Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
SSII2024 [OS2] 大規模言語モデルと基盤モデルの射程
Search
画像センシングシンポジウム
PRO
June 12, 2024
Research
1
780
SSII2024 [OS2] 大規模言語モデルと基盤モデルの射程
画像センシングシンポジウム
PRO
June 12, 2024
Tweet
Share
More Decks by 画像センシングシンポジウム
See All by 画像センシングシンポジウム
SSII2025 [OS3] どの論文でもダメなんだけど! 〜実応用とその課題〜
ssii
PRO
2
1.3k
SSII2025 [OS3-01] End-to-End自動運転の実応用の現場から
ssii
PRO
6
2.9k
SSII2025 [OS3-02] 広告における画像生成技術の実応用の現状
ssii
PRO
6
1.4k
SSII2025 [OS3-03] 有機ミニトマト農場におけるロボット開発と基礎研究
ssii
PRO
0
1k
SSII2025 [OS2-01] 自動運転の性能と共に進化するセンシングデバイス
ssii
PRO
2
1.9k
SSII2025 [TS3] 医工連携における画像情報学研究
ssii
PRO
3
1.3k
SSII2025 [OS2] 新たなセンシングの潮流
ssii
PRO
1
620
SSII2025 [OS2-02] イベントカメラの研究紹介と可視光通信への応用
ssii
PRO
1
1.1k
SSII2025 [OS2-03] マルチ/ハイパースペクトル領域における高度な画像撮影および処理技術
ssii
PRO
2
1.2k
Other Decks in Research
See All in Research
カスタマーサクセスの視点からAWS Summitの展示を考える~製品開発で活用できる勘所~
masakiokuda
2
210
スキマバイトサービスにおける現場起点でのデザインアプローチ
yoshioshingyouji
0
250
Panopticon: Advancing Any-Sensor Foundation Models for Earth Observation
satai
3
230
[輪講] SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features
nk35jk
3
1.2k
「どう育てるか」より「どう働きたいか」〜スクラムマスターの最初の一歩〜
hirakawa51
0
930
CoRL2025速報
rpc
1
2k
AIグラフィックデザインの進化:断片から統合(One Piece)へ / From Fragment to One Piece: A Survey on AI-Driven Graphic Design
shunk031
0
500
国際論文を出そう!ICRA / IROS / RA-L への論文投稿の心構えとノウハウ / RSJ2025 Luncheon Seminar
koide3
10
5.5k
AlphaEarth Foundations: An embedding field model for accurate and efficient global mapping from sparse label data
satai
3
350
Large Language Model Agent: A Survey on Methodology, Applications and Challenges
shunk031
17
10k
説明可能な機械学習と数理最適化
kelicht
0
130
20250725-bet-ai-day
cipepser
2
480
Featured
See All Featured
Testing 201, or: Great Expectations
jmmastey
45
7.7k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
Building a Modern Day E-commerce SEO Strategy
aleyda
44
7.8k
Embracing the Ebb and Flow
colly
88
4.8k
Statistics for Hackers
jakevdp
799
220k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
Reflections from 52 weeks, 52 projects
jeffersonlam
353
21k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
33
2.5k
Producing Creativity
orderedlist
PRO
347
40k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
Transcript
SSII2024 大規模言語モデルと基盤モデルの射程 2024.6.13 大谷 まゆ(サイバーエージェント)
2 GPT-4Vで画像認識は終わるのか SSII2024 サイバーエージェント AI Lab 大谷まゆ • コンピュータビジョン研究のための評価方法に興味 •
デザイン制作支援、画像生成 • 経歴 ◦ 2018 – 現職 ◦ 2014 – 2018 修士・博士課程@NAIST
3 GPT-4Vで画像認識は終わるのか SSII2024 コンピュータビジョンの一般的な研究スタイル 手法開発 性能比較 論文が出版されたり プロダクトに採用されたり
4 GPT-4Vで画像認識は終わるのか SSII2024 評価方法はちゃんと役割を果たしている? 性能比較
5 GPT-4Vで画像認識は終わるのか SSII2024 映像要約のベンチマーク調査(CVPR’18) 要約の品質に関係なく評価値が決まるこ とを確認 ベンチマーク調査 ランダム化した要約 参照要約
6 GPT-4Vで画像認識は終わるのか SSII2024 シーン検索のベンチマーク調査 (BMVC’20) データセットに潜む偏りが評価結果に及ぼす 影響を調査 ベンチマーク調査 学習&推論時に映像を使わず SOTAに迫る
スコアが出ることを確認
7 GPT-4Vで画像認識は終わるのか SSII2024 現状技術の限界(の感覚)と評価結果のギャップ ベンチマークの違和感はどこに生じるか データの限界 手法の限界 ドメインシフト、データ量、クラス偏り...etc. 使える教師信号、扱える特徴...etc. 性能の概算:
扱えそうな問題はベンチマークの△△ %ぐらい? 成功率◯◯%
8 GPT-4Vで画像認識は終わるのか SSII2024 視覚言語モデルの限界はどのあたりにあるのか? Vision Encoder LLM Connection Model 『コンピュータを使
う猫』
9 GPT-4Vで画像認識は終わるのか SSII2024 視覚言語モデルの限界はどのあたりにあるのか? Vision Encoder LLM Connection Model 膨大なデータを学習することで強
力な特徴空間を獲得 言語モデルが多様な問題に有効 • 要約 • 翻訳 • 推論を伴う質問応答 • 雑談 • プログラミング • etc. 『a photo of siberian husky』 CLIPのzero-shot classifier https://openai.com/index/clip/
10 GPT-4Vで画像認識は終わるのか SSII2024 視覚言語モデルの限界はどのあたりにあるのか? Vision Encoder LLM Connection Model 膨大なデータを学習することで強
力な特徴空間を獲得 『a photo of siberian husky』 CLIPのzero-shot classifier GPT4 Technical Report 強力な特徴空間の上での様々な操作がで きる可能性 特徴空間が獲得できれば多様な CV課題 が視覚言語モデルの射程に入る?
11 GPT-4Vで画像認識は終わるのか SSII2024 CVに残された課題は? データを集めにくい領域は扱えない→集めれば解決? 様々なモダリティへの対応→同様のアプローチが有効? ImageBind: One Embedding Space
To Bind Them All (CVPR’23)
12 GPT-4Vで画像認識は終わるのか SSII2024 • 多くの画像認識課題がGPT-4V的アプローチの射程圏に入る • 従来のCV問題の本質が「工学的な手法の探索」から「実用的リソース配分」に なる • 多くの課題がCVを卒業し、政治、思想、芸術の領域へ接続してゆく
GPT-4Vで画像認識は終わるのか?