Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Prophetを使ったコスパの良い時系列データ予測 / prophet-use-cases
Search
Haruki Okuyama
August 28, 2019
Business
0
110
Prophetを使ったコスパの良い時系列データ予測 / prophet-use-cases
ビジネスにおける時系列データをトレンド・季節性・イベント効果の3つに分けて予測する
Haruki Okuyama
August 28, 2019
Tweet
Share
More Decks by Haruki Okuyama
See All by Haruki Okuyama
Prophetを使った時系列データ予測と機械学習モデルとの比較 / prophet-vs-ml
spring1018
0
1.3k
Other Decks in Business
See All in Business
会社説明資料/株式会社PLAY
play_inc
0
22k
宣言やガイドを示したってよくならない!スクラムチームが回るようにするためにはきっかけが必要だ!
abe2014
0
150
メドピアグループ紹介資料
medpeer_recruit
10
140k
【Entrance Book】新卒営業職向け
givery_recruit
0
500
2025.10_中途採用資料.pdf
superstudio
PRO
2
84k
ワンキャリア 会社説明資料 / Company Deck
onecareer
7
250k
MagicPodを使い倒すメドレーの活用術 / How to utilize of MagicPod
medley
1
180
製造業界の人とアジャイルをやってみたよ
toshiaki0315
0
390
採用案内2025年ver2
hdn_tocci
0
170
株式会社ジュニ - 採用ピッチ
junni_inc
2
22k
ゼネラル・パーチェス株式会社_ 会社説明資料
hr_team
0
200
採用ピッチ資料
awesome22
0
310
Featured
See All Featured
Java REST API Framework Comparison - PWX 2021
mraible
34
8.9k
The Language of Interfaces
destraynor
162
25k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.7k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.7k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
Designing Experiences People Love
moore
142
24k
Leading Effective Engineering Teams in the AI Era
addyosmani
7
570
Agile that works and the tools we love
rasmusluckow
331
21k
Docker and Python
trallard
46
3.6k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.5k
Transcript
©2019 Wantedly, Inc. ProphetΛͬͨ ίεύͷྑ͍࣌ܥྻσʔλ༧ଌ Creators MeetUp ϏΞόογϡLTձ Aug 28,
2019 - Haruki Okuyama - @spring1018x
©2019 Wantedly, Inc. Self-Introduction •Haruki OkuyamaʢԞࢁ ݰكʣ •Wantedly, Inc. (since
April 2019) •Recommendation Team •Like puyopuyo-tetris
©2019 Wantedly, Inc. ͢͜ͱ ɾ࣌ܥྻσʔλಛ༗ͷੑ࣭ ɾ࣌ܥྻ༧ଌϥΠϒϥϦProphetΛͬͨ༧ଌ ͞ͳ͍͜ͱ ɾProphetͷΞϧΰϦζϜ ɾProphetͷύϥϝʔλɾػೳͷৄࡉ About
