͱςετσʔλ(ະདྷ)ͷ͕ҟͳΔ ɾτϨϯυ͕͋Δͱ2ͭͷ͕ҟͳΔͷવ ɾػցֶशϞσϧΑΓ౷ܭϞσϧͷํ͕༧ଌਫ਼͕͍͍߹͋ͬͨΓ ͢ΔΒ͍͠* => ࣌ܥྻσʔλʹରͯ͠ػցֶशϞσϧͱ౷ܭϞσϧͷ༧ଌ݁ՌΛ ൺֱ͠,
ײ৮Λ͔֬Ί͍ͨʂ ࣌ܥྻσʔλͷ༧ଌͷ͠͞ *https://tjo.hatenablog.com/entry/2019/09/18/190000 https://t.co/S3BpRgtxUW?amp=1
©2019 Wantedly, Inc. ɾػցֶशϞσϧ ϥάಛྔΛத৺ʹ15ݸͷಛྔΛ࡞͠, LightGBMͰֶश ɾ౷ܭϞσϧ FacebookOSSͷProphetΛ༻ : ͋Δࢦඪ͕དྷ݄͍ͭ͘ʹͳΔ͔Λ༧ଌ͢Δ
* ͋Δͷ࣌Ͱ࣍ͷ݄ͷࢦඪΛ༧ଌ͍ͨ͠ ** 3࣌ؒ͘Β͍Ͱ༧ଌϞσϧΛ࡞͍ͨ͠
©2019 Wantedly, Inc. Prophetͬͯʁ 'BDFCPPLͷ044ඇઢܗͳ࣌ܥྻσʔλΛقઅੑٳޮՌΛऔΓೖΕͯ༧ଌ͢Δ ɾτϨϯυ g(t) ɾقઅੑ(पظੑ) s(t) ɾٳɾॕޮՌ
h(t) ɾΠϕϯτΩϟϯϖʔϯ Forecasting at Scale Sean J. Taylor∗† Facebook, Menlo Park, California, United States ࣌ܥྻσʔλΛ͜ΕΒͷཁૉͷͱߟ͑Δ (*ࣗݾ૬ؔߟྀ͍ͯ͠ͳ͍)
©2019 Wantedly, Inc. model࡞ Time 2016-01-01 ~ 2019-06-30·ͰͷσʔλΛֶͬͯश͠, modelΛ࡞ 2019-07-01
~ 2019-09-30ͰධՁ
©2019 Wantedly, Inc. modelධՁ Prophetͷํ͕ਫ਼͕ߴ͍ 2016-01-01 ~ 2019-06-30·ͰͷσʔλΛֶͬͯश͠, modelΛ࡞ 2019-07-01
~ 2019-09-30ͰධՁ Prophet ML MAPE: 12.2% MAPE: 10.6%
©2019 Wantedly, Inc. ͜͜·Ͱͷ·ͱΊ ɾτϨϯυɾपظੑͷڧ͍࣌ܥྻσʔλʹରͯ͠, ػցֶशϞσϧͷ߹, ࣌ؒͰਫ਼Λग़͢ͷ͍͠ ɾͬͱ࣌ؒΛ͔͚ΒΕΔ߹ಛྔઃܭɾόϦσʔγϣϯͷͷ༨ ͕͋ΔͷͰ࣌ܥྻϞσϧʹউͯͦ͏
©2019 Wantedly, Inc. Prophet: ֤ཁૉͷӨڹ ɾτϨϯυ g(t) ɾقઅੑ s(t) ɾٳɾॕޮՌ
h(t) ɾΠϕϯτΩϟϯϖʔϯ ɾٳॕ͚ͩͰͳ͘, ҙͷΠϕϯτΩϟϯϖʔϯͷޮՌऔΓೖΕΔ͜ͱ͕Ͱ͖Δ ɾ͞Βʹ, ֤ཁૉͷӨڹఆྔతʹࢉग़Ͱ͖Δ
©2019 Wantedly, Inc. Prophet: ֤ཁૉͷӨڹ τϨϯυ, ༵ɾ݄ͷӨڹ, ॕͷӨڹͷՄࢹԽ ॱௐʹ Լ
3্݄ঢ trend holiday weekly yearly ॕԼ
©2019 Wantedly, Inc. Prophetͷಛ ɾτϨϯυɾपظੑͷڧ͍࣌ܥྻσʔλʹ͍͍ͯΔ ɾ֤ͷӨڹ͕ఆྔతʹѲͰ͖ΔͷͰઆ໌ੑ͕ߴ͍ ɾύϥϝʔλνϡʔχϯάͦΕ΄Ͳඞཁͳ͍ ɾతͱ͢ΔࢦඪͷυϝΠϯࣝ͑͋͞ΕΑ͍. ྫ༵͑पظ͕͋Δ, ࿈ٳԼ͢Δetc
©2019 Wantedly, Inc. ɾ࣌ܥྻσʔλ༧ଌʹ͓͚ΔػցֶशϞσϧͱProphetͷൺֱ ɾઃఆ͔͚ΒΕΔ࣌ؒΛߟྀͯ͠બ͢Δ ɾProphetʹΑΔ༧ଌ ɾखܰʹ࣌ܥྻ༧ଌ͕Մೳ ɾυϝΠϯ͕ࣝ͋ΕपظɾΠϕϯτޮՌͷઃఆʹΑΓਫ਼্͕͕Δ ɾσʔλΛߏ͢ΔཁૉͷӨڹ͕ఆྔతʹΘ͔Δ Summary