Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Formation of Astrophysical Objects 2022

Sponsored · Your Podcast. Everywhere. Effortlessly. Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.

Formation of Astrophysical Objects 2022

Avatar for statictaku

statictaku

May 19, 2023
Tweet

More Decks by statictaku

Other Decks in Research

Transcript

  1. Riemann solverΛ༻͍ͨDensity-Independent Smoothed Particle Hydrodynamics(DISPH)ͷ࠶ߏ੒ ᴷ ৽ SPH εΩʔϜ:Godunov DISPH

    ๏ʹ͍ͭͯ ᴷ ౬ઙ୓޺, ৿ਖ਼෉ ஜ೾େֶ December 2, 2022 ౬ઙ ୓޺, ৿ ਖ਼෉ (ஜ೾େֶ) DISPH, Godunov SPH, Godunov DISPH, IA December 2, 2022 1 / 22
  2. ໨࣍ 1 ֤छεΩʔϜʹ͍ͭͯ SPH ๏ Density-Independent SPH ๏, GSPH ๏

    Godunov DISPH ๏ Integral Approach 2 ςετܭࢉ ࣮ݧͷ໨త Riemann ໰୊ 2D ੩ਫѹฏߧ 2D Kelvin-Helmholtz ෆ҆ఆੑ ·ͱΊ 3 sheer switch ͷվྑʹ޲͚ͯ ໰୊఺ ݪҼͷ༧૝ վળࡦ 4 ࠓޙͷํ਑ ౬ઙ ୓޺, ৿ ਖ਼෉ (ஜ೾େֶ) DISPH, Godunov SPH, Godunov DISPH, IA December 2, 2022 2 / 22
  3. ֤छεΩʔϜʹ͍ͭͯ SPH ๏ SPH ๏ಋग़ʹ༻͍ΔѹॖੑྲྀମͷӡಈํఔࣜɺΤωϧΪʔํఔࣜ dv(r) dt = − 1

    ρ(r) ∇P(r) + FAV (α) (1) du(r) dt = − P(r) ρ(r) ∇ · v(r) + GAV (α) (2) • σϝϦοτ ▶ ྲྀମͷ઀৮ෆ࿈ଓ໘Λ͏·͘ѻ͑ͣɺͦͷͨΊྲྀମͷෆ҆ఆੑͷ੒௕Λ๦͛Δ ▶ িܸ೾Λଊ͑ΔͨΊʹਓ޻తͳࢄҳ߲͕ӡಈํఔࣜɺΤωϧΪʔํఔࣜʹඞཁɻ ਓޱ೪ੑͷڧ͞Λௐઅ͢Δ೚ҙύϥϝʔλ α ΛਓؒͷखͰௐ੔͢Δඞཁ ▶ ཭ࢄԽͷࡍʹཻࢠ෼෍ͷඇ౳ํੑ͔Β͘Δۭؒθϩ࣍ͷޡ͕ࠩൃੜ ౬ઙ ୓޺, ৿ ਖ਼෉ (ஜ೾େֶ) DISPH, Godunov SPH, Godunov DISPH, IA December 2, 2022 3 / 22
  4. ֤छεΩʔϜʹ͍ͭͯ Density-Independent SPH ๏, GSPH ๏ DISPH ๏ɺGSPH ๏ͱ͸ •

    [Saitoh and Makino, 2013] Ͱ DISPH ๏͕ɺ[Inutsuka, 2002] Ͱ GSPH ๏͕։ൃ͞Εͨɻ DISPH ๏ ઀৮ෆ࿈ଓ໘Ͱ࿈ଓͳѹྗΛΧʔωϧਪ ఆ͠ɺྲྀମͷඍ෼ํఔࣜΛղ͍͍ͯΔɻ ਓ޻೪ੑ͕ඞཁɻ GSPH ๏ ཻࢠಉ࢜ͷ૬ޓ࡞༻ͷܭࢉͷࡍʹ Riemannsolver Λ༻͍ΔɻࠓճͷൃදͰ͸ [Cha and Whitworth, 2003] ʹΑΔ Case3 ͷ GSPH Λ࢖༻ɹਓ޻೪ੑඞཁͳ͠ɻ ౬ઙ ୓޺, ৿ ਖ਼෉ (ஜ೾େֶ) DISPH, Godunov SPH, Godunov DISPH, IA December 2, 2022 4 / 22
  5. ֤छεΩʔϜʹ͍ͭͯ Godunov DISPH ๏ զʑ͕։ൃͨ͠ GDISPH ๏ʹ͍ͭͯ • DISPH ๏ͱಉ͘͡ɺີ౓ͷ୅ΘΓʹ઀৮ෆ࿈ଓ໘Ͱ࿈ଓͳѹྗΛΧʔωϧਪఆ͠ɺ