this talk
©2019 Wantedly, Inc. KPI࣌ܥྻσʔλͰ͋Δ͜ͱ͕΄ͱΜͲ ɾKPIͷඪΛઃఆ͍ͨ͠ ݱࡏͷɾ݄͝ͱͷมಈΛߟྀͯ͠༧ଌͨ͠ʹ͢Δඞཁ͕͋Δ ɾKPIͷੑ࣭Λ͔ͭΈ͍ͨ KPI͕มԽͨ͠ࡍʹ, ԿͷӨڹʹΑΔͷ͔ΛఆྔతʹѲ͍ͨ͠ ࣌ܥྻσʔλͷ༧ଌ
©2019 Wantedly, Inc. ɾτϨϯυ ɾقઅੑ ɾex)िɾ݄৳ͼΔ, 3݄ब׆γʔζϯ ɾٳɾॕޮՌ ɾΠϕϯτΩϟϯϖʔϯ ࣌ܥྻσʔλͷ༧ଌͷԿ͕͍͠ʁ
͜ΕΒ͕ෳࡶʹࠞ͟Δ
©2019 Wantedly, Inc. Wantedlyͷ࣌ܥྻσʔλͷྫ ɾμογϡϘʔυมಈ͕େ͖͍σʔλͷ߹, τϨϯυ͕Θ͔Γʹ͍͘ ɾٳͷӨڹΛड͚͍͕͢, िɾ݄ʹΑͬͯٳͷ͕ҟͳΔ ɾिɾ݄ຖͷ͕ఆྔతʹΘ͔͍ͬͯͳ͍ͱͷஅ͕Ͱ͖ͳ͍ ex)
3݄ब׆γʔζϯͰ৳ͼΔ͕, Կ%ϓϥεʹิਖ਼͞ΕΔʁ Time ˞͜ΕҎ߱ͷσʔλ8BOUFEMZͷ͋ΔࢦඪΛͱʹՃͨ͠ͷ
©2019 Wantedly, Inc. ProphetʹΑΔ༧ଌ 'BDFCPPLͷ044ඇઢܗͳ࣌ܥྻσʔλΛقઅੑٳޮՌΛऔΓೖΕͯ༧ଌ͢Δ ɾτϨϯυ H U ɾقઅੑ T
U ɾٳɾॕޮՌ I U ɾΠϕϯτΩϟϯϖʔϯ Forecasting at Scale Sean J. Taylor∗† Facebook, Menlo Park, California, United States ࣌ܥྻσʔλ͜ΕΒͷཁૉͷͱͳ͍ͬͯΔ
©2019 Wantedly, Inc. Prophet: model࡞ Time 2016-01-01 ~ 2018-12-31·ͰͷσʔλΛֶͬͯश͠, modelΛ࡞
2019-01-01 ~ 2019-07-31ͷ༧ଌͱ࣮ࡍͷΛൺֱ͠, modelͷੑೳΛ֬ೝ͢Δ
©2019 Wantedly, Inc. Prophet: modelධՁ 2016-01-01 ~ 2018-12-31·ͰͷσʔλΛֶͬͯश͠, modelΛ࡞ 2019-01-01
~ 2019-07-31ͷ༧ଌͱ࣮ࡍͷΛൺֱ͠, modelͷੑೳΛ֬ೝ͢Δ ฏۉ4.5%ͷޡࠩ(MAPE)
©2019 Wantedly, Inc. Prophet: ֤ཁૉͷ τϨϯυ, ༵ɾ݄ͷӨڹ, ॕͷӨڹͷՄࢹԽ ॱௐʹ Լ
3্݄ঢ trend holiday weekly yearly
©2019 Wantedly, Inc. Prophet: ΠϕϯτޮՌ ɾτϨϯυ H U ɾقઅੑ T
U ɾٳɾॕޮՌ I U ɾΠϕϯτΩϟϯϖʔϯ ɾٳॕ͚ͩͰͳ͘, ҙͷΠϕϯτΩϟϯϖʔϯͷޮՌऔΓೖΕΔ͜ͱ͕Ͱ͖Δ ɾॕͷ߹ͱಉ༷ʹ, Πϕϯτ͕͋ͬͨΛࢦఆ͢Δ͚ͩͰΑ͍ ɾΠϕϯτͷʹӨڹ͕େ͖͘มΘΔͷʹద༻͠ʹ͍͔͘ɾɾɾʁ ɾ͞Βʹ, ͦΕΒͷӨڹఆྔతʹࢉग़Ͱ͖Δ
©2019 Wantedly, Inc. Prophet: ֤ཁૉͷ τϨϯυ, ༵ɾ݄ͷӨڹ, ॕͷӨڹͷՄࢹԽ ॕԼ trend
holiday weekly yearly
©2019 Wantedly, Inc. Prophet: ΠϕϯτޮՌ ɾޡࠩͷେ͖͍݄ԿΒ͔ͷΠϕϯτޮՌ͕ߟྀͰ͖͍ͯͳ͍Մೳੑ ex) ѲͰ͖͍ͯͳ͍Ωϟϯϖʔϯ͕͋ͬͨ ɾυϝΠϯࣝΛۦͯ͠ΠϕϯτޮՌΛऔΓೖΕΔͷ͕ॏཁ ࠓճհͨ͠ػೳͷ߹,
ॕ͚ͩͰతΛຬͨ͢ਫ਼͕ಘΒΕͨ
©2019 Wantedly, Inc. Prophet: ׆༻ྫ ɾࠜڌ͕໌֬ͳඪઃఆ͕Ͱ͖Δ 9݄10%৳ͼΔ͕͋ΔͷͰ, վળʹΑͬͯ5%ϓϥε͠, ߹ܭ15%৳͢ ɾ࣮ࡍͷ݁Ռ͕Prophetͷ༧ଌΛԼճͬͨ
ػೳͷ͕ಷ͖͍ͬͯͯΔ͔͠Εͳ͍ͷͰରࡦΛଧͭ ɾ9݄͕࠷͕৳ͼͦ͏ ͦͷλΠϛϯάʹ߹ΘͤͯվળࢪࡦΩϟϯϖʔϯΛߦ͏
©2019 Wantedly, Inc. ɾ࣌ܥྻσʔλͷੑ࣭ ɾɾقઅੑ(पظੑ)ɾΠϕϯτޮՌ͕͍ࠞͬͯ͟Δ ɾProphetʹΑΔ༧ଌ ɾखܰʹ࣌ܥྻ༧ଌ͕Մೳ ɾυϝΠϯ͕ࣝ͋ΕΠϕϯτޮՌͷઃఆʹΑΓਫ਼্͕͕Δ ɾσʔλΛߏ͢ΔཁૉͷӨڹ͕ఆྔతʹΘ͔Δ Summary