Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Prophetを使った時系列データ予測と機械学習モデルとの比較 / prophet-vs-ml
Search
Haruki Okuyama
October 27, 2019
Business
0
1.3k
Prophetを使った時系列データ予測と機械学習モデルとの比較 / prophet-vs-ml
時系列データにおいて, Prophetと3時間で作成した機械学習モデルとの精度比較
Haruki Okuyama
October 27, 2019
Tweet
Share
More Decks by Haruki Okuyama
See All by Haruki Okuyama
Prophetを使ったコスパの良い時系列データ予測 / prophet-use-cases
spring1018
0
100
Other Decks in Business
See All in Business
構造化すれば怖くない 画像検索から始める木を見て森に入る勉強法
cuebic9bic
2
350
アッテル会社紹介資料/culture deck
attelu
10
15k
01_全社_FLUX採用ピッチ資料_Ver.5.1
flux
PRO
5
160k
エンジニアの紹介
laboroai2016
0
190
プロダクトディスカバリーのためのユーザーインタビュー 200+本ノックの知見
hynym
PRO
0
290
The “AI×UX Explorer” – From AI Theatre to UX Magic #UXCE25
bennoloewenberg
1
190
Taiwan Product Conference 2025: Interoperate Integrate Iterate a 10 Year Pm Survival Kit for Traditional Sectors
dwchiang
0
120
AI駆動開発、 猫からシーサーへ進化中。 現場での実践と未来
eltociear
0
390
Mico Career Deck_Japan
micoinc
0
5.2k
Introduction of Elastic Infra Inc.
elasticinfra
0
600
M3 Career Culture Deck(セールス&コンサルティング職)
m3c
1
280k
組織を AI との協働に最適化する ~ AI と人が補完しあって成長し続ける組織の作り方 ~
yoshizaki
0
380
Featured
See All Featured
How GitHub (no longer) Works
holman
314
140k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Agile that works and the tools we love
rasmusluckow
329
21k
BBQ
matthewcrist
89
9.7k
The Pragmatic Product Professional
lauravandoore
35
6.7k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
2.8k
A Modern Web Designer's Workflow
chriscoyier
693
190k
RailsConf 2023
tenderlove
30
1.1k
Typedesign – Prime Four
hannesfritz
42
2.7k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
46
9.6k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
181
53k
Code Reviewing Like a Champion
maltzj
524
40k
Transcript
©2019 Wantedly, Inc. ProphetΛͬͨ࣌ܥྻσʔλ༧ଌͱ ػցֶशϞσϧͱͷൺֱ ML for Beginners! MeetUp #1
LTձ Oct 27, 2019 - Haruki Okuyama - @spring1018x