    GSPH ๏ͷಋग़ʹ฿ͬͯີ౓ʹཅʹґଘ͠ͳ͍ SPH ํఔࣜΛ࡞੒͍ͯ͘͠ɻ ρ(r) = ΣjmjW(|rj − r|, h(r)) (3) GDISPH ๏ಋग़ʹ༻͍Δࣜ q(r) = ΣjmjujW(|rj − r|, h(r)) = P(r) γ − 1 (4) F(r) ∼ ∫ F(r′)W(|r − r′|, h(r′))d3r′ (5) ѹॖੑྲྀମͷӡಈํఔࣜɺΤωϧΪʔํఔࣜ dv(r) dt = − 1 ρ(r) ∇P(r) (6) du(r) dt = − P(r) ρ(r) ∇ · v(r) (7) ౬ઙ ୓޺, ৿ ਖ਼෉ (ஜ೾େֶ) DISPH, Godunov SPH, Godunov DISPH, IA December 2, 2022 5 / 22
  6. ֤छεΩʔϜʹ͍ͭͯ Godunov DISPH ๏ GDISPH ๏ʹ͓͚Δ Case3 ܕͷӡಈํఔࣜɺΤωϧΪʔํఔࣜ ˙ vi

    = −ΣjmjujP∗ ij u∗ ij [ 1 q2 i ∇iW(ri − rj, hi) + 1 q2 j ∇iW(ri − rj, hj) ] ˙ ui = −ΣjmjujP∗ ij u∗ ij [ v∗ ij − vi ] [ 1 q2 i ∇iW(ri − rj, hi) + 1 q2 j ∇iW(ri − rj, hj) ] (8) ఴ͑ࣈʹ*ͷ෇͍ͨ෺ཧྔͷܭࢉํ๏ʹ͸ࣗ༝౓Λ࣋ͨͤΔɻ GSPH ๏Ͱ͸ɺriemann solver ͷղɻ ྫͱͯ͠ɺu∗ ij = ui, v∗ ij = vi+vj 2 ͱ͠ɺP∗ ij ͸ riemann solver ͔ΒٻΊΔύλʔϯΛ GDISPH Case3 2 2 ͱ໊͚ͮΔɻ(ຊൃදͰ͸͜Ε͕ॏཁͳ GDISPH ͷεΩʔϜ) Χʔωϧͷۭؒඍ෼ʹ͸ɺ[Garc´ ıa-Senz et al., 2012] ͕ߟҊͨ͠ IA Λ࢖༻͢Δ͔൱͔ͷࣗ༝ ౓͕ଘࡏɻ ౬ઙ ୓޺, ৿ ਖ਼෉ (ஜ೾େֶ) DISPH, Godunov SPH, Godunov DISPH, IA December 2, 2022 6 / 22
  7. ֤छεΩʔϜʹ͍ͭͯ Integral Approach Integral Approach(IA) ͱ͸ • [Garc´ ıa-Senz et

    al., 2012] ͕೤֦ࢄ߲౳ʹݱΕΔ 2 ֊ඍ෼߲ͷܭࢉʹ࢖༻͞Ε͍ͯͨํ๏ ([Brookshaw, 1985]) ΛҰ֊ඍ෼ʹԠ༻ • 1 ֊ඍ෼ͰݱΕΔΧʔωϧͷۭؒඍ෼Λผͷ΋ͷʹม͑Δ͚ͩͰΑ͍ɻ ∇iW(ri − rj, hi) ∼ τ−1 i (rj − ri)Wij(hi) ∇iW(ri − rj, hj) ∼ τ−1 j (rj − ri)Wij(hj) τ(r) = [∫ (r′ − r) ⊗ (r′ − r)W(|r − r′|, h(r)) ] d3r′ (9) • IA ʹΑΓ෺ཧྔͷ 1 ֊ඍ෼ͷਫ਼౓͕ྑ͘ͳΓɺۭؒ 0 ࣍ͷޡࠩ΋খ͘͞ͳΔ͜ͱ͕ใࠂ ͞Ε͍ͯΔɻ ౬ઙ ୓޺, ৿ ਖ਼෉ (ஜ೾େֶ) DISPH, Godunov SPH, Godunov DISPH, IA December 2, 2022 7 / 22
  8. ςετܭࢉ ࣮ݧͷ໨త ࣮ݧͷ໨త • SPH ๏ɺDISPH ๏ ▶ Χʔωϧͷۭؒඍ෼Λ IA

