Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Prophetを使った時系列データ予測と機械学習モデルとの比較 / prophet-vs-ml
Search
Haruki Okuyama
October 27, 2019
Business
0
1.3k
Prophetを使った時系列データ予測と機械学習モデルとの比較 / prophet-vs-ml
時系列データにおいて, Prophetと3時間で作成した機械学習モデルとの精度比較
Haruki Okuyama
October 27, 2019
Tweet
Share
More Decks by Haruki Okuyama
See All by Haruki Okuyama
Prophetを使ったコスパの良い時系列データ予測 / prophet-use-cases
spring1018
0
110
Other Decks in Business
See All in Business
株式会社TVer 会社紹介資料
techtver
PRO
9
96k
Sales Marker Culture Book(English)
salesmarker
PRO
2
7.2k
生成AI×個人情報保護法 ― 改正動向から読み解く実務の行方
seko_shuhei
5
2.4k
Fintech landscape updated - Japan section
hakusansai
0
1.1k
キャンバスエッジ株式会社 会社説明資料
canvasedge
0
1.4k
誰も置いて行かない、freee QAのAI活用戦略 / Inclusive freee QA's AI Strategy
ropqa
0
200
三井物産グループのデジタル証券〜名古屋・プライムオフィス〜徹底解説セミナー
c0rp_mdm
PRO
0
1.5k
CREALで働く
creal
PRO
0
1.1k
ヘンリー これからの地域医療 vol.1
henryofficial
0
300
らんみるぷろじぇくと採用情報
ranmil
0
180
センス・トラスト中期経営計画
sensetrust
0
170
イクシアス株式会社 会社紹介資料
ixyas
0
2.6k
Featured
See All Featured
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.6k
Bash Introduction
62gerente
615
210k
Automating Front-end Workflow
addyosmani
1371
200k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.8k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.7k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.1k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
Into the Great Unknown - MozCon
thekraken
40
2.2k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
120
20k
Why Our Code Smells
bkeepers
PRO
340
57k
Keith and Marios Guide to Fast Websites
keithpitt
413
23k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
1k
Transcript
©2019 Wantedly, Inc. ProphetΛͬͨ࣌ܥྻσʔλ༧ଌͱ ػցֶशϞσϧͱͷൺֱ ML for Beginners! MeetUp #1
LTձ Oct 27, 2019 - Haruki Okuyama - @spring1018x
