Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Prophetを使ったコスパの良い時系列データ予測 / prophet-use-cases
Search
Haruki Okuyama
August 28, 2019
Business
0
100
Prophetを使ったコスパの良い時系列データ予測 / prophet-use-cases
ビジネスにおける時系列データをトレンド・季節性・イベント効果の3つに分けて予測する
Haruki Okuyama
August 28, 2019
Tweet
Share
More Decks by Haruki Okuyama
See All by Haruki Okuyama
Prophetを使った時系列データ予測と機械学習モデルとの比較 / prophet-vs-ml
spring1018
0
1.3k
Other Decks in Business
See All in Business
EMOOR_ブランド説明資料
yusawada
1
11k
6 Fast and Easy ways to contact Quickbooks Desktop Support
nalix91224
0
170
WebCMS 概観 MTDDC Meetup TOHOKU 2025
hirata
0
120
あえてのNotAI_AI時代の営業、人の感情と志にBetする
hitoshi_kakizawa
0
200
プロダクト進化とグロースを加速させる「強いCS組織」の秘訣 / The secret to a strong customer service organization that accelerates product evolution and growth
kaminashi
0
130
エレコム株式会社 中途採用説明資料
elecom_hr
0
880
AIで「お客様のことだけを考える」 時間を増やすためには
kosakiteppei
0
340
Schoo for Business インパクトレポート2025
schoo
0
660
国内ランサムウェア3事例から学ぶ中小病院におけるサイバーセキュリティ対策 / Cybersecurity Learned from Cases
henryofficial
0
400
AIサービス紹介資料_250331.pdf
babylonzoo
0
2.3k
株式会社Rehab for JAPAN会社概要
rehabrecruiting
5
77k
坂ノ途中 会社紹介資料 /Introduction
ontheslope
0
2.1k
Featured
See All Featured
Navigating Team Friction
lara
187
15k
GraphQLとの向き合い方2022年版
quramy
49
14k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.6k
Build your cross-platform service in a week with App Engine
jlugia
231
18k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Being A Developer After 40
akosma
90
590k
How to Ace a Technical Interview
jacobian
278
23k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
33
2.4k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
48
2.9k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
29
9.6k
Docker and Python
trallard
45
3.5k
Transcript
©2019 Wantedly, Inc. ProphetΛͬͨ ίεύͷྑ͍࣌ܥྻσʔλ༧ଌ Creators MeetUp ϏΞόογϡLTձ Aug 28,
2019 - Haruki Okuyama - @spring1018x
©2019 Wantedly, Inc. Self-Introduction •Haruki OkuyamaʢԞࢁ ݰكʣ •Wantedly, Inc. (since