    ʹ͢Δ͔൱͔ • Case3 ͷ GSPH ๏ ▶ Χʔωϧͷۭؒඍ෼Λ IA ʹ͢Δ͔൱͔ ▶ riemann solver ͷߴਫ਼౓Խ͢Δ͔൱͔ɺ͢ΔͳΒྲྀ଎੍ݶؔ਺ΛԿʹ͢Δ͔ • Case3 ͷ GDISPH ๏ ▶ Χʔωϧͷۭؒඍ෼Λ IA ʹ͢Δ͔൱͔ ▶ ఴ͑ࣈʹ*ͷ෇͍ͨ෺ཧྔΛ riemann solver Ͱղ͔͘൱͔ɺղ͔ͳ͍ͳΒԿʹ͢Δ͔ ▶ riemann solver ͷߴਫ਼౓Խ͢Δ͔൱͔ɺ͢ΔͳΒྲྀ଎੍ݶؔ਺ΛԿʹ͢Δ͔ riemann solver ͷߴਫ਼౓Խ͸ [Cha and Whitworth, 2003] ͷ΍ΓํͰߦͬͨɻ ֤εΩʔϜʹର༷ͯ͠ʑͳ૊Έ߹Θͤͷύλʔϯ͕ଘࡏɻ͜ͷதͰ࠷΋༏ΕͨεΩʔϜΛબ ఆ͢ΔͨΊɺ໿ 150 ݸͷύλʔϯʹؔͯ͠ riemann ໰୊,2D ੩ਫѹฏߧ,2D Kelvin-Helmholtz ෆ҆ఆੑͷܭࢉΛߦͬͨɻͦͷதͰ͍͔ͭ͘ͷεΩʔϜΛϐοΫΞοϓ͠ɺͦͷಛੑΛൺֱ ݕ౼͢Δɻ ౬ઙ ୓޺, ৿ ਖ਼෉ (ஜ೾େֶ) DISPH, Godunov SPH, Godunov DISPH, IA December 2, 2022 8 / 22
  9. ςετܭࢉ Riemann ໰୊ Riemann ໰୊ ڧ͍িܸ೾͕ൃੜ͢Δ໰୊ { ρ = 1,

    P = 1000, v = 0 x < 0 ͷͱ͖ ρ = 1, P = 0.1, v = 0 x > 0 ͷͱ͖ (10) ີ౓ ѹྗ ଎౓ ౬ઙ ୓޺, ৿ ਖ਼෉ (ஜ೾େֶ) DISPH, Godunov SPH, Godunov DISPH, IA December 2, 2022 9 / 22
  10. ςετܭࢉ 2D ੩ਫѹฏߧ 2D ੩ਫѹฏߧ ॳظ৚݅ͷ··มಈ͠ͳ͍ͷ͕෺ཧతͳղ ѹྗ͸શྖҬͰҰఆɹ • Ի଎ Cs

    = 1.02 ͰܭࢉྖҬΛԣ੾Δ࣌ؒ໿ 1.0 ͷ 8 ഒͰ͋Δ t = 8.0 ·Ͱܭࢉ ౬ઙ ୓޺, ৿ ਖ਼෉ (ஜ೾େֶ) DISPH, Godunov SPH, Godunov DISPH, IA December 2, 2022 11 / 22
  11. ςετܭࢉ 2D Kelvin-Helmholtz ෆ҆ఆੑ 2D Kelvin-Helmholtz ෆ҆ఆੑ Ґஔ y =

    0.25, y = 0.75 ͷͦΕͧΕʹɺy ࣠ํ޲ͷ଎౓ʹ 2 ೾௕෼ͷઁಈΛ༩͍͑ͯΔ ෆ҆ఆੑͷ੒௕ͷλΠϜεέʔϧ τKH = 1.06 ͷ໿ 2 ഒͷ t = 2.0 ·Ͱܭࢉ GSPH,GDISPH ͱ SPH,DISPH ͷൺֱͷͨΊɺbalsara switch ͸͋͑ͯ֎ͯ͠ܭࢉ ॳظ৚݅ ༩͑ͨઁಈ ౬ઙ ୓޺, ৿ ਖ਼෉ (ஜ೾େֶ) DISPH, Godunov SPH, Godunov DISPH, IA December 2, 2022 13 / 22
  12. ςετܭࢉ 2D Kelvin-Helmholtz ෆ҆ఆੑ Balsara switch ͱ͸ • [Balsara, 1995]