©2019 Wantedly, Inc. Self-Introduction •Haruki OkuyamaʢԞࢁ ݰكʣ •Chemistry Research (until
March 2019) •Wantedly, Inc. (since April 2019) •Recommendation Team • Mainly, Data Analysis
©2019 Wantedly, Inc. ͢͜ͱ ɾ౷ܭϞσϧͱػցֶशϞσϧͷ࣌ܥྻσʔλ༧ଌ ɾ࣌ܥྻ༧ଌϥΠϒϥϦProphetͷհ ͞ͳ͍͜ͱ ɾProphetͷৄࡉͳΞϧΰϦζϜ About this
talk
©2019 Wantedly, Inc. ɾֶशσʔλ(աڈ)ͱςετσʔλ(ະདྷ)ͷ͕ҟͳΔ ɾτϨϯυ͕͋Δͱ2ͭͷ͕ҟͳΔͷવ ɾػցֶशϞσϧΑΓ౷ܭϞσϧͷํ͕༧ଌਫ਼͕͍͍߹͋ͬͨΓ ͢ΔΒ͍͠* => ࣌ܥྻσʔλʹରͯ͠ػցֶशϞσϧͱ౷ܭϞσϧͷ༧ଌ݁ՌΛ ൺֱ͠,
ײ৮Λ͔֬Ί͍ͨʂ ࣌ܥྻσʔλͷ༧ଌͷ͠͞ *https://tjo.hatenablog.com/entry/2019/09/18/190000 https://t.co/S3BpRgtxUW?amp=1
©2019 Wantedly, Inc. ɾػցֶशϞσϧ ϥάಛྔΛத৺ʹ15ݸͷಛྔΛ࡞͠, LightGBMͰֶश ɾ౷ܭϞσϧ FacebookOSSͷProphetΛ༻ : ͋Δࢦඪ͕དྷ݄͍ͭ͘ʹͳΔ͔Λ༧ଌ͢Δ
* ͋Δͷ࣌Ͱ࣍ͷ݄ͷࢦඪΛ༧ଌ͍ͨ͠ ** 3࣌ؒ͘Β͍Ͱ༧ଌϞσϧΛ࡞͍ͨ͠
©2019 Wantedly, Inc. Prophetͬͯʁ 'BDFCPPLͷ044ඇઢܗͳ࣌ܥྻσʔλΛقઅੑٳޮՌΛऔΓೖΕͯ༧ଌ͢Δ ɾτϨϯυ g(t) ɾقઅੑ(पظੑ) s(t) ɾٳɾॕޮՌ
h(t) ɾΠϕϯτΩϟϯϖʔϯ Forecasting at Scale Sean J. Taylor∗† Facebook, Menlo Park, California, United States ࣌ܥྻσʔλΛ͜ΕΒͷཁૉͷͱߟ͑Δ (*ࣗݾ૬ؔߟྀ͍ͯ͠ͳ͍)
©2019 Wantedly, Inc. model࡞ Time 2016-01-01 ~ 2019-06-30·ͰͷσʔλΛֶͬͯश͠, modelΛ࡞ 2019-07-01
~ 2019-09-30ͰධՁ
©2019 Wantedly, Inc. modelධՁ Prophetͷํ͕ਫ਼͕ߴ͍ 2016-01-01 ~ 2019-06-30·ͰͷσʔλΛֶͬͯश͠, modelΛ࡞ 2019-07-01
~ 2019-09-30ͰධՁ Prophet ML MAPE: 12.2% MAPE: 10.6%
©2019 Wantedly, Inc. ͜͜·Ͱͷ·ͱΊ ɾτϨϯυɾपظੑͷڧ͍࣌ܥྻσʔλʹରͯ͠, ػցֶशϞσϧͷ߹, ࣌ؒͰਫ਼Λग़͢ͷ͍͠ ɾͬͱ࣌ؒΛ͔͚ΒΕΔ߹ಛྔઃܭɾόϦσʔγϣϯͷͷ༨ ͕͋ΔͷͰ࣌ܥྻϞσϧʹউͯͦ͏
©2019 Wantedly, Inc. Prophet: ֤ཁૉͷӨڹ ɾτϨϯυ g(t) ɾقઅੑ s(t) ɾٳɾॕޮՌ
h(t) ɾΠϕϯτΩϟϯϖʔϯ ɾٳॕ͚ͩͰͳ͘, ҙͷΠϕϯτΩϟϯϖʔϯͷޮՌऔΓೖΕΔ͜ͱ͕Ͱ͖Δ ɾ͞Βʹ, ֤ཁૉͷӨڹఆྔతʹࢉग़Ͱ͖Δ
©2019 Wantedly, Inc. Prophet: ֤ཁૉͷӨڹ τϨϯυ, ༵ɾ݄ͷӨڹ, ॕͷӨڹͷՄࢹԽ ॱௐʹ Լ
3্݄ঢ trend holiday weekly yearly ॕԼ
©2019 Wantedly, Inc. Prophetͷಛ ɾτϨϯυɾपظੑͷڧ͍࣌ܥྻσʔλʹ͍͍ͯΔ ɾ֤ͷӨڹ͕ఆྔతʹѲͰ͖ΔͷͰઆ໌ੑ͕ߴ͍ ɾύϥϝʔλνϡʔχϯάͦΕ΄Ͳඞཁͳ͍ ɾతͱ͢ΔࢦඪͷυϝΠϯࣝ͑͋͞ΕΑ͍. ྫ༵͑पظ͕͋Δ, ࿈ٳԼ͢Δetc
©2019 Wantedly, Inc. ɾ࣌ܥྻσʔλ༧ଌʹ͓͚ΔػցֶशϞσϧͱProphetͷൺֱ ɾઃఆ͔͚ΒΕΔ࣌ؒΛߟྀͯ͠બ͢Δ ɾProphetʹΑΔ༧ଌ ɾखܰʹ࣌ܥྻ༧ଌ͕Մೳ ɾυϝΠϯ͕ࣝ͋ΕपظɾΠϕϯτޮՌͷઃఆʹΑΓਫ਼্͕͕Δ ɾσʔλΛߏ͢ΔཁૉͷӨڹ͕ఆྔతʹΘ͔Δ Summary