April 2019) •Recommendation Team •Like puyopuyo-tetris
©2019 Wantedly, Inc. ͢͜ͱ ɾ࣌ܥྻσʔλಛ༗ͷੑ࣭ ɾ࣌ܥྻ༧ଌϥΠϒϥϦProphetΛͬͨ༧ଌ ͞ͳ͍͜ͱ ɾProphetͷΞϧΰϦζϜ ɾProphetͷύϥϝʔλɾػೳͷৄࡉ About
this talk
©2019 Wantedly, Inc. KPI࣌ܥྻσʔλͰ͋Δ͜ͱ͕΄ͱΜͲ ɾKPIͷඪΛઃఆ͍ͨ͠ ݱࡏͷɾ݄͝ͱͷมಈΛߟྀͯ͠༧ଌͨ͠ʹ͢Δඞཁ͕͋Δ ɾKPIͷੑ࣭Λ͔ͭΈ͍ͨ KPI͕มԽͨ͠ࡍʹ, ԿͷӨڹʹΑΔͷ͔ΛఆྔతʹѲ͍ͨ͠ ࣌ܥྻσʔλͷ༧ଌ
©2019 Wantedly, Inc. ɾτϨϯυ ɾقઅੑ ɾex)िɾ݄৳ͼΔ, 3݄ब׆γʔζϯ ɾٳɾॕޮՌ ɾΠϕϯτΩϟϯϖʔϯ ࣌ܥྻσʔλͷ༧ଌͷԿ͕͍͠ʁ
͜ΕΒ͕ෳࡶʹࠞ͟Δ
©2019 Wantedly, Inc. Wantedlyͷ࣌ܥྻσʔλͷྫ ɾμογϡϘʔυมಈ͕େ͖͍σʔλͷ߹, τϨϯυ͕Θ͔Γʹ͍͘ ɾٳͷӨڹΛड͚͍͕͢, िɾ݄ʹΑͬͯٳͷ͕ҟͳΔ ɾिɾ݄ຖͷ͕ఆྔతʹΘ͔͍ͬͯͳ͍ͱͷஅ͕Ͱ͖ͳ͍ ex)
3݄ब׆γʔζϯͰ৳ͼΔ͕, Կ%ϓϥεʹิਖ਼͞ΕΔʁ Time ˞͜ΕҎ߱ͷσʔλ8BOUFEMZͷ͋ΔࢦඪΛͱʹՃͨ͠ͷ
©2019 Wantedly, Inc. ProphetʹΑΔ༧ଌ 'BDFCPPLͷ044ඇઢܗͳ࣌ܥྻσʔλΛقઅੑٳޮՌΛऔΓೖΕͯ༧ଌ͢Δ ɾτϨϯυ H U ɾقઅੑ T
U ɾٳɾॕޮՌ I U ɾΠϕϯτΩϟϯϖʔϯ Forecasting at Scale Sean J. Taylor∗† Facebook, Menlo Park, California, United States ࣌ܥྻσʔλ͜ΕΒͷཁૉͷͱͳ͍ͬͯΔ
©2019 Wantedly, Inc. Prophet: model࡞ Time 2016-01-01 ~ 2018-12-31·ͰͷσʔλΛֶͬͯश͠, modelΛ࡞
2019-01-01 ~ 2019-07-31ͷ༧ଌͱ࣮ࡍͷΛൺֱ͠, modelͷੑೳΛ֬ೝ͢Δ
©2019 Wantedly, Inc. Prophet: modelධՁ 2016-01-01 ~ 2018-12-31·ͰͷσʔλΛֶͬͯश͠, modelΛ࡞ 2019-01-01
~ 2019-07-31ͷ༧ଌͱ࣮ࡍͷΛൺֱ͠, modelͷੑೳΛ֬ೝ͢Δ ฏۉ4.5%ͷޡࠩ(MAPE)
©2019 Wantedly, Inc. Prophet: ֤ཁૉͷ τϨϯυ, ༵ɾ݄ͷӨڹ, ॕͷӨڹͷՄࢹԽ ॱௐʹ Լ
3্݄ঢ trend holiday weekly yearly
©2019 Wantedly, Inc. Prophet: ΠϕϯτޮՌ ɾτϨϯυ H U ɾقઅੑ T
U ɾٳɾॕޮՌ I U ɾΠϕϯτΩϟϯϖʔϯ ɾٳॕ͚ͩͰͳ͘, ҙͷΠϕϯτΩϟϯϖʔϯͷޮՌऔΓೖΕΔ͜ͱ͕Ͱ͖Δ ɾॕͷ߹ͱಉ༷ʹ, Πϕϯτ͕͋ͬͨΛࢦఆ͢Δ͚ͩͰΑ͍ ɾΠϕϯτͷʹӨڹ͕େ͖͘มΘΔͷʹద༻͠ʹ͍͔͘ɾɾɾʁ ɾ͞Βʹ, ͦΕΒͷӨڹఆྔతʹࢉग़Ͱ͖Δ
©2019 Wantedly, Inc. Prophet: ֤ཁૉͷ τϨϯυ, ༵ɾ݄ͷӨڹ, ॕͷӨڹͷՄࢹԽ ॕԼ trend
holiday weekly yearly
©2019 Wantedly, Inc. Prophet: ΠϕϯτޮՌ ɾޡࠩͷେ͖͍݄ԿΒ͔ͷΠϕϯτޮՌ͕ߟྀͰ͖͍ͯͳ͍Մೳੑ ex) ѲͰ͖͍ͯͳ͍Ωϟϯϖʔϯ͕͋ͬͨ ɾυϝΠϯࣝΛۦͯ͠ΠϕϯτޮՌΛऔΓೖΕΔͷ͕ॏཁ ࠓճհͨ͠ػೳͷ߹,
ॕ͚ͩͰతΛຬͨ͢ਫ਼͕ಘΒΕͨ
©2019 Wantedly, Inc. Prophet: ׆༻ྫ ɾࠜڌ͕໌֬ͳඪઃఆ͕Ͱ͖Δ 9݄10%৳ͼΔ͕͋ΔͷͰ, վળʹΑͬͯ5%ϓϥε͠, ߹ܭ15%৳͢ ɾ࣮ࡍͷ݁Ռ͕Prophetͷ༧ଌΛԼճͬͨ
ػೳͷ͕ಷ͖͍ͬͯͯΔ͔͠Εͳ͍ͷͰରࡦΛଧͭ ɾ9݄͕࠷͕৳ͼͦ͏ ͦͷλΠϛϯάʹ߹ΘͤͯվળࢪࡦΩϟϯϖʔϯΛߦ͏
©2019 Wantedly, Inc. ɾ࣌ܥྻσʔλͷੑ࣭ ɾɾقઅੑ(पظੑ)ɾΠϕϯτޮՌ͕͍ࠞͬͯ͟Δ ɾProphetʹΑΔ༧ଌ ɾखܰʹ࣌ܥྻ༧ଌ͕Մೳ ɾυϝΠϯ͕ࣝ͋ΕΠϕϯτޮՌͷઃఆʹΑΓਫ਼্͕͕Δ ɾσʔλΛߏ͢ΔཁૉͷӨڹ͕ఆྔతʹΘ͔Δ Summary