    ʹΑͬͯఏҊ͞Εͨख๏ • ਓ޻೪ੑ߲͸ຊདྷিܸ೾ྖҬͰͷΈಇ͍ͯ΄͍͕͠ɺγΞྖҬͰ΋ಇ͍ͯ͠·͏ɻ • ͦΕΛ๷͙ͨΊɺBalsara switch ͕Α͘࢖ΘΕ͍ͯΔɻ Balsara switch ਓ޻೪ੑ߲ʹ 0.5(Fi + Fj) Λ͔͚ΔɻγΞྖҬͰ͸ Fi, Fj Λ 1 ΑΓখ͘͞ɺিܸ೾ྖҬͰ͸ Fi, Fj ͕ 1 ʹͳΔΑ͏ʹઃఆɻ Fi = |∇i · vi| |∇i · vi| + |∇i × vi| + 0.0001ci/hi (11) ౬ઙ ୓޺, ৿ ਖ਼෉ (ஜ೾େֶ) DISPH, Godunov SPH, Godunov DISPH, IA December 2, 2022 14 / 22
  13. ςετܭࢉ 2D Kelvin-Helmholtz ෆ҆ఆੑ • ࠨ͸ਓ޻೪ੑͷύϥϝʔλ α = 0.5ɺ ӈ͸

    α = 3ɻӈͷ΄͏͕ਓ޻೪ੑ͕ ڧ͍ɻ • ਓ޻೪ੑ͕ڧ͍ → γΞྖҬͰͷਓ޻ ೪ੑ͕݁Ռతʹେ͖͘ͳΔ → ෆ҆ఆ ੑͷ੒௕͕཈੍ ౬ઙ ୓޺, ৿ ਖ਼෉ (ஜ೾େֶ) DISPH, Godunov SPH, Godunov DISPH, IA December 2, 2022 16 / 22
  14. ςετܭࢉ ·ͱΊ ·ͱΊ • GDISPH Case3 2 2 ▶ Riemann

    ໰୊ɺ੩ਫѹฏߧ໰୊ʹ͓͍ͯ DISPH ͱಉ༷ͳ݁Ռ,Kelvin-Helmholtz ෆ҆ఆੑʹ ؔͯ͠͸ GSPH ͱಉ༷ͳ݁ՌɻSPH ͷεΩʔϜͱͯ͠ɺѹॖੑྲྀମͷ໰୊Λ͖ͪΜͱղ͚ ͍ͯΔɻ ▶ ߴਫ਼౓Խͨ͠৔߹ɺ೪ੑ͕খ͘͞ͳΔ͜ͱ͕ݪҼͰڧ͍িܸ೾ԼͰͷৼಈ͕ൃੜͯ͠͠ ·͏ɻ ▶ ߴਫ਼౓ԽʹΑͬͯ Kelvin-Helmholtz ෆ҆ఆੑͷ੒௕͕ଅਐ͞ΕΔɻओͳཁҼ͸೪ੑ͕খ͞ ͘ͳͬͨ͜ͱͰγΞྖҬͷ೪ੑ͕খ͘͞ͳ͔ͬͨΒ • IA ▶ Kelvin-Helmholtz ෆ҆ఆੑͰ͸ɺIA ԽʹΑΓ੒௕͕ଟগଅਐ͞ΕΔɻ͔͠͠ɺ੩ਫѹฏߧ໰ ୊͔Β DISPH ܥͷεΩʔϜͰ͸ IA ԽʹΑΓϊΠζΛर͍΍͘͢ͳ͍ͬͯΔɻ • SSPH,DISPH ▶ Kelvin-Helmholtz ෆ҆ఆੑʹ͓͍ͯɺಉ༷ͳ݁ՌɻGSPH,GDISPH ΑΓ΋ෆ҆ఆੑͷ੒௕͕ ଅਐ͞Ε͍ͯΔ͕ɺ͔͔͍ͬͯΔ೪ੑ͕ GSPH,GDISPH ΑΓ΋খ͍͔͞Βɻ ౬ઙ ୓޺, ৿ ਖ਼෉ (ஜ೾େֶ) DISPH, Godunov SPH, Godunov DISPH, IA December 2, 2022 17 / 22
  15. sheer switch ͷվྑʹ޲͚ͯ ໰୊఺ ౬ઙ ୓޺, ৿ ਖ਼෉ (ஜ೾େֶ) DISPH,

