Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Prophetを使ったコスパの良い時系列データ予測 / prophet-use-cases
Search
Haruki Okuyama
August 28, 2019
Business
0
110
Prophetを使ったコスパの良い時系列データ予測 / prophet-use-cases
ビジネスにおける時系列データをトレンド・季節性・イベント効果の3つに分けて予測する
Haruki Okuyama
August 28, 2019
Tweet
Share
More Decks by Haruki Okuyama
See All by Haruki Okuyama
Prophetを使った時系列データ予測と機械学習モデルとの比較 / prophet-vs-ml
spring1018
0
1.3k
Other Decks in Business
See All in Business
人が辞めても困らない職場へ - AIでノウハウがたまる仕組み、文化を作る実践術
nkajihara
4
1k
minto 10万ダウンロードまでにやったこと・やらなかったこと / minto 100k DL
hirothings
4
1.5k
DevHRに全部賭けろ
nealle
0
170
株式会社SAFELY 会社紹介 / Company
safely_pr
1
4.2k
【Omiai】リアーキ LT_202510
enito
PRO
1
220
株式会社EventHub 会社紹介資料
eventhub
1
40k
GMOフィナンシャルHD 会社紹介資料
gmofh_hr_team
0
55k
在庫管理アプリ「nanco」サービス資料_2025
nsketch
0
110
Laiblitz/corporateprofile
laiblitz
0
25k
Entrance Book ビジネスイノベーションサービス部
arisaiyou
0
2k
Mercari Group Code of Conduct
mercari_inc
0
240
ゼネラル・パーチェス株式会社_ 会社説明資料
hr_team
0
230
Featured
See All Featured
The Language of Interfaces
destraynor
162
25k
YesSQL, Process and Tooling at Scale
rocio
173
15k
Context Engineering - Making Every Token Count
addyosmani
8
300
Six Lessons from altMBA
skipperchong
29
4k
A Tale of Four Properties
chriscoyier
161
23k
How to Ace a Technical Interview
jacobian
280
24k
[RailsConf 2023] Rails as a piece of cake
palkan
57
5.9k
Designing for humans not robots
tammielis
254
26k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
116
20k
Building an army of robots
kneath
305
46k
A better future with KSS
kneath
239
18k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.7k
Transcript
©2019 Wantedly, Inc. ProphetΛͬͨ ίεύͷྑ͍࣌ܥྻσʔλ༧ଌ Creators MeetUp ϏΞόογϡLTձ Aug 28,
2019 - Haruki Okuyama - @spring1018x
©2019 Wantedly, Inc. Self-Introduction •Haruki OkuyamaʢԞࢁ ݰكʣ •Wantedly, Inc. (since
April 2019) •Recommendation Team •Like puyopuyo-tetris