©2019 Wantedly, Inc. Self-Introduction •Haruki OkuyamaʢԞࢁ ݰكʣ •Chemistry Research (until
March 2019) •Wantedly, Inc. (since April 2019) •Recommendation Team • Mainly, Data Analysis
©2019 Wantedly, Inc. ͢͜ͱ ɾ౷ܭϞσϧͱػցֶशϞσϧͷ࣌ܥྻσʔλ༧ଌ ɾ࣌ܥྻ༧ଌϥΠϒϥϦProphetͷհ ͞ͳ͍͜ͱ ɾProphetͷৄࡉͳΞϧΰϦζϜ About this
talk
©2019 Wantedly, Inc. ɾֶशσʔλ(աڈ)ͱςετσʔλ(ະདྷ)ͷ͕ҟͳΔ ɾτϨϯυ͕͋Δͱ2ͭͷ͕ҟͳΔͷવ ɾػցֶशϞσϧΑΓ౷ܭϞσϧͷํ͕༧ଌਫ਼͕͍͍߹͋ͬͨΓ ͢ΔΒ͍͠* => ࣌ܥྻσʔλʹରͯ͠ػցֶशϞσϧͱ౷ܭϞσϧͷ༧ଌ݁ՌΛ ൺֱ͠,
ײ৮Λ͔֬Ί͍ͨʂ ࣌ܥྻσʔλͷ༧ଌͷ͠͞ *https://tjo.hatenablog.com/entry/2019/09/18/190000 https://t.co/S3BpRgtxUW?amp=1
©2019 Wantedly, Inc. ɾػցֶशϞσϧ ϥάಛྔΛத৺ʹ15ݸͷಛྔΛ࡞͠, LightGBMͰֶश ɾ౷ܭϞσϧ FacebookOSSͷProphetΛ༻ : ͋Δࢦඪ͕དྷ݄͍ͭ͘ʹͳΔ͔Λ༧ଌ͢Δ
* ͋Δͷ࣌Ͱ࣍ͷ݄ͷࢦඪΛ༧ଌ͍ͨ͠ ** 3࣌ؒ͘Β͍Ͱ༧ଌϞσϧΛ࡞͍ͨ͠
©2019 Wantedly, Inc. Prophetͬͯʁ 'BDFCPPLͷ044ඇઢܗͳ࣌ܥྻσʔλΛقઅੑٳޮՌΛऔΓೖΕͯ༧ଌ͢Δ ɾτϨϯυ g(t) ɾقઅੑ(पظੑ) s(t) ɾٳɾॕޮՌ
h(t) ɾΠϕϯτΩϟϯϖʔϯ Forecasting at Scale Sean J. Taylor∗† Facebook, Menlo Park, California, United States ࣌ܥྻσʔλΛ͜ΕΒͷཁૉͷͱߟ͑Δ (*ࣗݾ૬ؔߟྀ͍ͯ͠ͳ͍)
©2019 Wantedly, Inc. model࡞ Time 2016-01-01 ~ 2019-06-30·ͰͷσʔλΛֶͬͯश͠, modelΛ࡞ 2019-07-01
~ 2019-09-30ͰධՁ
©2019 Wantedly, Inc. modelධՁ Prophetͷํ͕ਫ਼͕ߴ͍ 2016-01-01 ~ 2019-06-30·ͰͷσʔλΛֶͬͯश͠, modelΛ࡞ 2019-07-01
~ 2019-09-30ͰධՁ Prophet ML MAPE: 12.2% MAPE: 10.6%
©2019 Wantedly, Inc. ͜͜·Ͱͷ·ͱΊ ɾτϨϯυɾपظੑͷڧ͍࣌ܥྻσʔλʹରͯ͠, ػցֶशϞσϧͷ߹, ࣌ؒͰਫ਼Λग़͢ͷ͍͠ ɾͬͱ࣌ؒΛ͔͚ΒΕΔ߹ಛྔઃܭɾόϦσʔγϣϯͷͷ༨ ͕͋ΔͷͰ࣌ܥྻϞσϧʹউͯͦ͏
©2019 Wantedly, Inc. Prophet: ֤ཁૉͷӨڹ ɾτϨϯυ g(t) ɾقઅੑ s(t) ɾٳɾॕޮՌ
h(t) ɾΠϕϯτΩϟϯϖʔϯ ɾٳॕ͚ͩͰͳ͘, ҙͷΠϕϯτΩϟϯϖʔϯͷޮՌऔΓೖΕΔ͜ͱ͕Ͱ͖Δ ɾ͞Βʹ, ֤ཁૉͷӨڹఆྔతʹࢉग़Ͱ͖Δ
©2019 Wantedly, Inc. Prophet: ֤ཁૉͷӨڹ τϨϯυ, ༵ɾ݄ͷӨڹ, ॕͷӨڹͷՄࢹԽ ॱௐʹ Լ
3্݄ঢ trend holiday weekly yearly ॕԼ
©2019 Wantedly, Inc. Prophetͷಛ ɾτϨϯυɾपظੑͷڧ͍࣌ܥྻσʔλʹ͍͍ͯΔ ɾ֤ͷӨڹ͕ఆྔతʹѲͰ͖ΔͷͰઆ໌ੑ͕ߴ͍ ɾύϥϝʔλνϡʔχϯάͦΕ΄Ͳඞཁͳ͍ ɾతͱ͢ΔࢦඪͷυϝΠϯࣝ͑͋͞ΕΑ͍. ྫ༵͑पظ͕͋Δ, ࿈ٳԼ͢Δetc
©2019 Wantedly, Inc. ɾ࣌ܥྻσʔλ༧ଌʹ͓͚ΔػցֶशϞσϧͱProphetͷൺֱ ɾઃఆ͔͚ΒΕΔ࣌ؒΛߟྀͯ͠બ͢Δ ɾProphetʹΑΔ༧ଌ ɾखܰʹ࣌ܥྻ༧ଌ͕Մೳ ɾυϝΠϯ͕ࣝ͋ΕपظɾΠϕϯτޮՌͷઃఆʹΑΓਫ਼্͕͕Δ ɾσʔλΛߏ͢ΔཁૉͷӨڹ͕ఆྔతʹΘ͔Δ Summary