    Godunov SPH, Godunov DISPH, IA December 2, 2022 18 / 22
  16. sheer switch ͷվྑʹ޲͚ͯ ݪҼͷ༧૝ ݪҼͷ༧૝ ϊΠζͷਖ਼ମ ཻ֤ࢠʹ͓͚Δɺۭؒ 0 ࣍ͷޡࠩ΍ O(h2)

    ͷޡࠩͷ͔͔Γํͷҧ͍ʹΑΔ΋ ͷɻཻ֤ࢠؒͷඍົͳ਺஋ͷͣΕ͕ɺ ඇৗʹ೾௕ͷখ͍͞ઁಈͱͳΔɻ ϊΠζ͕େ͖͘੒௕͢Δཧ༝ • balsara switch ͷಋೖʹΑͬͯγΞྖ ҬͰͷ೪ੑ͕΄΅ 0 ʹͳΔɻ • ڪΒ͘෺ཧతʹ͸ɺྲྀମͷ೪ੑ͕େ ͖͘ͳΔͱɺKH ෆ҆ఆੑ͕ى͜Δ ࠷খͷ೾௕΋େ͖͘ͳΔɻ ೪ੑ͕ 0 ͳΒ͹ɺ ͲͷΑ͏ͳ೾௕ʹରͯ͠΋ෆ҆ఆੑ੒௕ ౬ઙ ୓޺, ৿ ਖ਼෉ (ஜ೾େֶ) DISPH, Godunov SPH, Godunov DISPH, IA December 2, 2022 19 / 22
  17. sheer switch ͷվྑʹ޲͚ͯ վળࡦ վળࡦ • ෺ཧతͳઁಈʹΑΔෆ҆ఆੑͷ੒௕͸ڐ͠ɺ਺஋తͳϊΠζʹΑΔઁಈͷ੒௕͸཈͑Δɻ → balsara switch

    ͷڧ͞Λௐઅ͢Δ͜ͱͰ࣮ݱΛ໨ࢦ͢ɻ Balsara switch • ਓ޻೪ੑ߲ʹ 0.5(Fi + Fj) Λ͔͚Δɻ Fi = |∇i · vi| |∇i · vi| + |∇i × vi| + 0.0001ci/hi (12) զʑͷఏҊख๏ • Fi, Fj ͷ୅ΘΓʹ F′ i , F′ j Λ༻͍Δɻ • β ͸ [0, 1] ͷ࣮਺ΛऔΔ೚ҙύϥϝʔλɻβ = 1 Ͱ balsara switch Φϯɹ β = 0 Ͱ balsara switch Φϑ F′ i = 1 + β(Fi − 1) (13) ౬ઙ ୓޺, ৿ ਖ਼෉ (ஜ೾େֶ) DISPH, Godunov SPH, Godunov DISPH, IA December 2, 2022 20 / 22
  18. sheer switch ͷվྑʹ޲͚ͯ վળࡦ DISPH ౬ઙ ୓޺, ৿ ਖ਼෉ (ஜ೾େֶ)

    DISPH, Godunov SPH, Godunov DISPH, IA December 2, 2022 21 / 22
  19. ࠓޙͷํ਑ ࠓޙͷํ਑ • ೪ੑྲྀମͷ Kelvin-Helmholtz ෆ҆ఆੑͷ෼ࢄؔ܎͔ΒɺO(h) ఔ౓ͷ೾௕ͷઁಈͷ੒௕Λ ແࢹͰ͖ΔΑ͏ͳύϥϝʔλ β ͷઃఆํ๏Λݟ͚ͭΔɻ

    • GSPH,GDISPH ΁ͷ Balsara switch ͷద༻Λߦ͏ɻ • ఆྔతͳධՁΛ༻͍Δ • ͕Μ͹Δ ౬ઙ ୓޺, ৿ ਖ਼෉ (ஜ೾େֶ) DISPH, Godunov SPH, Godunov DISPH, IA December 2, 2022 22 / 22
  20. ࠓޙͷํ਑ ग़య Figure: ”Fancy SPH convolution scheme (verbose, modified colors

    scheme)” created by Jlcercos is licenced under CC BY-SA 4.0(https://creativecommons.org/licenses/by-sa/4.0/) ౬ઙ ୓޺, ৿ ਖ਼෉ (ஜ೾େֶ) DISPH, Godunov SPH, Godunov DISPH, IA December 2, 2022 22 / 22
  21. ࠓޙͷํ਑ Reference I [Balsara, 1995] Balsara, D. S. (1995). Von