©2019 Wantedly, Inc. ͢͜ͱ ɾ࣌ܥྻσʔλಛ༗ͷੑ࣭ ɾ࣌ܥྻ༧ଌϥΠϒϥϦProphetΛͬͨ༧ଌ ͞ͳ͍͜ͱ ɾProphetͷΞϧΰϦζϜ ɾProphetͷύϥϝʔλɾػೳͷৄࡉ About
this talk
©2019 Wantedly, Inc. KPI࣌ܥྻσʔλͰ͋Δ͜ͱ͕΄ͱΜͲ ɾKPIͷඪΛઃఆ͍ͨ͠ ݱࡏͷɾ݄͝ͱͷมಈΛߟྀͯ͠༧ଌͨ͠ʹ͢Δඞཁ͕͋Δ ɾKPIͷੑ࣭Λ͔ͭΈ͍ͨ KPI͕มԽͨ͠ࡍʹ, ԿͷӨڹʹΑΔͷ͔ΛఆྔతʹѲ͍ͨ͠ ࣌ܥྻσʔλͷ༧ଌ
©2019 Wantedly, Inc. ɾτϨϯυ ɾقઅੑ ɾex)िɾ݄৳ͼΔ, 3݄ब׆γʔζϯ ɾٳɾॕޮՌ ɾΠϕϯτΩϟϯϖʔϯ ࣌ܥྻσʔλͷ༧ଌͷԿ͕͍͠ʁ
͜ΕΒ͕ෳࡶʹࠞ͟Δ
©2019 Wantedly, Inc. Wantedlyͷ࣌ܥྻσʔλͷྫ ɾμογϡϘʔυมಈ͕େ͖͍σʔλͷ߹, τϨϯυ͕Θ͔Γʹ͍͘ ɾٳͷӨڹΛड͚͍͕͢, िɾ݄ʹΑͬͯٳͷ͕ҟͳΔ ɾिɾ݄ຖͷ͕ఆྔతʹΘ͔͍ͬͯͳ͍ͱͷஅ͕Ͱ͖ͳ͍ ex)
3݄ब׆γʔζϯͰ৳ͼΔ͕, Կ%ϓϥεʹิਖ਼͞ΕΔʁ Time ˞͜ΕҎ߱ͷσʔλ8BOUFEMZͷ͋ΔࢦඪΛͱʹՃͨ͠ͷ
©2019 Wantedly, Inc. ProphetʹΑΔ༧ଌ 'BDFCPPLͷ044ඇઢܗͳ࣌ܥྻσʔλΛقઅੑٳޮՌΛऔΓೖΕͯ༧ଌ͢Δ ɾτϨϯυ H U ɾقઅੑ T
U ɾٳɾॕޮՌ I U ɾΠϕϯτΩϟϯϖʔϯ Forecasting at Scale Sean J. Taylor∗† Facebook, Menlo Park, California, United States ࣌ܥྻσʔλ͜ΕΒͷཁૉͷͱͳ͍ͬͯΔ
©2019 Wantedly, Inc. Prophet: model࡞ Time 2016-01-01 ~ 2018-12-31·ͰͷσʔλΛֶͬͯश͠, modelΛ࡞
2019-01-01 ~ 2019-07-31ͷ༧ଌͱ࣮ࡍͷΛൺֱ͠, modelͷੑೳΛ֬ೝ͢Δ
©2019 Wantedly, Inc. Prophet: modelධՁ 2016-01-01 ~ 2018-12-31·ͰͷσʔλΛֶͬͯश͠, modelΛ࡞ 2019-01-01
~ 2019-07-31ͷ༧ଌͱ࣮ࡍͷΛൺֱ͠, modelͷੑೳΛ֬ೝ͢Δ ฏۉ4.5%ͷޡࠩ(MAPE)
©2019 Wantedly, Inc. Prophet: ֤ཁૉͷ τϨϯυ, ༵ɾ݄ͷӨڹ, ॕͷӨڹͷՄࢹԽ ॱௐʹ Լ
3্݄ঢ trend holiday weekly yearly
©2019 Wantedly, Inc. Prophet: ΠϕϯτޮՌ ɾτϨϯυ H U ɾقઅੑ T
U ɾٳɾॕޮՌ I U ɾΠϕϯτΩϟϯϖʔϯ ɾٳॕ͚ͩͰͳ͘, ҙͷΠϕϯτΩϟϯϖʔϯͷޮՌऔΓೖΕΔ͜ͱ͕Ͱ͖Δ ɾॕͷ߹ͱಉ༷ʹ, Πϕϯτ͕͋ͬͨΛࢦఆ͢Δ͚ͩͰΑ͍ ɾΠϕϯτͷʹӨڹ͕େ͖͘มΘΔͷʹద༻͠ʹ͍͔͘ɾɾɾʁ ɾ͞Βʹ, ͦΕΒͷӨڹఆྔతʹࢉग़Ͱ͖Δ
©2019 Wantedly, Inc. Prophet: ֤ཁૉͷ τϨϯυ, ༵ɾ݄ͷӨڹ, ॕͷӨڹͷՄࢹԽ ॕԼ trend
holiday weekly yearly
©2019 Wantedly, Inc. Prophet: ΠϕϯτޮՌ ɾޡࠩͷେ͖͍݄ԿΒ͔ͷΠϕϯτޮՌ͕ߟྀͰ͖͍ͯͳ͍Մೳੑ ex) ѲͰ͖͍ͯͳ͍Ωϟϯϖʔϯ͕͋ͬͨ ɾυϝΠϯࣝΛۦͯ͠ΠϕϯτޮՌΛऔΓೖΕΔͷ͕ॏཁ ࠓճհͨ͠ػೳͷ߹,
ॕ͚ͩͰతΛຬͨ͢ਫ਼͕ಘΒΕͨ
©2019 Wantedly, Inc. Prophet: ׆༻ྫ ɾࠜڌ͕໌֬ͳඪઃఆ͕Ͱ͖Δ 9݄10%৳ͼΔ͕͋ΔͷͰ, վળʹΑͬͯ5%ϓϥε͠, ߹ܭ15%৳͢ ɾ࣮ࡍͷ݁Ռ͕Prophetͷ༧ଌΛԼճͬͨ
ػೳͷ͕ಷ͖͍ͬͯͯΔ͔͠Εͳ͍ͷͰରࡦΛଧͭ ɾ9݄͕࠷͕৳ͼͦ͏ ͦͷλΠϛϯάʹ߹ΘͤͯվળࢪࡦΩϟϯϖʔϯΛߦ͏
©2019 Wantedly, Inc. ɾ࣌ܥྻσʔλͷੑ࣭ ɾɾقઅੑ(पظੑ)ɾΠϕϯτޮՌ͕͍ࠞͬͯ͟Δ ɾProphetʹΑΔ༧ଌ ɾखܰʹ࣌ܥྻ༧ଌ͕Մೳ ɾυϝΠϯ͕ࣝ͋ΕΠϕϯτޮՌͷઃఆʹΑΓਫ਼্͕͕Δ ɾσʔλΛߏ͢ΔཁૉͷӨڹ͕ఆྔతʹΘ͔Δ Summary