    neumann stability analysis of smoothed particle hydrodynamicsŠsuggestions for optimal algorithms. Journal of Computational Physics, 121(2):357–372. [Brookshaw, 1985] Brookshaw, L. (1985). A method of calculating radiative heat diffusion in particle simulations. Publications of the Astronomical Society of Australia, 6(2):207 r 210. [Cha and Whitworth, 2003] Cha, S.-H. and Whitworth, A. P. (2003). Implementations and tests of godunov-type particle hydrodynamics. Monthly Notices of the Royal Astronomical Society, 340(1):73–90. [Garc´ ıa-Senz et al., 2012] Garc´ ıa-Senz, D., Cabez´ on, R. M., and Escart´ ın, J. A. (2012). Improving smoothed particle hydrodynamics with an integral approach to calculating gradients. Astronomy & astrophysics, 538:A9. [Inutsuka, 2002] Inutsuka, S.-i. (2002). Reformulation of smoothed particle hydrodynamics with riemann solver. Journal of Computational Physics, 179. ౬ઙ ୓޺, ৿ ਖ਼෉ (ஜ೾େֶ) DISPH, Godunov SPH, Godunov DISPH, IA December 2, 2022 22 / 22
  22. ࠓޙͷํ਑ Reference II [Saitoh and Makino, 2013] Saitoh, T. R.

    and Makino, J. (2013). A DENSITY-INDEPENDENT FORMULATION OF SMOOTHED PARTICLE HYDRODYNAMICS. The Astrophysical Journal, 768(1):44. ౬ઙ ୓޺, ৿ ਖ਼෉ (ஜ೾େֶ) DISPH, Godunov SPH, Godunov DISPH, IA December 2, 2022 22 / 22
  23. ࠓޙͷํ਑ ಋग़ͷࡍʹ༻͍ΔԾఆɾۙࣅ • ҎԼͷࣜΛຬͨ͢ Fij ͕ଘࡏ͢Δ ∫ F(r) q2(r) W(|r

    − ri|, h(r))W(|r − rj|, h(r))d3r = F∗ ij ∫ 1 q2(r) W(|r − ri|, h(r))W(|r − rj|, h(r))d3r (14) • Case3 ͷܗʹ͢ΔͨΊʹҎԼͷۙࣅ͕੒Γཱͭͱ͢Δ [∇i − ∇j]W(|ri − r|, h(r))W(|rj − r|, h(r)) ∼ ∇iW(|ri − r|, h(r))δ(|r − rj|) − δ(|r − ri|)∇jW(|rj − r|, h(r)) (15) • Godunov SPH ๏Ͱ͸ɺࣜ (14) ʹ͓͍ͯ q(r) ͕ ρ(r) ʹஔ͖׵Θ͍ͬͯΔɻFij ͸ཻࢠ i ͱཻࢠ j ͷத৺෇ۙͰͷɺཻࢠ i ͱཻࢠ j ͷ෺ཧྔΛ༻͍ͨ Riemann solver ͷղ ౬ઙ ୓޺, ৿ ਖ਼෉ (ஜ೾େֶ) DISPH, Godunov SPH, Godunov DISPH, IA December 2, 2022 22 / 22
  24. ࠓޙͷํ਑ GDISPH ΁ͷ Balsara switch ͷద༻ • GSPHɺGDISPH ʹ Balsara

    switch ͷద༻Λߦͬͨྫ͸ͳ͍ɻ • DISPH ͸ (ඇਓ޻೪ੑ߲)+(ਓ޻೪ੑ߲) ʹཅʹ෼͔Ε͍ͯΔ͕ɺGDISPH ͸ 1 ͭͷ߲ʹ ·ͱ·͍ͬͯͯ෼཭͍ͯ͠ͳ͍ɻ զʑͷఏҊख๏ • (DISPH ͷඇਓ޻೪ੑ߲)+0.5(F′ i + F′ j)(GDISPH ͷ߲ - DISPH ͷඇਓ޻೪ੑ߲) Λɺ GDISPH ͷࣜͱͯ͠༻͍Δɻ • F′ i = F′ j = 1(Balsara switch Φϑ) Ͱͨͩͷ GDISPH ౬ઙ ୓޺, ৿ ਖ਼෉ (ஜ೾େֶ) DISPH, Godunov SPH, Godunov DISPH, IA December 2, 2022 22 / 22